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Abstract. In this paper we introduce a logic of abstract argumentation capturing
Dung’s theory of abstract argumentation, based on connectives for attack and de-
fend. We extend it to a modal logic of abstract argumentation to generalize Dung’s
theory and define variants of it. Moreover, we use the logic to relate Dung’s the-
ory of abstract argumentation to more traditional conditional and comparative for-
malisms, and we illustrate how to reason about arguments in meta-argumentation.

1 Introduction

Dung’s theory of abstract argumentation [7] is popular in agent theory. For example,
Prakken and Vreeswijk note that on the one hand it unifies theories on argumenta-
tion [14], and on the other hand it unifies theories of non-monotonic reasoning [6].
However, it has also been criticized. For example, Horty observes that the pattern called
reinstatement is an integrated part of Dung’s theory, whereas this pattern has been crit-
icized in non-monotonic reasoning [9]. In multiagent systems argumentation theory is
used for dialogue, for example by Parsons et al [12], because there is no commonly
known truth to refer to. In other words, argumentation is all there is to establish agree-
ment. This is analogous to the situation in legal reasoning.

However, argumentation theory is hardly used in agent technology. For example, it
is not used for model checking agent dialogues [17]. There are two related problems.
First, various researchers have claimed that the model-theoretic approach is not suitable
for argumentation, such that the model-theoretic approach to argumentation has not
been developed. Secondly, the relation between argumentation theory and other formal
systems has not been studied, such that that existing technologies cannot be used for
argumentation. There is a tendency within argumentation theory to develop specialized
procedures rather than to connect to existing technologies.

In this paper we study argumentation theory from a logical point of view, using
model-theoretic semantics, and we relate it to other formal systems. From a formal point
of view, Dung does not consider conditionals used in traditional argumentation and non-
monotonic reasoning, such as for example @ — b: a is an argument for (supports) b.
Instead, the central concept studied in abstract argumentation is a binary attack relation
among arguments. In this paper we represent it by ‘>’. We write a > b for argument a
attacks argument b.

Though both @ — b and a > b are binary connectives, they have distinct logics. For
example, whereas most conditional logics accept the identity rule, a — a, we definitely
do not have that all arguments attack itself: a ¥ a. Moreover, whereas a conditional con-
nective ‘—’ might satisfy the transitivity or the cut rule, this does not make sense for the
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attack connective ‘t>’. The latter also distinguishes the attack connective from binary
comparatives like preference connectives, e.g., p > ¢ for ‘p is preferred to ¢’ [16].

Despite the popularity of Dung’s framework, it seems that the logical relations
among attack statements have not been studied yet. Moreover, in abstract argumentation
the notion of a set of arguments defending another argument has been defined. Again
the logical relations among defend statements, and their relation to attack statements,
seems unexplored. However, such an analysis would be useful for several reasons. It
would give insight in Dung’s abstract argumentation, it would be a basis for general-
izations of Dung’s theory, it would enable a comparison with other formalisms, and
it would support reasoning about arguments in meta-argumentation [18]. We therefore
raise the following questions in this paper:

What is a logic for abstract argumentation?

What are logical properties of abstract argumentation?
How to use such a logic to generalize Dung?

How is it related to conditional and preference logics?
How can agents reason about arguments?

A

Following Besnard and Doutre [1], to study these questions we represent arguments
by propositions, such that “argument a together with argument b attacks argument ¢”
is represented by a A b > c. We introduce connective ‘@’ for defence, so “argument a
defends argument b” is represented by a @ b. Moreover, in the relation with conditional
logic, we pursue the intuition that “argument a attacks argument b” is related to “if a
holds then b does not hold”. We relate, e.g.,

— if a attacks b and ¢ defends b, then c attacks a,
to the following inference:
- froma —. —band ¢ — b, derive ¢ —. —a.

At present, this relation is not only unknown, but the question could not be raised,
because there was no language in which it could be expressed.

Finally, reasoning about arguments in meta-argumentation is illustrated by the fol-
lowing dialogue:

A: I think arguments a and b defend argument c.
B: But argument d attacks argument c!
A: No problem, since argument a attacks argument d.

This dialogue illustrates how our logic contributes also to traditional argumentation
theory.

