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Abstract. Normative sentences can be used to change or to describe
the normative system, known as prescriptive and descriptive obligations
respectively. In applications of deontic logic it is important to distinguish
these two uses of normative sentences. In this paper we show how they
can be distinguished and analysed in a dynamic epistemic deontic logic.

1 Introduction

Alchourrén and Bulygin [1, 2] discuss the possibility of a logic of norms, which
they distinguish from the logic of normative propositions. Roughly, the distinc-
tion between norms and normative propositions is that the former are prescrip-
tive whereas the latter are descriptive. In the second sense, the sentence ‘it is
obligatory to keep right on the streets’ is a description of the fact that a certain
normative system contains an obligation to keep right on the streets. In the first
sense this statement is the obligation of traffic law itself. This distinction goes
back to an old philosophical problem discussed by Von Wright [17,16], who was
hesitant to call deontic formulas ‘logical truths,” because “it seems to be a mat-
ter of extra-logical decision when we shall say that ‘there are’ or ‘are not’ such
and such norms.” Makinson [12] turns this fundamental problem into the central
challenge in deontic logic, which led to new developments over the past decade
such as deontic update semantics [15], input/output logic [13], imperative based
deontic logic [10], and more.

The relevance of the distinction between prescriptive and descriptive obli-
gations, and the related fundamental problem that norms do not have truth
values, is not only theoretical and conceptual, but it has important practical
implications. If one agent tells another agent that he is obliged to register before
he can use a web service, but the second agent would like to disagree, then the
agent should know whether the agent is creating a norm for him, or whether he
is describing an existing norm of the normative system. In the first case he may
disagree by responding that the agent is not authorized to create obligations for
him, in the second case he may argue that the norm does not apply to him, or
that the norm does not exist. To model such distinctions, we need to model not
only the normative system, but also how norms can be changed over time. In
this paper we therefore study the following question:



— How can we use dynamic epistemic deontic logic to analyze the distinction
and relations between prescriptive and descriptive obligations?

We recently introduced a general and expressive Dynamic Epistemic Deontic
Logic [4] combining a simplified version of Castafieda’s deontic logic [8] with
a dynamic epistemic logic. This logic can express the conditional character of
norms, study the interaction between epistemic and deontic notions, and model
norm dynamics. These three features were motivated by their use in multi-agent
systems (MAS). First, in multi-agent systems it is necessary to express realistic
regulations, which have a conditional character. Secondly, communication is an
essential part of multi-agent systems, and this raises the issue of what it is
permitted, prohibited or obliged to know by agents, for example, when modelling
privacy regulations. A challenge here is that the interaction between epistemic
and deontic notions is plagued by Aqvist’s paradox of the knower [3]. Thirdly,
normative multi-agent systems have a dynamic character, as witnessed by the
second definition of normative multi-agent system provided in [7]. These last
two issues, communication and dynamics are both useful for distinguishing when
existing norms are communicated from the case where a norm is actually put into
existence by a declaration, i.e., Alchourrén’s distinction between the descriptive
and prescriptive use of norms.

We use the following running example to exemplify the static and dynamic
features of our logic.

Ezample 1. John is driving on a highway with speed limit 130 km /h. He does not
know whether he is speeding (—Bspeed A—~B-speed), because his speed controller
is defective. But it is obligatory by the law that he knows whether he is speeding:
O(BspeedV B-speed) (epistemic norm 1). Besides, if he drives too fast, he should
slow down: speed — Oslow. He should also know that if he drives too fast he has
to slow down: OB’ (speed — Oslow) (epistemic norm 2). On the other hand, if he
does not drive too fast, he is still permitted to speed up (and thus not to slow
down), if he wants to overtake for example: —speed — P—slow. Now we consider
two kinds of normative events:

Prescriptive event. He comes upon road works and there is a sign announcing
that he should slow down. This event can be modeled by the communicative
act [slow!!].

Descriptive event. A police car behind him tells him to slow down. This event
can be modeled by the communicative act [Oslow!]. As a result he learns that
he is speeding.

The paper is structured as follow. In Section 2 we introduce an epistemic
deontic logic which allows to express epistemic norms and which avoids Aqvist’s
paradox. In Section 3 we extend the logic by introducing update operators which
change beliefs and norms, and show how the distinction between descriptive and
prescriptive norms can be made in our logic if we map this distinction to the
context of communication.



