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Abstract

In this paper we present a formal model of Multiagent
Systems to analyze the relations of power and dependence
underlying group behaviors such as cooperation. Inspired
by the work of Castelfranchi we define these relations by
means of a description of goals and skills of single agents.
We show how our framework can be used to describe social
and organizational structures as emergent properties of a
collection of individuals.

1 Introduction

An important aim in the field of Multiagent Systems is
to study emergent social structures, such as groups and col-
lectives. The relevance of social structures in many fields
as Distributed Artificial Intelligence [12, 11, 13], Artificial
Life [14], Sociology [8] necessitates a well motivated defi-
nition of their conditions of possibility.

In particular, there is property of the individual agents,
that has the main role in the emergence of macro-level phe-
nomena, which is their autonomy: the capability to sponta-
neously act in order to achieve their own goals [14]. In a
single agent framework to achieve a given goal an agent has
to be self-sufficient with respect to it. On the contrary in a
Multiagent framework, especially those in which agents are
heterogenous, it is possible that, when an agent is not self-
sufficient with respect to some goal, he can resort to another
agent, given that the latter cannot be self-sufficient itself in
every respect. Hence, agents benefit interacting with the
other cohabitants and cooperate. Power and dependence
emerge that are the base of the social and organizational
structure of a system.

In the last years the BDI model is turned out as one of the
most prolific frameworks to describe Multiagent Systems.
Nevertheless Castelfranchi in [8] points out that works on
social behaviors are not grounded in this model, rather, of-
ten they seems to be postulated without being deep-rooted
on the structure of the single agents [11]. The problem is

that it is unclear how many efforts as coalition logics or
game theory can be used for Multiagent Systems based on
the BDI model. Castelfranchi [8] proposes a semi formal
definition of power and dependence, rooting them in the
BDI model. However it is not sufficient to build or analyze
real systems.

The research question of this paper is how to formalize
some of the results obtained by Castelfranchi [8], in partic-
ular the notions of power and dependence. Respect to this
work more details, as effect rules and concurrency, are de-
scribed in the definition of a Multiagent System and a defi-
nition of cooperation is also given. On the other hand some
issues, as power-over or power-of-influencing, discussed in
[8] are out of the scope of the present paper.

As methodology we use an algebraic approach which in-
dividuates the entities and relations necessary to represent
social structures. The advantage of this approach with re-
spect to, e.g., a modal logic one [15] is that it is less in-
volved to describe group actions and the compatibility of
effects, and less prone to hidden assumptions.

Moreover, inspired by Sichman and Conte [10], we pro-
pose how to extend the notion of dependence to dependence
graphs, in order to highlight the topology and the symme-
tries of dependencies. This graph formalization provides
a tool to analyze organizational problems in institutional
structures and enterprises.

The emergence of groups is necessary for designing and
implementing robust open Multiagent Systems. Giving
the agents the ability to reason about their social relations
makes it possible to proceed from a hierarchical view of or-
ganizational design to a more dynamic approach, where the
agents are able to define their own obligations and rights by
negotiating contracts with the other agents.

In Section 2 we formalize a Multiagent System, provid-
ing the definition of the single agents. In Section 3, the con-
cepts of the abilities, power and lack of power for groups of
agents are formalized. Section 4 is dedicated to dependen-
cies, relating them to the previous definitions of power and
lack of power, and Section 5 to the definition of cooperation.
Conclusion and related works end the paper.



2 Formalization of Multiagent Systems

2.1 Formalization

A Multiagent System can be viewed as an environment
populated by a group of agents. The environment is de-
scribed by means of a set of relevant attributes; their values
in a given instant establish the “state of the world” in that
instant (sw). Thus, given the set of relevant attributes for an
environmentP = {p, r, s...}, answ is a complete and uni-
vocal assignment for them, complete in the sense that every
attribute should be set, and also univocal, in the sense that
for any attribute only one value can be set.