The layout of this paper follows the research questions. In Section 2 we introduce
a logical framework to reason about abstract argumentation. In Section 3 we consider
logical properties among attack and defend statements, and in Section 4 we introduce
a modal generalization of the logic to define variants and generalizations of Dung’s
theory. In Section 5 we consider the relation between the logic and more traditional
formalisms, and in Section 6 we consider reasoning about arguments.
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2 Semantics

We start with Dung’s theory of argumentation. It is nowadays called a theory of abstract
argumentation, because it ignores the internal structure of arguments. Here we use the
presentation of Besnard and Doutre [1], who in contrast to Dung also define sets of
arguments attacking other sets of arguments. Moreover, they write “argument system”
where Dung writes “argument framework”.

Definition 1 (Argument System). An argument system is a pair (A, R), where A is a
set (of arguments), and R is a binary relation over A which represents a notion of attack
between arguments (R C A x A). Given two arguments a and b, (a,b) € R means that
a attacks b or that a is an attacker of b. A set of arguments S attacks an argument a if a
is attacked by an argument of S. A set of arguments S attacks a set of arguments S’ if
there is an argument a € S which attacks an argument b € S’.

Dung assumes an argument system (A, R) to be given. Moreover, he gives several
semantics which produce none, one or several sets of acceptable arguments called ex-
tensions. Most of these semantics depend on an additional notion of what is nowadays
called defence. Instead of ““S defends a”, Dung says “a is acceptable with respect to S.”
We also define a set of arguments defending another set of arguments.

Definition 2 (Argument Semantics). Ler (A, R) be an argument system.

- S C Ais conflict free iff there are no a and b in S such that a attacks b.

— A conflict free set S C A is a stable extension iff for each argument which is not in
S, there exists an argument in S that attacks it.

— An argument a € A is defended by a set S C A (or S defends a) iff for any
argument b € A, if b attacks a, then S attacks b.

— A conflict free set S C A is admissible iff each argument in S is defended by S.

— A preferred extension is an admissible subset of A, which is maximal w.r.t. set

inclusion.

— An admissible S C A is a complete extension iff each argument which is defended
by Sisin S.

— The least (with respect to set inclusion) complete extension is the grounded
extension.

We say that S C A defends S’ C A iff S defends eacha € S'.

The basic idea of the logic of abstract argumentation is that there is no longer a fixed
argument system, in the following sense. A model of the logic represents an argument
system, and such a model satisfies formulas representing that arguments attack or de-
fend each other, or whether sets of arguments are extensions. Now, a formula is a theo-
rem if it holds in all models, i.e., when it is true for every argument system. Theorems
thus quantify over argument systems.

There are many ways to design a logic of abstract argumentation. In this section
we stay close to Dung’s argument system, and we generalize it in Section 4. We first
assume a fixed signature or alphabet, which consists of the set of arguments A. Ly is
the set of conjunctions of atoms, representing sets of arguments, and L is the language
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that contains the notions of Dung’s theory of argumentation. L; is the fragment of L
that contains only the attack and defend connectives. Note that modalities in L cannot
be nested.

Definition 3 (LAA language). Given a set of arguments A = {a1, ..., ay}, we define
the set Lo of argument sets and the set L of LAA formulas as follows.

Lot a; | pAg (p,q € Lo)
L: (p>q) | p@q) | F(p) | Sp) | Alp) | P(p) | C(0) | G) | =0 | (¢ A 2)
(p,q € Lo; 9,9 € L)

We write Ly for the fragment of L that does not contain a monadic modal operator.
Moreover, disjunction V, material implication D and equivalence < are defined as
usual. We abbreviate formulas using the the following order on logical connectives:
= | V,A | >,@ |D, <. For example, —p > q A r is short for (~p > (¢ A 7)).

A semantic structure just consists of the binary attack relation R.

Definition 4 (LAA semantics). Let A be set of arguments, let p and q be elements of
Lg and let ¢ and i) be elements of L, and let R be a binary relation over A. We have:

R Epr>q iff in argument system (A, R), the set of arguments in p attack the set of
arguments in q.

R Ep @ q iff in argument system (A, R), the set of arguments in p defend the set of
arguments in q.