2 Epistemic Deontic Logic (EDL)

2.1 Propositions vs practitions

Because of its clear and natural distinction between propositions and practi-
tions and its modal-like character, the well known deontic logic of Castafieda [8]
lends itself very well to the introduction of an epistemic logic. Starting from
a linguistic analysis, the insight of Castaneda’s well known approach to deon-
tic logic is to acknowledge the grammatical duality of expressions depending
whether they are within or without the scope of deontic operators [8]. This leads
him formally to introduce two sets of propositional letters: $¢ called propositions
which cannot alone be the foci of deontic operators, unlike &% called practitions.
The former are usually expressed grammatically in the indicative form and the
latter are usually expressed grammatically in the infinitive/subjunctive form. For
example, “John is slowing down” in the indicative form is a proposition, but the
same sentence in “it is obligatory that John slows down” in subjunctive/infinitive
form is a practition. He then defines more general propositions ,C% ; and practi-
tions L%, as follows.

LY, pu=p|oAd|—-d]|Oa
LY an=0|a|larhalard|dha

where 3 ranges over  and p over $¢. We define the language Lp;, = E% VLY,
whose formulas are generally denoted ¢*. In the sequel, P« is an abbreviation for
=0-a. Oa reads ‘it is obligatory that o’ and Pa reads ‘it is permitted that o’.

We now propose a semantics based on modal logic which is equivalent to the
one of Castafieda, in the sense that any ‘Castafieda’-model [8] can be transformed
into a D L-model satisfying the same formulas, and vice versa.

Condition (*) below ensures formally that conditional norms of the form “it
is obligatory that if John knows that he drives too fast then he slows down”
(O(p — «)) are equivalent to “if John knows that he drives too fast then it is
obligatory that he slows down” (p — Oa): = O(p — «) < (p = Oa).

Definition 1. A DL-model M is a tuple M = (W, D, V) where W is a non-
empty set of possible worlds, D is a serial' accessibility relation on W and V
is a valuation which assigns to each propositional letter p* € & U d* a subset
of W, such that for allw € W, all p € &,

V(p) N (D(w) U{w}) = D(w) U{w} or (%)
Let M = (W,D,V) be a DL-model, w € W and ¢* € Lpyr,. (M,w) is called a
pointed DL-model. We define M,w |= ¢* inductively as follows.

Muwkp i weV()
Mowl¢* AY* iff M,w = ¢* and M,w = 4*
M,w | —¢* iff not M,w = ¢*

M, w = O« iff for allv € D(w), M,v = a.

L A relation R is serial iff R(w) # 0 for all w € W.



2.2 Adding beliefs

Just as practitions are the foci of deontic operators, propositions are dually the
foci of knowledge operators, as pointed out by Castatieda [9]. An expression ¢ in
the scope of a belief operator B¢ is always in the indicative form and never in the
subjunctive/infinitive form, even if B¢ is in the scope of a deontic operator O.
We extend Castanieda [9]’s intuition to the context of epistemic permissions and
obligations. In a deontic setting the reading of the term knowledge or belief can
also be twofold: either as a proposition or as a practition. On the one hand, in
the sentence “it is obligatory that John knows / for John to know that he is
driving too fast” the verb ‘to know’ is the focus of a deontic operator and is in
the subjunctive/infinitive form. On the other hand, the sentence “John knows
that he is driving too fast’ alone describes a circumstance and the interpretation
of the verb ‘to know’ in the indicative form matches the one usually studied
in epistemic logic. The former use of the term knowledge within the scope of a
deontic operator is not studied in epistemic logic. For these reasons we enrich
the language L£pr with two knowledge modalities, one for propositions and the
other for practitions. This yields the following language Lgpr, = E% prLYLEDL
whose formulas are generally denoted ¢*.

Lopr:¢:=p|-¢|6Nd|B|Oa
LYpriax=0|-alarhalaAd|dpNal| B¢

where p ranges over ¢ and 3 over $°. As argued above we do not allow formulas
of the form Ba or B’a because they are linguistically meaningless, which is
actually in line with Castafieda [9]. B¢ reads ‘the agent believes ¢’.