For the sake of simplicity, we assume that attributes have
boolean values. Since we are adopting an algebraic non-
logical framework we refer to them with the corresponding
symbol of the attribute inP to indicate that the value of
that attribute is true or with the over-signed symbol inP̄ =
{p̄, r̄, s̄...} to indicate that the value is false.

We introduce a functionvaluesthat, taken an attribute
symbol, returns the set of the two possible values (for ex-
ample,values(p) = {p, p̄}); we extend this function also to
sets of attribute symbols so ifB ⊆ P , thenvalues(B) =⋃

p∈B values(p). Another function,∼, associates to a given
value the inverse, so∼ p = p̄, ∼ r̄ = r and so on. Now we
can formalizeSW (P ), the set of all possiblesw descrip-
tions, by means of the relevant attributesP :

Definition 1 (Feasible states)Let H be the powerset of
P ∪ P̄ , SW (P ) is the set of the elementssw of H that
are univocal and complete, that is they satisfy the follow-
ing condition:
∀β ∈ P, eitherβ ∈ sw or ∼β ∈ sw

For the sake of simplicity, assuming thatP is fixed, from
now on, we writeSW instead ofSW (P ).

We describe the agents; in particular the actions they can
perform and their effects. LetA = {a, b, c, ...} the finite
set of all actions that can be performed by the different
agents, our goal is to formalize rules like“if in sw the val-
ues of the attributesk1, . . . , kn arev1, . . . , vn and an agent
performs the actionsa1, . . . , ah and the actionsa′1, . . . , a

′
l

are not performed, then in sw the values of the attributes
k′1, . . . , k

′
m will be v′1, . . . , v

′
m” .

The first definition isEf: the set of all possible effects.
This set is similar toSW with the difference that its ele-
ments respect only the univocality condition:

Definition 2 (Rules effects)Ef is the set of elementsS of
H that satisfy the following condition:∀β ∈ S ∼β 6∈ S
so, for example{s}, {s̄, p̄} ∈ Ef.

In order to express the relation between an action and
its effects we formalize not only the fact that some action
should be performed to have some effects, but also that

some other action does not have to be performed. For this
purpose we use the set̄A in the same manner as̄P , so an
elementd̄ of Ā in a effect rule prescribes that the actiond
have not to be performed.

Considering a function∼ also for the actions, we define,
in the same manner as forEf, the setAct of compatible sets
of action values:

Definition 3 (Rules actions) Act is the set of the elements
C of 2A∪Ā that satisfy the following condition:
∀τ ∈ C ∼τ 6∈ C
Now we are able to define the antecedents of the effect

rules as:
Ant = {S ∪D : S∈Ef ∧ D∈Act}
Given an antecedentpl ∈ Ant, we define two functions,

preconditions(pl) = pl ∩ (P ∪ P̄ ) andactions(pl) = pl ∩
(A ∪ Ā) in order to distinguish actions from preconditions.

Finally we define the set of rules:

Definition 4 (Rules) R is a set of rulesψ → φ, whereψ ∈
Ant andφ ∈ Ef.

effects(ψ → φ) denotesφ and, givenR′⊆ R, effects(R′) =⋃
r′∈R′ effects(r′). In the same mannerantecedent(ψ→ φ)

denotesψ.
For example a possible rule is:{a, b̄, p̄, s} → {s̄, q}

This rule tells us that in everysw in which p̄ ands hold if
the actiona is performed and the actionb is not performed,
then is the next statēs andq hold.