R = F(p) iff the set of arguments in p is conflict free in argument system (A, R).

R = S(p) iff the set of arguments in p is a stable extension in argument system (A, R).

R = A(p) iff the set of arguments in p is admissable in argument system (A, R).

R = P(p) iff the set of arguments in p is a preferred extension in arg. system (A, R).

R = C(p) iff the set of arguments in p is a complete extension in arg. system (A, R).

R = G(p) iff the set of arguments in p is a grounded extension in arg. system (A, R).

R E —¢ iffnot R = ¢.

REGAY iR dand R - 0.

Moreover; logical notions are defined as usual, in particular:

- REA{d1,.. . ¢u}ff REE ¢ for1 <i<mn,
- E ¢ ifffor all R, we have R = ¢,
- S | ¢ iff for all R such that R |= S, we have R = ¢.

In this paper we are in particular interested in logic L; that only contains the
attack and defend connectives, which constitute the basis of Dung’s theory. We believe
that to understand Dung’s theory, one has first to better understand these two binary
connectives.

Example 1. 1f a attacks b and c defends b, then c attacks a,

- E(a>b)A(cob) D (c>a)
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3 Logical Properties

The logical relations among attack formulas are characterized by the left (LD) and right
distribution (RD) properties. They follow from the definition of attack among sets of ar-
guments in terms of attacks among individual arguments. To understand this characteri-
zation we consider two logical consequences. First, logical consequences of the distribu-
tion properties (read from right to left) are left (LS) and right strengthening (RS). Right
strengthening indicates that the attack connective does not behave like a conditional con-
nective, but it behaves in this respect like a comparative connective (see Section 5 for
details). Secondly, the more remarkable logical consequences of the distribution prop-
erties (read from left to right) is that if two arguments together attack another argument,
then one of these arguments individually attacks the other argument (LT and RT). These
splitting properties indicate room for generalizing Dung’s theory (see Section 4).

LD E (aAb>c) = (abc)V(b>ce) LA E(a@c)V(boce) D (aANbdc)
RDE (a>bAc) < (a>b)V (a>c) RD (a@b/\c) (a@b) A (a©c)
LS E(a>c) D (anbrc) LS E(a®c)D (a/\b@c)

RS E(a>b)D(abAc) (a @b/\c) ( b)

LT E(aAb>c)D(a>c)V (b c) (@a@b)N(a@c)D(a@bAc)
RT =(a>bAc)D(a>b)V(a>c)

The logical relations among defend relations are characterized by left additivity (LA)
and right distribution (RD) properties. These properties follow from the definition of de-
fend among sets of arguments in terms of attacks among individual arguments. The first
logical consequences of these two properties (read from left to right) are left strength-
ening (LS) and right weakening (RW). Right weakening indicates that the defend con-
nective behaves like a conditional connective (see Section 5 for details). Secondly, we
have the conjunction property RC (read from right to left).

The relation among attack and defence connectives is as follows. If a set of arguments
is finite, we can simply define the defend connective in terms of attack connective.

- (@@b) < N.cal(c>b) D (ar>c))

An instance of this relation, which characterizes the infinite case, is the following
property already observed in Example 1. It says that the only possible defence is a direct
counterattack, and thus rules out other defence tactics. This may seem counterintuitive
at first sight, but it makes Dung’s system effective.

- (a@b)A(c>b)D(ar>c)

=
=
W =
C

Though we are primarily interested in the logic L, the following example illustrates
that the logic can be used to express well known relations among extensions.

Example 2. A stable extension is also a preferred extension, and a preferred extension
is also a complete extension.

- ES(p) > Pp)
- | P(p) > C(p)
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Two important properties are the expressive power of the language, and compactness of
the logic.

Proposition 1 (Expressive power). The logical language is expressive enough to dis-
tinguish two distinct argumentation theories based on the same set of arguments.

Proof. If two argumentation systems are distinct, then there are two arguments a and
b such that Ry(a,b) holds in one argument system (A, Ry), but Ry(a,b) does not hold
in the other (A, Rs) — or vice versa. Then we have Ry = a > b, but not Ry = a>b—
or vice versa.

Proposition 2 (Compactness). The logic is not compact, when the set of arguments A
is infinite.