Definition 2. An EDL-model M is a tuple M = (W, D, R, R', V') where W is
a non-empty set of possible worlds, R, R' and D are accessibility relations on W,
D being serial, and V is a valuation such that:

for all w € W, all v,v" € D(w) U {w}, (M,v) is RD-bisimilar to (M,v").?
(%)

The truth conditions for B and B’ are given by:

M,w = B¢ iff forallve Rw), M,vE¢
M,wE B¢ iff forallve R (w), M,vlEd¢

ME ¢ if for alw e W, M,w | ¢. (M,w) is called a pointed EDL-model.

Note that condition (x) is a generalization of condition (*) to the epistemic
setting: the worlds of D(w) U {w} are not only ‘propositionally bisimilar’ as
in (%), but also ‘epistemically (and deontically) bisimilar’.

2 Two pointed models (M, v) and (M’,v") are RD-bisimilar if there is a relation on
W x W' satisfying the base condition for ¢ and the back and forth conditions for
R and D (see Blackburn et al. [6] for details).



We do not assume any logical property for our notion of belief (such as
consistency or introspection) because it is not really relevant for the topic of this
paper. For the same reason, the operator B stands alternatively for knowledge
or belief.

Theorem 1. The semantics of Lgpyr, is sound and complete with respect to the
logic Lgpy, aziomatized as follows:

A, All propositional tautologies based on * U P>
Ay FoANOa— O(dANa)

As FOa— —O-«a

Ay FO(a—=d)— (Oa— Od)

As I+ BX(¢" = v*) = (B*¢* — B

Ri If -« then F O«

Ry If - ¢* then - B*¢*

Rs If F¢* = ¢¥* and F ¢* then F ¢*

where B* stands for B or B'.

Note that axioms A; to A4 and rules R; and R3 provide an alternative axioma-
tization of Castaneda’s language Lpy, .

Proof. Soundness is routine. We only prove completeness by building the canon-
ical model of our logic. Let W be the set of all maximal consistent subsets of
Lgpr. Forall I'I" € W, weset I € R(I') iff for all B¢ € I, ¢ € I''. We define
O and R’ similarly. Besides, for all T e W, I' e V(p) iff p € I" and I € V(B) iff
B € I'. We have therefore defined the canonical model M = (W, D, R, R', V). We
now show by induction on ¢ the ‘truth lemma’: for all I' € W and ¢ € Lgpy,
M, = ¢ iff ¢ € I' (x). If I' = p then () clearly holds. The other boolean
cases clearly work by induction hypothesis. Assume ¢ = B¢'. If B¢’ € I' then
for all I € R(I'), ¢’ € I'" by definition of R. So M, I"" |= ¢ for all I'" € R(I")
by induction hypothesis, i.e., M,I" = B¢'. If M,I" = B¢’ then assume that
S C{¢ € Lgpr | Bp € I't U{~¢'} is consistent. It follows that there is
I'® € W such that S C I'°. So there is I'° € R(I") such that —¢’ € I'°. There-
fore M,I" = —B¢' which is absurd. So S is inconsistent and so there must
be ¢!,...,¢" € S such that - (' A ... A ¢") — ¢'. By Ry and As we get
F (Bt A...ANB¢™) — B¢’ and because B¢® € I', we finally have B¢’ € I'. The
proof is similar for the operators O and B’. One can also easily show that D is
serial.

Now we have to show that condition (%) holds in our canonical model M.
We first show that for all I' € W, all I", I € D(I') U{I'}, I"" «~ I'"i.e., for
all(bEE%DL,¢€F’iff¢€F”.Let¢e£%DL and assume ¢ € I". If ¢ ¢ T
then —¢ € I', and Oa € I for some o € L% ... So M, I' = —¢ A O, therefore
M, I" = O(—¢ A a). Then M, I"" E —¢ A a, and so —~¢ € I''. This is impossible,
so ¢ € I'. By the same reasoning we get that ¢ € I'’. Likewise vice versa. We
now show that «w is a RD-bisimulation relation. Assume I' «~ I". The base
case for % clearly works. We prove the forth condition for R. Let Iy € R(I)



and let It = {¢ € L%, | ¢ € I} and assume that for all I} € R(I") it is
not the case that Iy «~ I, ie., It € I'{. Let S; =ITY — |J I and let us
I'yeR(I)
define S = S; U Sy where Sy = {¢ € E%DL | B¢ € I'}. S is consistent because
S C I'. So there is I, € W such that S C Iy. But {¢ € Lgpr | B¢ € I''} =
{peLs,, |Boel'y={pec L, | Bpc I} because I' «~ I". I € R(I")
and S; C I which is impossible by assumption. So there is I} € R(I") such
that I'™* C I, i.e., such that I} «~ I7. the same reasoning applies for the back
condition. It also applies for the back and forth conditions for D by replacing
S by Sy ={ae€ LYy, | Oa eI}