The next step is to define how the world evolves by the
effects of some rules. First of all we build a function to
describe the evolution of the state of worldsw by the change
of the attributeq from the valueβ to the valueα as:

α _ sw = {α} ∪ [sw − {β∈sw : β ∈ values(q)}]
Now, to take in account effects that involve more than

only one attribute, we will extend the function for a n-ple of
values:

[α1, ..., αn] _ sw = α1 _ (α2 _ ...(αn _ sw)...)
This extension is not in general commutative if we

change the order ofα1, ..., αn, because it can happen that
someαi andαj are different values of the same attribute.
In general, since the agents are autonomous, they act simul-
taneously and hence they can activate more then one rule.
Considering the union of the effects of these activated rules,
that is the whole effect of the agents activity onsw, not a
particular order should be relevant in the application of the
function_. If this does not happen, then an incompatibility
arises. So we tie the compatibility of effects to the commu-
tativity of _ as follows:

Definition 5 (Compatible attribute values) If for all the
permutationsπi, πj of {1, .., n} and for allsw ∈ SW ,

[απi(1), ..., απi(n)] _ sw = [απj(1), ..., απj(n)] _ sw
then we say:



• [α1, ..., αn] compatible/commutative

• [α1, ..., αn] _ sw ≡ {α1, ..., αn} _ sw

When[α1, ..., αn] are compatible, then no conflicts among
actions happen and so we can say, since all the permutation
leads to the same result, that the set of effects{α1, ..., αn}
entails the evolution of the statesw. The following proposi-
tion, that characterizes when effects are compatible, can be
proved:

Theorem 1 [α1, ..., αn] are compatible iff{α1, ..., αn} ∈
Ef.

Now we have all the ingredients to define a Multiagent
System:

Definition 6 (Multiagent System) A Multiagent System,
MaS, is tuple
〈Ag, goals: Ag→ 2Ef(P ), skills: Ag→ 2A, R〉
where Ag is a set of agents, goals is a function that asso-

ciates to each agent a set of desires, skills is a function that
describes the actions each agent can perform andR is a set
of rules.

2.2 Concurrency management

Given a Multiagent System〈Ag, goals, skills, R〉, the set
of rulesR has the function of a shared knowledge base by
means of which the agents can plan, in a given state of the
world, the right actions to achieve their own goals. When
an agentag wants to perform the antecedent of a given rule
r, then we say thatag hasactivatedr, but, since more than
one rule insw can be activated by the agents’ performances,
then even if in any singular ruleψ → φ the outcomeφ is
in Ef, this do not guarantee that the union of theφ, relative
to activated rules, will belong toEf, or, as seen in the pre-
vious section, that the effects of the actions performed are
compatible.

Sometimes the incompatibility between two outcomes,
and hence between two rules, would be interpreted as the
impossibility to activate simultaneously those rules, but
sometimes we would like to resolve in such a manner that
incompatibility (telling for example that one rule has the
priority on other one, or that the actions that have activated
one rule are stronger of other ones).

As said above every antecedentψ in a rule ψ → φ
is a sufficient way to achieveφ, so the rules have to be
structured in such a way to avoid incompatibility. Con-
sider two rulesr1 ≡ ψ1 → φ1 and r2 ≡ ψ2 → φ2,
with φ1 ∪ φ2 6∈ Ef, then to assure their feasibility or there
is not a statesw in which they are both applicable (i.e.,
preconditions(ψ1) ∪ preconditions(ψ2) 6∈ Ef)), or the re-
spective actions are not compatible (in this way two agents
cannot perform them at the same time):

Definition 7 (Feasible rules) Let ψ1 ≡ antecedent(r1)
andψ2 ≡ antecedent(r2), two rulesr1 and r2 are said to
befeasibleiff one of the following items is satisfied:

1. effects(r1) ∪ effects(r2) ∈ Ef

2. preconditions(ψ1) ∪ preconditions(ψ2) 6∈ Ef

3. actions(ψ1) ∪ actions(ψ2) 6∈ Act

Using the previous definition we formalize when a set of
rulesR is feasible:

Definition 8 (Feasible set of rules)A set of rulesR is fea-
sible iff each pair of rules is feasible.

In the following sections we consider only Multiagent Sys-
tem in which the set of rulesR is feasible.

2.3 How to build the set of rules

In this section we show how to build up a feasible set of
rulesR in a given domain. For the sake of simplicity we
consider only antecedents withoutpreconditions. Suppose
that an agentag want to achieve the goals and that, if it
was alone, then performing the actionpl1 = {a} it would
achieve it.