Proof. Follows directly from universal quantification in the definition of the semantics.
For example, assume that A is infinite. We can derive that argument a defends argument
b when there is an infinite set of formulas for each argument ¢ € A that either a attacks
c or ¢ does not attack b. However, we cannot derive that a defends b from a finite set of
formulas.

A non-monotonic extension can be defined based on distinguished models and subset
minimal attack relations. Sometimes such distinguished models are called preferred
models and non-monotonic entailment is called preferential entailment.

Definition 5. A model R is a distinguished model of a set of sentences S' iff

1. RE S, and
2. thereisno R' C Rsuchthat R' = S.

Nonmonotonic entailment is defined as usual:
- T ¢ iff for all distinguished models R of T we have R = ¢.

The typical use of our logic is when an argument system is specified by a set of attack
statements; we call such a set an argument specification.

Proposition 3. An argument specification is a set of attack formulas AS = {p; >
G, - - - Pn > qn . The distinguished model of an argument specification AS is unique.

There are some limitations to the logic proposed here. First, the semantics leave little
room for generalizations of Dung’s theory. Secondly, we cannot express the characteri-
zations in propositional logic provided by Besnard and Doutre. Thirdly, we cannot ex-
press that stable, preferred and complete semantics admit multiple extensions whereas
the grounded semantics ascribes a single extension to a given argument system. In the
following section we therefore discuss an extension of LAA in modal logic.

4 Modal Logic of Abstract Argumentation

To define variants and generalizations of Dung’s theory, we now generalize LAA in a
modal logic setting. We restrict ourselves to finite sets of arguments. Since sentences of



A Logic of Abstract Argumentation 35

the logic are finite, we cannot represent and reason about infinite extensions. The logic
therefore seems most suitable for finite argument systems.

Our generalization is based on an attack relation between sets of arguments. Such
sets of arguments are called positions and represented in the semantics of the logic by
worlds in a possible worlds model. The attack relation is thus a binary relation between
worlds, that is, a standard accessibility relation of possible worlds semantics.

Our motivation is that Dung’s assumption that the attack relation exists between
individuals arguments instead of sets of arguments is quite strong, and that it is not
warranted in cases where the cumulative weight of arguments is decisive [15,2]. For
example, in some legal cases circumstantial evidence may be used in a cumulative way.
Each piece of evidence individually would not be enough to connect a suspect to the
crime scene, but many pieces of evidence taken together would be enough to conclude
that the suspect was present at the crime scene. So only a set of arguments taken together
would attack a position in this case.

Formally, we define a normal bimodal semantics in which modal operator O; rep-
resents the attack relation, and O is a universal modality used for technical reasons.
Since we have right strengthening for attack connectives where normal modal opera-
tors have right weakening, we use a negation in the definition of the attack connective.
Propositional formulas represent positions, i.e., sets of arguments. The logic also has
negations and disjunctions in the left and right hand side of our connectives, but we do
not use this in this paper. We adapt the definition of defend in terms of attack to deal
with our generalized setting (s represents a set of atoms as well as a conjunction of
atoms).

Definition 6 (MLAA language). Given a set of arguments A = {ay,...,a,}, we
define the set M L of MLAA formulas as follows.

ML: a; | O1(¢) | O2(¢) | F(¢) | S(9) [ A(¢) | P(9) | C(9) [ G(d) | =9 | (¢ A1)
(P, € ML).

We write M L, for the fragment of M L that contains only monadic modal operators
0, and Og. Moreover, disjunction V, material implication O and equivalence < are
defined as usual. We extend the modal logic with the definition:

- p>q=0(p D 0iq)
-p2q=N,cals>qDp>s)
We abbreviate formulas using the the following order on logical connectives:
S| V,A >, D, e

For space reasons we only introduce a semantics for M L. The other modalities can be
described by a non-normal modal semantics only, as they do not satisfy weakening nor
strengthening. From a logical point of view, MLAA is a standard normal modal logic
with universal relation. Complexity and axiomatization of this logic are well known,
see for example [8].