Theorem 2. Lgpr is decidable

Proof (sketch). One can show that Lgpy, has the finite model property by adapt-
ing the selection method [6].

2.3 Epistemic norms and Aqvist’s paradox

Our logic can express conditional norms because our logic inherits from the
properties of Castafleda’s deontic logic (such as F ¢ — Oa < O(¢p — «)).
Due to its combination of the deontic and epistemic notions, it can also express
the knowledge-based obligations of [14]. But because our combination is quite
general, we can also express epistemic norms. Formally, an epistemic norm n
is a formula of the following form, where ¢ is an epistemic formula and 1 a
propositional formula.

¢ —PBY o — OB
¢ = -PBY ¢ — OBy

Ezample 2 (driving example). Assume that John does not know whether he is
speeding on a highway (—~B-speed A ~Bspeed) because his speed controller is
defective. As a matter of fact, by law, he should know whether he drives too
fast (n1). Besides, he should also know that if he speeds, then he has to slow
down (ns). These two epistemic norms are formalized as follows:

ny = O(B’speed vV B’ —speed)
ny = OB’ (speed — Oslow)
ng = Bspeed — Oslow

where speed stands for ‘John is speeding’ and slow stands for ‘slow down’. Note
that n3 is an epistemic norm with an epistemic condition.

This situation is depicted in the EDL-model M of Figure 1, where speed
stands for ‘John is driving too fast’ and slow for the practition ‘slow down’.
The dotted arrows correspond to the deontic accessibility relation D and the
plain arrows correspond to accessibility relations R and R’. w corresponds to
the actual world. We therefore have M, w |= (—Bspeed A = B-speed) A\ B(speed <+
Oslow) A O(B'speed V B'—speed): John does not know whether he is driving too
fast, but he knows that it is obligatory that he slows down if and only if he is
speeding, and he is obliged to know whether he is driving too fast.



" :
w : speed, slow <————— —speed, ~slow
) )

R,R’ R,R’

Fig. 1. Driving example

Epistemic norms should be free from paradoxes due to the interaction be-
tween epistemic and deontic modalities. Aqvist paradox of the knower is not
possible in our framework, due to the distinction between propositions and prac-
titions. In the following, we rephrase the paradox in our running example:

Ezxample 3. Assume that if John is speeding, he should know this. Moreover, he
is actually speeding. However, in our logic, even if knowing something implies
that it is true, it does not follow paradoxically that he should speed:

{speed, speed — OB’ speed} = OB’ speed

but even if
B'speed — speed

due to Axiom T for knowledge, one cannot derive O speed:
¥ OB’ speed — Ospeed

due to the fact that speed is a proposition and it cannot appear in an obligation
as a practition.

3 Dynamic Epistemic Deontic Logic (DEDL)

3.1 Changing norms and beliefs

We now want to add dynamics to the picture by means of communicative acts
made to the agent. The content of these communicative acts can affect the
situation in two ways: either it affects the epistemic realm (represented in a
EDL-model by the relation R) or it affects the normative realm (represented in
a EDL-model by the relations R’ and D). This leads us to enrich the language
Lgpr, with two dynamic operators [¢!] and [¢*!!], yielding the language Lpgpr,
whose formulas are generally denoted ¢*:

ﬁ%EDL1¢?1=p|ﬁ¢|¢/\¢ | B¢ | Oa | [9Y]¢ | [9* ]
Lhoprias=F]-alaralang|dnalBo|[dal ¢t

where p ranges over $¢, 3 over .

[¢!]¢ reads ‘after learning v, ¢ holds’, and [¢*!!]¢ reads ‘after the promul-
gation/enforcement of 1*, ¢ holds’. Note that it is possible that ¢¥* € C%DL
because propositions can affect the normative realm via R’. The semantics of
these dynamic operators is inspired by Kooi [11] and defined as follows.