Suppose there are also the actionspl2 = {b, c} andpl3 =
{d} that, if performed alone, would entails̄ and, moreover,
pl2 invalidatespl1, whereaspl1 andpl3 invalidate with each
other.

This means that whenag performspl1 if another agent
ag′ performspl2, then the final result will be asw in which
s̄ hold, vice versa ifag′ performspl3, then the value ofs
will be the same of that insw. We can formalize this feature
in the following way:pl1 ∧ ¬pl2 ∧ ¬pl3 → s; pl2 → ¬s;
pl3 ∧ ¬pl1 → ¬s. Since antecedents are conjunctions of
actions we have:

a ∧ ¬(b ∧ c) ∧ ¬d → s

b ∧ c → ¬s

d ∧ ¬a → ¬s

The last two formulas are directly translated in terms of
rules, respectively:

{b, c} → {s̄} {d, ā} → {s̄}

Since the antecedents in a rule are sufficient condition to
achieve its effects, then the first formula is converted in a
disjunctive form:

(a ∧ ¬b ∧ ¬d) ∨ (a ∧ ¬c ∧ ¬d) → s
That is translated in the following two rules:

{a, b̄, d̄} → {s} {a, c̄, d̄} → {s}



3 Formalization of Power

In this section we define the relation of power as in
Castelfranchi [8]. By power we mean the capability of a
group of agents, possibly composed by only one agent, to
achieve some goals; it should be emphasized that power
does not consist only of the group’s abilities (skills, physical
and mental attitudes) to achieve some effects, because there
should be a group of agents which desires those effects.

Before defining the relation of power we first formal-
ize when, in a statesw, a group of agentsQ would be
able to achieve the set of effectsG by means of the actions
K ∈ Act. First of all Q should be able to perform all the
positive actions belonging toK, moreover there should be
some rules such that: they involve insw all the effects inG,
the conditions to apply this rules are satisfied bysw, finally
the actions that these rules prescribe (to perform or to not
perform) are all listed inK.

Definition 9 (Agents abilities) A group of agentsQ ⊆ Ag
is able to achieve the effectsG∈ 2Ef by the actionsK∈ Act
in the statesw ∈ SW , Able(Q,G, K, sw), iff:

1. K∩A ⊆ ⋃
ag∈Q skills(ag)

2. ∃R̂⊆R [
⋃

g∈G g ⊆ effects(R̂) _ sw ∧
⋃

r̂∈R̂ actions(antecedent(r̂)) = K ∧
∀r̂∈R̂ preconditions(antecedent(r̂)) ⊆ sw]

It is easy to see that the following theorem holds:

Theorem 2 The relation Able is monotonic with respect to
the union of groups of agents:

Able(Q,G, K, sw) =⇒ ∀Q̂⊆AgAble(Q̂∪Q,G, K, sw)

This is correct from an ontological point of view since,
when an agent is added to a group, then the set of effects
the new group should be able to achieve have to grow. Nev-
ertheless if an agent looks for a set of agents that is able to
achieve a subsetG of its goals, then it would consider only
those setsQ that satisfy a property of minimality, i.e.,Q
is the minimal set of those that contain it which is able to
achieveG. This involves the definition ofMin Able:

Definition 10 (Abilities with minimality) Suppose that
Able(Q,G, K, sw) holds, then MinAble(Q,G, K, sw)
holds iff: ∀Q̂(6= ∅)⊆Q ¬Able(Q \ Q̂,G, K, sw)

What does theAble definition lack to be a definition of
power? First of all power concerns the possibility to use
some skills in order to achieve some own goals or as ex-
change goods for other agents’ goals [8, 9]. To have skills
that all the community considers useless do not add any
power to a set of agents. Furthermore there should be no
way, for the other agents, to obstructQ to achieveG.