Definition 7 (MLAA semantics). Let A be a set of arguments. A possible worlds
model M is a structure (W, R, V') where W is a set (of worlds), R is a binary (at-
tack) relation on W, and V' is a valuation function which assigns a subset of A to each
element of W.
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M,w = aiffa € V(w) for all arguments a € A

M, w | —¢iff not M,w | ¢

Mw = ¢ A iff M = ¢ and M =

M, w = O;1¢ iff for all w' such that R(w,w'’) we have M, w’ = ¢.
M, w = Q¢ if for all w € W, we have M, w [= ¢.

We assume that W contains exactly one world for each subset of A.

Clearly, the language L is a fragment of M L. Moreover, Dung’s theory can be charac-
terized by the properties we already discussed:

-E(@Nb>c) = (a>e)V(b>c)
-E(a>bArc) = (a>b)V(a>c)

We also consider some instances of Dung’s theory. As far as we know, there is no
systematic study of the possible instances of Dung’s theory. We consider additional ax-
ioms we can impose on the logic MLAA. The first property we consider is irreflexivity
of R, which corresponds to the property that no argument can attack itself:

IR —(ar>a)

The second property we consider is symmetry of the attack relation, which corre-
sponds to the property that if argument a attacks argument b, then argument b attacks
argument a.

S (a>b) < (b>a)

Symmetry is not accepted often, because a counterexample attacks a general rule, but
a general rule does not necessarily attack a counterexample. E.g., if Swans are white (a),
but in Australia they found black swans (b) then we have b > a without a > b. If the
attack relation is symmetric, then the defend relation becomes reflexive, that is, each
argument defends itself: a © a.

Note that when we take traditional properties of conditional logic, we do not seem to
get something useful. In particular, reflexivity (R) does not hold. Transitivity (T) means
that if argument a attacks argument b, and argument b attacks argument ¢, then argument
a should attack argument c. This does not hold either. Take a = ¢ for example, then we
get a > a, which conflicts with IR.

Ra>a
T (a>b)A(b>c) D (al>c)

Finally, if we would add accessibility relations for the monadic modal operators, then
we can deal with the remaining problems observed at the end of Section 3.

Example 3. Grounded extension is unique:

- FG(p) NG(g) D Oz2(p < q)

Characterization of conflict free sets based on satisfiability checking condition of [1]:

- C(p) A (p>q) D Calp A—q)
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5 Relation with Traditional Formal Systems

5.1 Preference Logic

Since the logic of the attack connectives satisfies left and right strengthening, it seems
that it may be related to preference logic. In particular, “argument a attacks argument
b” may be interpreted as “argument q is preferred to argument b”. However, this is less
helpful than it may seem at first sight, because the area of preference logic is character-
ized by lack of consensus. In this subsection we make some observations.

First, the most popular branch of preference logic, as initiated in the sixties by Von
Wright [16], is concerned with ceteris paribus preferences. This means that p > ¢ is in-
terpreted as a preference of p over q all else being equal, typically interpreted as ‘under
the same (or similar) circumstances’. When we consider a language that does not con-
tain disjunction or negation, then such preferences are characterized by the following
property of simultaneous left and right strengthening. This is strictly weaker than left
and right strengthening of attack connectives considered in this paper.

-p>qOPpATr>qgAT

Secondly, in preference logic left and right strengthening are properties of so-called
strong preferences, whereas so-called weak preferences do not satisfy left and right
strengthening. The typical example of a strong preference p > ¢ is interpreted as “all
p A —q worlds are strictly preferred to all ¢ A —p worlds”. Without a ceteris paribus
proviso these strong preferences are known to be too strong to be useful in practice,
because for example p > —p together with ¢ > —q is inconsistent. The reason is that
such strong preferences also satisfy the following property of asymmetry. However, for
the attack connective we can easily have that argument a attacks argument b, while at
the same time argument b attacks argument a.

-p>q— (g>p).

Thirdly, the attack relation behaves like a non-strict preference interpreted on a par-
tial pre-order and defined by “p > q iff there is no ¢ A —p world that is strictly preferred
to ap A —q world”. As far as we can see at this moment, this relation seems coincidental
and does not seem to refer to any deep connection between the two logical systems.

5.2 Conditional Logic

The defend connective behaves like a standard conditional connective, with one impor-
tant exception: it does not satisfy the identity rule. An argument a does not necessarily
defend argument a, because when another argument b attacks argument a, there is no
reason why argument a attacks argument b (unless the attack relation is symmetric, of
course).

