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1 Introduction
The basic idea of the artificial social systems approach of
Shoham and Tennenholtz [1995; 1997] is to add a mecha-
nism, called a social law, that will minimize the need for both
centralized control and on-line resolution of conflicts. A so-
cial law is defined as a set of restrictions on the agents’ ac-
tivities which allow them enough freedom on the one hand,
but at the same time constrain them so that they will not inter-
fere with each other. Several variants have been introduced to
reason about the design and emergence of social laws. How-
ever, existing models of artificial social systems cannot be
used for the evolution of such systems, because these mod-
els do not contain an explicit representation of the social laws
in force. In this paper we use enforceable social laws [Boella
and van der Torre, 2005] to address the question how artificial
social systems can be extended to reason about the evolution
of artificial social systems.

2 Artificial social systems and social laws
Shoham and Tennenholtz [1995] introduce social laws in a
setting without utilities. They define also rational social laws
[Shoham and Tennenholtz, 1997] as social laws that improve
a social game variable. A game or multi-agent encounter is a
set of agents with for each agent a set of strategies and a util-
ity function defined on each possible combination of strate-
gies. We extend artificial social systems with a control sys-
tem, called a normative system, to model enforceable social
laws. Following Boella and Lesmo [2002], the normative sys-
tem is represented by a socially constructed agent called the
normative agent or agent 0. In [Boella and van der Torre,
2005], the normative system is represented by the set of con-
trol strategies of agent 0, but not by a utility function.

Definition 1 A normative game (or a normative multi-agent
encounter) is a tuple
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are
real-valued utility functions for agents 1 and 2, respectively.

We use here as game variable the maximin value, following
Tennenholtz [2000]. This represents safety level decisions,
see Tennenholtz’ paper for a motivation.

Definition 2 Let
�
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be the sets of strategies
available to agent 0, 1 and 2, respectively, and let
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be the utility function of agent 3 . Define
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agent 1 (respectively 2) is defined by 9RQ�STO�@NM �U��45�V�	6����87
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spectively 9RQWS�DE@WF ���B45�����X��I�7
). A strategy of agent 3 leading

to the corresponding maximin value is called a maximin strat-
egy for agent 3 .

A social law is useful with respect to an efficiency param-
eter Y if each agent can choose a strategy that guarantees it a
payoff of at least Y .

Definition 3 Given a normative game Z �
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and an efficiency parameter Y , we
define a social law to be a restriction of
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. The social law is useful if the following holds:
there exists
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A social law is quasi-stable if an agent does not profit from
violating the law, as long as the other agent conforms to the
social law (i.e., selects strategies allowed by the law).

Definition 4 Given a normative game Z �
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, and an efficiency parameter Y , a
quasi-stable social law is a useful social law (with respect
to Y ) which restricts
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When the set of strategies
�

of agent 0 is a singleton, then
our definitions reduce to those of Tennenholtz [2000]. With
the extension of agent 0 representing the control system we
define enforceable social laws as quasi-stable social laws in
normative games where the strategies of agent 0 may have
been restricted [Boella and van der Torre, 2005].

Definition 5 Given a normative game Z �
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, and an efficiency parameter Y , a
social law (i.e., a restriction of
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) is enforceable if there is a restriction of
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Computational problems can be defined to find enforceable
social laws (with respect to an efficiency parameter).



3 Representing social laws
We extend normative games with a utility function of agent 0,
to represent the norms which are enforced. Since agent 0 is
a socially constructed agent, in the sense of Searle [1995], its
utility function can be updated. In particular, the enforcement
of a social law by

�&^ �
is represented by giving

�
strate-

gies a high utility, and
�nf �

strategies a low utility. More-
over, we go beyond the framework of enforceable social laws
by varying the utility of agent 0 depending on the strategies
played by the other agents, and by considering incremental
updates of the utility function to represent the evolution of
artificial social systems. Formally, we extend a normative
game with a utility function
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define useful and quasi-stable social laws in the obvious way.
Enforced social laws are defined as follows.

Definition 6 Given a normative game Z �
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, and an efficiency parameter Y , a
social law (i.e., a restriction of
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enforced if there is a unique restriction of
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that
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3.1 Identification of enforced social laws
The game in Table 1 illustrates that the computational prob-
lem to find quasi-stable laws corresponds in extended norma-
tive games to the identification of enforced social laws. The
table should be read as follows. Strategies are represented by
literals, i.e., atomic propositions or their negations. Each ta-
ble represents the sub-game given a strategy of agent

�
, repre-

sented by ��� and � , respectively. Agent 1 is playing columns
and agent 2 is playing rows. The values in the tables represent
the utilities of agent 0 (in italics), 1 and 2.

��� � �	�
Y 3,3,3 0,4,1
�XY 0,1,4 1,2,2

� � �	�
Y 3,3,3 1,2,1
�XY 1,1,2 0,2,2

Table 1: What is the enforced social law?

Agent 0 (the normative system) can play strategy ��� or � ,
agent 1 can play strategy � or �	� , agent 2 can play strategy Y
or �
Y . When the normative system plays ��� , the sub-game of
agent 1 and 2 is a classical prisoner’s dilemma. Intuitively, the
strategy ��� corresponds to the state before the social law is
introduced, and � corresponds to the introduction of a control
system that sanctions an agent for deviating from � � Y . For
example, the utility of agent 1 in �	� � Y � � (2) is lower than its
utility in �	� � Y � ��� (4) due to this sanction.

When the normative system plays � , the agents are always
worse off compared to the normative agent playing ��� , all
else being equal. Nevertheless, due to the dynamics of the
game, the overall outcome is better for both agents. For ex-
ample, in the sub-game defined by strategy ��� , the only Nash
equilibrium is

� ���
. Now suppose we set the efficiency pa-

rameter to 
 , which means that all agents will be better off. If
the normative system plays � , then the sub-game has a Nash
equilibrium which is the (Pareto optimal) 
 � 
 . This explains
why the agents accept the possibility to be sanctioned.

3.2 Iterated design of enforced social laws
The social law design problem is, given a normative game, to
define a new utility function for the normative system. The
principle that we like to maintain as much as possible from
the existing social laws can be represented by the use of the
principle of minimal change. Table 2 represents the evolution
of an artificial social system by an incremental increase of the
utility of agent 0 to the efficiency parameter of the new social
law.

��� �]� ��� � � � � � �	� ��� �	� �
Y � 0,3,3 0,4,1 0,6,0
Y � 0,1,4 0,2,2 0,0,0

�XY ��� �
Y � 0,0,6 0,0,0 0,0,0
� � � � � � �	� �]� �	� �
Y � 1,3,3 1,4,1 1,0,0
Y � 1,1,4 1,2,2 1,0,0

�XY ��� �
Y � 1,0,0 1,0,0 1,0,0
� � � � � � �	� �]� �	� �
Y � 3,3,3 3,1,1 3,0,0
Y � 3,1,1 3,0,0 3,0,0

�XY ��� �
Y � 3,0,0 3,0,0 3,0,0

Table 2: Iterated design

The first table represents that the normative system does
not impose a control system, the second table represents that
there is a sanction for playing �	� �]� ��� � or �
Y �]� �
Y � , and the
third table represents that there is an additional sanction for
playing something else than � � and Y � . The first social law
is
� � � � ��� � ���N� �(� � Y ��� Y ��� based on control system

� �
� � �]� � ��� , and the second social law is

� �P� � �]�B� �o� � Y �]�
based on control system

� � � � ��� .
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