So, in order to define a power relation, we define a re-
lation that regards the capability of a group of agentsQ1

to obstruct another groupQ2 in the achievement of a set of
effectsG. First of all Q2 should be able to achieveG by
means of some actionsK, thenQ1 can obstructQ2 if one
of its agents is skilled to perform an action andK prescribes
that it should not be performed. This is not the only wayQ2

can obstructQ1. Suppose that the current statesw is equal
to {s, r̄} and that two rules can be used:a → r andb → s̄.
If the goal ofQ2 was{s, r} and one of its agents was able
to performa, thenQ2 would be able to achieve its goal.
Nevertheless suppose that one of the agents ofQ1 was able
to performb, so it could nullify the efforts ofQ2 makings
false. The previous considerations lead to:

Definition 11 (Achievement obstruction) A group
of agents Q1 can obstruct another groupQ2 in the
achievement of the set of effectsG by means ofK,
Can obstruct(Q1, Q2, G,K, sw), iff Able(Q2, G, K, sw)
and one of the following conditions holds:

1. ∃c∈K∩Ā ∃ag ∈Q1 c ∈values(skills(ag))

2. ∃e ∈ Ef ∃Ŵ ∈ Act [Able(Q1, e, Ŵ , sw) ∧
e ∪⋃

g∈G g 6∈ Ef ∧ (K ∩A) ∪ (Ŵ ∩ Ā) ∈ Act]

Now we define the relation of power as the capability of
a groupQ to perform some actions that achieve, without
the possibility to be obstructed, some effectsG in which
a group, possible the sameQ, is interested. We define a
minimality condition also for power and we will use it in
the next section to define the dependence relation.

Definition 12 (Agents’ power) Let Q ⊆ Ag, G ∈ 2Ef,
K ∈ Act, then the group of agentsQ has the power to
achieve the set of goalsG by means of the actionsK in
the state of the worldsw, Powerof(Q, G,K, sw), iff all
following items are satisfied:

1. ∃Q′ ⊆ Ag∀g∈ G ∀ag∈ Q′ g∈goals(ag)

2. Able(Q,G,K, sw)

3. ¬∃Q̄ ⊆ (Ag\Q) Can obstruct(Q̄,Q, G, K, sw)

If the previous conditions are satisfied with MinAble in-
stead of Able, then MinPowerof(Q, G,K, sw).

Even if a group has some power in the achievement of, in-
dividually, two goalsg1 andg2, it is not implied that it has
a power for the set{g1, g2} since there could be that the
agents that are interested tog1 are not interested tog2 and
vice versa. Even if we do not consider preferences on goals,
it is reasonable to assume that they are monotonic with re-
spect to subset relation between sets of goals, and hence
the more a set of goals a group can provide to another one
increases, the stronger is the power over it.



We also defineLack powerof(Q,G, sw) when a group
of agentsQ desires some set of goalsG but it has not the
power to achieve it.

Definition 13 (Agents’ lack of power) A group of agents
Q ⊆ Ag lacks the power to achieve a set of goals,G ∈ 2Ef,
Lack powerof(Q,G, sw), iff these two items are satisfied:

1. ∀g∈G ∀ag∈Q g∈goals(ag)

2. ¬∃K∈ Act Powerof(Q, G,K, sw)

Since the first condition entails the first condition of the def-
inition of power, then it is not possible that the second con-
dition of Lack powerof holds becauseG is useless, in other
words the following theorem holds:

Theorem 3 If Lack powerof(Q,G, sw) holds, then
∀K∈ Act [¬Able(Q, G,K, sw) ∨
∃Q̄ ⊆ (Ag\Q) Can obstruct(Q̄,Q,G, K, sw)]

Example

An important issue is the security of the computer net. The
security can be jeopardized if a user checks suspicious mails
or the system manager does not update the antivirus. To as-
sure the security of the system is a goal of both the manager
agM and the useragU , moreover the user has the goal to use
the mail. Updating the antivirus is denoted by the actiona,
checking suspicious byb and checking normal mails byc.