Definition 3. Let M = (W,D,R,R',V) be an EDL-model, ¢ € E%DL and
V* € Legpr. We define the EDL-models M * ! and M x ¢*!! as follows.

— M xy!=(W,D,R\ R, V) where for allw e W,
Rl(w) = R(w) N |[¥]].
— M« y*!! = (W, D!\, R, R\ V) where for all w € W,

RN (w) = {
Dll(w) = {

R'(w) O [|¢*]] if v* € LGy,
R'(w) otherwise.
D(w) N ||[¢*|| if * € L%y, and M,w = Py*
D(w) otherwise.

where ||¢*|| = {v € M | M,v = ¢*}. The truth conditions:

M,w = [Pl¢*  iff Mxylwl=o*
M,w = [v*No* iff Mxy*w k= ¢*.

Definition 4. The logic Lpgpy, is axiomatized as follows:

Lepr

All the axiom schemes and inference rules of Lgpr,
- [W]B6 & B (6 — [410)

[W]B'6 < B¢

(WO« < O[]

[W*1)Bo < Bl e

[WU)B' > B'(w — [11¢)

[a!l]B'¢ <> B'[a!l]¢

[YN O« + O[N]

F [a!]Od’ <+ (Pa — O(a — [all]a’)) A
(—=Pa — Olalla’)

FOp<+<op

FOB 6

F O-¢* < -0¢*

FDO(¢" — ) = (O¢" — Oy~)

If & ¢* then F Og¢*

',
|_
'_
l_
|_
l_

where O stands for [¥!] or [x!].

Proposition 1. For all ¢ € E%EDL there is ¢' € E%DL such that = ¢ < ¢'.
For all o € LYy, there is o' € L, such that - a < o.

Proof (sketch). First, note that if v is a formula without dynamic operator then
one shows by induction on ¥ using Ag to Ajs that Ot is provably equivalent
to a formula 1’ without dynamic operator. Now if ¢ is an arbitrary formula
with n dynamic operators, it has a sub-formula of the form O where 1 is
without dynamic operators which is equivalent to a formula v’ without dynamic
operators. So we just substitute O by ¢’ in ¢ and we get a provably equivalent
formula thanks to A;7; and Ry with n — 1 dynamic operators. We then iterate

the process.



As usual in dynamic epistemic logic, we use the previous key proposition to
prove the following theorem.

Theorem 3. The semantics of Lpgpr is sound and complete with respect to
the lOgiC LDEDL' LDEDL 18 also decidable.

Proof. The soundness part is routine. Let ¢ € Lpgpr, such that - ¢. Then there
is ¢’ € Lgpr such that - ¢ < ¢’ by the previous proposition, and therefore
E ¢ <> ¢’ by soundness. But |= ¢’ by Theorem 1, so = ¢ as well. Decidability

is proved similarly.

In dynamic epistemic logic, Balbiani et al. [5] is the closest work to ours. They
focus in a multi-agent setting on the notion of permission to announce. They
provide a sound, complete and decidable logic by enriching public announcement
logic with the operator P (v, ¢) which reads ‘after ¢ has been publicly announced,
it is permitted to say ¢’.

Changing beliefs: [¢!]. Our logic is a dynamic epistemic logic, which allows to
express communicative acts changing the beliefs of agents.

Ezxample 4. Let us take up Example 2. John is driving too fast, and a policeman
who detected this using a radar informs him:

M, w |= speed N\ [speed!]| Bspeed

After the communicative act John knows that he is driving too fast. The resulting
situation is depicted in Figure 2.

w : speed, slow I — —speed, —slow
W) W)
R,R’ R’

Fig. 2. Update by speed!

Changing norms: [¢!!]. Our logic is a dynamic deontic logic, which allows to
express communicative acts changing the norms.

Ezample 5. Let us take up Example 2 again. John comes upon road works and
there is a sign announcing that he should slow down. This event can be modeled
by the communicative act [slow!!]:

M, w = [slow!!](Oslow A BOslow)

After this communicative act, it is obligatory for John to slow down and he
knows this. This resulting situation is depicted in Figure 3



n .
w : speed, slow <—————— —speed, —~slow
W) @)

R,R’ R,R’

Fig. 3. Update by slowl!!