In the initial state the system is not infected and the user
did not use the mail service:sw = {s, ū}. If the user checks
mails, then he uses the mail services, but if the mails he
checks are suspicious then the system is not safe. Moreover,
even if the user takes precautions in checking mail, the sys-
tem manager have to update the antivirus to assure security.
The formalization of the Multiagent System is given by the
tables:

agents skills goals
agM a {s}
agU b,c {s}, {u}

rules
{c} → {u}
{b} → {s̄, u}
{ā, c} → {s̄}

Considering the previous definitions we ask if
Lack powerof(agU , {{u}, {s}}, sw). First of all agU

desires both{u} and{s}, so the first item of the definition
is satisfied. For the second itemagU has not the power to
achieve both of them since the only way to makeu true
is performingb or c, but in both cases, considering the
rules two and three, he is not able alone to maintains true.
On the other side alsoagM lacks the power of achieve
his goal s because he can not preventagU in checking
suspicious mails. Luckily, ifagU performs onlyc, agM ,
by performinga, makes the last rule no more applicable,
hence, remainings true, the system is safe. This involves
that the group{agM , agU} has the power to achieve the
goal{{s}, {u}} by means of the actions{a, c, b̄}.

4 Formalization of Dependence

Now the concept of dependence is formalized. A depen-
dence exists when a groupQ1 lacks the power to achieve
some goals, whereas some other groupQ2 can achieve it.
Obviously the agents in the groupQ2 should be all nec-
essary for the fulfillment of the goals, because we do not
want to formalize the dependence on useless agents. As
said in the previous section the definition ofAble grants
the presence of useless members (Able(Q,G, K, sw) =⇒
∀Q̂ ⊆ Ag Able(Q̂ ∪ Q, G,K, sw)), so also the definition
of Powerof satisfies the same property: adding new mem-
bers to a group cannot increase the obstruction capability of
the others, it can only decreases. To avoid this problem we
consider the definitionMin Powerof shown in the previous
section that satisfying the minimality condition not allow-
ing the presence of useless members.

We define the dependence of a group of agentsQ1 on
another groupQ2 to achieve the goalsG as: all members of
Q1 desireG, but they lack the power of achieve it, whereas
Q2 is a minimal group which has the power to achieveG:

Definition 14 (Agents dependence)The set of agentsQ1

depends on the set of agentsQ2 to achieve, in the
state sw, the goals G by the actions K ∈ Act,
Depend(Q1, Q2, G,K, sw), iff the following items hold:

1. Lack powerof(Q1, G, sw)

2. Min Powerof(Q2, G,K, sw)

In the previous definition there could beQ1 ⊆ Q2 in the
case that also the elements ofQ1 take part in the achieve-
ment ofG, otherwise some or all the members ofQ1 are not
capable to give any contribution. Moreover several groups
of agents can collect the same actions and thus the ability to
achieve the same goals, so an agent can depend on several
different groups for the same goal.

Powerof, Lack powerof andDependare the basic rela-
tions on which is possible to describe social relations among
group of agents. In particular it is possible to define the mu-
tual dependence of two groups to achieve common goals:

Definition 15 (Agents mutual dependence)Two sets of
agentsQ1, Q2, such thatQ1∩Q2 = ∅, mutually depend on
each other to achieve the goalsG by means of the actions
K∈Act, Mutualdepend(Q1, Q2, G,K, sw), iff:

Depend(Q1, Q1 ∪Q2, G,K, sw) ∧
Depend(Q2, Q1 ∪Q2, G, K, sw)

To illustrate the given definition we reconsider the example
of the previous section.

Example

By means of the definitions of dependencies we give
a more informative description of the user-system



manager scenario. First we ask ifagU depends on
the group {agU , agM} in the achievement ofu, i.e.,
∃K ∈ Act Depend(agU , {agU , agM}, {u},K, sw). We
know by the rules one and two thatagU performingb or c is
able to achieve his goalu andagM can not obstruct him. So
agU alone has this power, and hence, since the first condi-
tion of the definition ofDependis false, it does not depend
on the the group{agU , agM}. Considering also the goal
s we found that bothagU individually lacks the power to
achieve the set of goalss andu. Nevertheless together with
agM , he has the power to achieve them performing respec-
tively the actionsc anda and not performing the actionb,
so Depend(agU , {agU , agM}, {s, u}, {a, c, b̄}, {s, ū}).
In the same manner it can be verified that
Depend(agM , {agU , agM}, {s}, {a, b̄}, {s, ū}).

Even if both the user and the system manager desire the
security of the system, they do not mutually depend for it.
agU , abstaining from checking mail at all, could alone as-
sure security, so for him the presence of the system manager
is constrained only to the possibility to add to the security
also the usability of the net.On the other hand this issue is
not relevant for the system manager, in fact, as it emerges
from the last dependence relation, the only thing about the
user the system manager cares is simply that he does not
check suspicious mails.

The dependence relation describes the structure underly-
ing possible cooperations and exchanges. The topological
properties of this structure, as shown in [9, 10], are crucial
for an analysis of the cohesion of these phenomena. Follow-
ing [10] a good way to visualize this structure is to represent
the dependencies among agents as a graph. In particular we
use tagged graphs:

Definition 16 (Tagged graphs)Given a finite set of tags
TAG = {τ1, . . . , τn}, a tagged graph is a pairG ≡
(V, E)TAG, whereV is finite set called the set of nodes and
E ⊆ {(v1, v2)τ : v1, v2∈V ∧ τ ∈TAG} is called the set
of tagged arcs.

In our framework the nodes inV represent groups of agents,
the arcs inE the existence of a dependence between to
groups and the tags inTAG the goals and actions relative
to a dependence:

Definition 17 (Dependence graphs)Given a Multiagent
System MaS≡ 〈Ag, goals: Ag → 2Ef(P ), skills : Ag →
2A, R〉, a tagged graph(V,E)TAGis the dependence graph
relative to MaS in a given statesw iff two injective functions
f : V → 2Ag andg : TAG→ 2Ef× Act exists such that:

Depend(Q1, Q2, G, K, sw) ⇔
∃(v1, v2)τ ∈ E [f(v1) = Q1 ∧
f(v2) = Q2 ∧ g(τ) = (G,K)]

Dependence graphs allow to obtain more concise pictures
of the system, lacking details that do not play a role in the

analysis of the achievement possibilities. Dependence arcs
collect all together the actions needed to achieve a set of
goals and the agents that can provide them. E.g.,if in any
dependence relation when an agentag1 provides an action
a always another oneag2 provides an actionb, then the cor-
responding dependence arcs do not distinguish between the
two agents, grasping the symmetry with the system in which
ag1 providesb andag2 providesa.

5 Formalization of Cooperation

In this section we formalize the notion of cooperation
among agents. The reason for a cooperation is the exis-
tence of a mutual dependence, but if mutual dependence is
a relation still untied to the intentions of the agents, coop-
eration concerns what they actually want to achieve and the
actions they are going to perform. Consider an agentag,
let intend(ag)⊆ Act represents the actions it intends to per-
form. We assume that if anag intends to perform some ac-
tions, then he is also skilled to. The elements inintend(ag)
that belong toA are the actionsag intends to perform, the
elements that belongs tōA are the actions the agent wants
to be not performed, finally the actions not mentioned will
not be performed but only for an economical principle (in
other words,ag guesses that actions will not entail particu-
lar benefits or damages).