3.2 Norms and Normative Propositions

Alchourrén and Bulygin [1, 2] discussed the possibility of a logic of norms, which
they distinguish from the logic of normative propositions. Alchourrén explains
the distinction with the following box metaphor.

“We may depict the difference between the descriptive meaning (norma-
tive propositions) and the prescriptive meaning (norm) of deontic sen-
tences by means of thinking the obligatory sets as well as the permitted
sets as different boxes ready to be filled. When the authority o uses a
deontic sentence prescriptively to norm an action, his activity belongs to
the same category as putting something into a box. When «, or someone
else, uses the deontic sentence descriptively his activity belongs to the
same category as making a picture of « putting something into a box. A
proposition is like a picture of reality, so to assert a proposition is like
making a picture of reality. On the other hand to issue (enact) a norm
is like putting something in a box. It is a way of creating something,
of building a part of reality (the normative qualification of an action)
with the purpose that the addressees have the option to perform the
authorized actions while performing the commanded actions.” [1]

In our logic we can distinguish Alchourrén’s distinction between descriptive
and prescriptive norms. We map this distinction to the context of communi-
cation. The descriptive communicative act of a police car behind John telling
him to slow down can be modeled by the communicative act [Oslow!]. Note
that informing about the existence of a norm can enable the audience to know
more information: for example, if it is obligatory to slow down when speeding,
John learns that he is speeding. The prescriptive communicative act of John
being informed by the sign that he should slow down can be modeled by the
communicative act [slow!!].

This mapping allows to understand the role of agent systems in deontic logic,
since a traditional problem can be solved by stating it in terms of interaction
among agents.

Ezample 6. Let us take up Example 2. Concerning the descriptive character
of norms, we model the action of communicating that there is a norm obliging
John to slow down as the announcement of the obligation (Oslow!). The resulting
situation is the same as the one depicted in Figure 2. After such announcement



to John, not only he believes that he is obliged to slow down but also that he is
speeding:
M, w }= =Bspeed A [Oslow!](BOslow A\ Bspeed)

The inference [Oslow!] Bspeed is possible if speeding up obliges to slow down:
speed — Oslow

Note that slow is a practition, since it is in the scope of a deontic operator.

Concerning the prescriptive character of norms, we model the action of
putting a norm into existence, for example, by the road works sign telling to
slow down (slow!!). The resulting situation is depicted in Figure 3. Note that, in
this case, even if speed — Ofine, we cannot derive that John knows that he is
speeding too much:

M, w = —Bspeed A [slow](Oslow A -~ Bspeed).

4 Conclusions

Distinguishing the prescriptive and descriptive use of language is a classical chal-
lenge from deontic logic with practical consequences. If one agent tells another
agent that he is obliged to do something, but the second agent would like to dis-
agree, then the second agent should know whether the agent is creating a norm
for him, or whether he is describing an existing normative system. In the first
case he may disagree by responding that the agent is not authorized to create
obligations for him, in the second case he may argue that the norm does not
apply to him, or that the norm does not exist. Several formal systems therefore
distinguish between prescriptive and descriptive obligations, but thus far the
distinction was not analyzed in more detail, and the two kinds of obligations
were not related to each other.

In this paper, we give a more detailed analysis by modeling besides the nor-
mative system also the epistemic states of the agents, and how norms can be
changed over time. Few articles in deontic logic deal with the interaction among
deontic and epistemic notions, though they often entertain a tight relationship.
Citizens must often know their obligations, e.g., people should know that it is
forbidden to drive too fast. Moreover, some obligations hold only in an epistemic
context, e.g., John is obliged to slow down if he knows that he is driving fast [14].
To specify such examples of autonomous agents acting within a normative sys-
tem, there is a need for the logical formalization of these relationships. To model
the interaction between epistemic and normative notions in a dynamic setting
we introduced a general Dynamic Epistemic Deontic Logic. The logic extends
a simplified version of Castaneda’s deontic logic of practitions and propositions
with epistemic and dynamic update operators. It combines epistemic and deontic
features to express the notions of permitted and obligatory beliefs. The paradox
of the knower of Aqvist is analyzed by restricting the language.

Further research concerns making the logic multi-agent, to study the impli-
cations of our approach for contrary to duties and deontic detachment.
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