In order to involve agents intentions we extend the defi-
nition of Multiagent Systems given in section 2:

Definition 18 (Extended Multiagent System)An ex-
tended Multiagent System is a tuple

e-MaS≡ 〈Ag, goals: Ag→ 2Ef(P ),
skills: Ag→ 2A, R, intend: Ag→ Act〉

where intend is a function that satisfy the condition:
∀ag∈ Ag intend(ag) ⊆ values(skills(ag))

We now need a formalization of the actions a group of
agents intends to perform, starting form the individual in-
tentions. We preliminarily define:

Definition 19 (Positive union) Let p1, p2 ⊆ A ∪ Ā, then
the positive unionp1 ⊕ p2 betweenp1, p2 is:

p1 ⊕ p2 ≡ p1 ∪ p2 − {α ∈ Ā :∼α ∈ p1 ∪ p2}
It can be proved that⊕ is a commutative monoid, so for
every permutationπ of {1, .., n}:⊕n

i=1 pi ≡ p1 ⊕ ...⊕ pn = pπ(1) ⊕ ...⊕ pπ(n)

Given two agentsag1 andag2, if I1 is the intention of
the former andI2 of the latter, then the intentions of both
of them will beI1 ⊕ I2 since all the positive actions listed
in I1 and I2 will be performed by one agent, even if the
others refrain from performing it.Even if the notion of in-
tentions related to groups of agents can rise philosophical
debates, what we simply consider here is the set of actions



that actually a group of agents will perform by means of the
actions that, separately, the agents will to perform. Stated
this, we can formalize the notion of a intentions for groups
of agents.

Definition 20 (Group intentions) Given Q ⊆ Ag, and
for any ag ∈ Q a particular intention intend(ag) ∈
Intentions(ag). Then the intention of the groupQ is:

intend(Q) ≡ ⊕
ag∈Q intend(ag)

Now a cooperation between two groups exists when they
mutual depend in the achievement of a set of goals and the
actions they intend to perform enable the satisfaction of this
dependence.

Definition 21 (Cooperation) We say that the two groups
Q1, Q2⊆Ag are cooperating to achieve the set of goalsG in
the statesw given their intentions intend(Q1), intend(Q2);
Cooperating(Q1, Q2, G, intend(Q1), intend(Q2), sw) iff:

1. ∃K∈Act : Mutual depend(Q1, Q2, G, K, sw)∧K ⊆
intend(Q1)⊕ intend(Q2)

6 Conclusion and related works

Our approach gives a description of power and depen-
dence, relating them to the definition of a Multiagent Sys-
tem. In this way it is shown how these concepts, involv-
ing groups of agents, emerge from a description of single
agents. The basic important issues emphasized in [7] and
[8] are addressed in our framework, as the relation of power
with the goals and the skills of the single agents or the de-
scription of mutual dependence. All these relations are de-
fined in a formal context, quite expressive to take in account
not only the capability of the agents to help, but also to ob-
struct each other. We also formalize the relation between
mutual dependence and cooperation distinguishing the pos-
sibilities agents have to help each other from what they ac-
tually intend to do.

Some approaches aimed in exploring social relations
like power and dependence are based on Decision-theoretic
techniques [6]. Even if they well address many features of
the rational reasoning of inter-dependent agents, they con-
sider group behaviors and their impact on the goals achieve-
ment as defineda priori, in this perspective our work pro-
vides a constructive way to calculate the utility resulting
from group behaviors.

Sichman and Conte [10] use graph theory to emphasize
the topology of dependencies, but many simplifications re-
duce the expressiveness of their framework, for example
they do not formalize the concurrency management prob-
lem so they do not take in account the possibility to ob-
struct the achievement of a goal. Moreover our framework
describes powers and dependencies for groups of agents al-
lowing to scale on structure of the system.

Nevertheless many important issues can be still faced,
for example how norms can be introduced to regulate a
group [5], how norms can be monitored and enforced [3]
and how coordination in a group can be achieved [4]. The
second one is to describe more complex situations in which
a worth-while net of dependencies tie agents in forming a
coalition.

Presently we are working on the relation between the
concepts studied in this paper and the notion of coali-
tions. Moreover, we are studying independent definitions of
power, dependence and coalition structures, which diverges
our work from the work of Castelfranci. This new approach
is explained in [2] and an example of an independent power
structure, coalition structure and the relation between them
is given in [1].
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