Consequently, to consider the defend connective we need an identity free logic,
which are rare. Here we use input/output logic [10, 11], which has been proposed in
philosophical logic for normative or deontic reasoning, and which have been used in
artificial intelligence to characterize causal reasoning [3] and logic programming [4].
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To emphasize the lack of identity, Makinson and van der Torre write their conditional
“if input a, then output z” as (a, x).

The defend connective behaves like so-called simple-minded output, which is de-
fined as a closure on a set of conditionals under replacements of logical equivalents, and
the following three proof rules of strengthening of the input, weakening of the output,
and the conjunction rule for the output. See the above mentioned papers for semantics
of this proof system.

Definition 8. Let AS be a set of defend formulas {p1 @qu, . . ., pn @ qn }. Simple-minded
output is the closure of AS under replacement of logical equivalents, and the following
three rules.

N
GOT gp COTNY s AOTAOY 4N
aNbOx aQx aQr Ny

We can also formalize the attack relation as an input/output logic, if we use the same
encoding as we used in modal logic MLAA, that is, if we add a negation before the
output. This is done by representing “argument ¢ attacks b” by “if input a, then output
—b”. Weakening of the output is then transformed into strengthening of the output, and
the right conjunction rule is transformed into right disjunction. However, the latter rule
is not meaningful as we have not defined disjunctions for argument sets.

Definition 9. Let AS be an argument specification. Simple-minded output is the closure
of AS under replacement of logical equivalents, and the following three rules.

al>x alx alx,al>
SO YOR
aANbD> a>zT Ay a>xzVy

At this point, it is very tempting to define both attack and defend in a single conditional
logic to study their interaction. In other words, it is tempting to consider an input/output
logic in which a conditional (p, q) is read as ‘p defends ¢’, and (p, —q) is read as ‘p
attacks ¢’, for p and ¢ conjunctions of atomic propositions. This is formalized in the
following definition of the input/output logic of abstract argumentation.

Definition 10. Let IOLAA be simple minded output, together with the following two
definitions for p and q conjunctions of atomic propositions.

-p>q=(p,—q)
-p2q=(p,q)

Let us now consider the relation between attack and defend in IOLAA. The character-
istic axiom that a defends b implies that if ¢ attacks b, then a also attacks c, is given by

the following unusual rule: (a’é’i’icé;b). However, clearly we do not want to derive that

a defends b implies that if ¢ attacks b, then c also attacks a, that is: (a(bc)fa; % Note that
the distinction between these two inference rules is whether the formulas start with a
negation symbol. Consequently we cannot accept one without the other, unless we add
additional syntactic constraints. This illustrates that the formalization of argumentation
theory in input/output logic needs further investigation.
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6 Use in Argumentation

The typical approach in argumentation is that each participant makes an argument, and
then argumentation theory is used to determine grounded, stable, or preferred sets of
arguments. Reasoning of the agents occurs only at the level of constructing arguments,
and the role of logic has been restricted to the internal structure of arguments.

A: Tthink p.
B: I think not p, because q.
A: But not ¢, because of 7.

In the analysis of argumentation, reasoning about arguments has been restricted to
meta-rules such as, for example, the order of arguments, or the choice of words. How-
ever, Dung [7] has shown that reasoning about arguments can also be based on concepts
such as attack and defence. A typical example may be:

A: I think p and q defend r.
B: But s attacks r.
C: No problem, since p attacks s.

Note that the agents do not enumerate the complete argument system, that is, they do
not list the complete attack relation R of the argument system (A, R). To formalize this
example we therefor cannot assume a fixed argument system (A, R), as Dung does. We
need the logical language to quantify over argument systems.

In this example, the agents make arguments like “p and g defend r”” which themselves
refer to arguments p, ¢ and r. The former may therefore be called meta-arguments. The
logic that formalizes or characterizes the reasoning of agents about arguments, when
they construct meta-arguments, is therefore at first sight quite different from the logic
typically used in argumentation. We therefore believe that the confinement of logic to
the internal structure of arguments is too limited; there is also a role of logic in the
formalization of reasoning about arguments.

We agree with Wooldridge er al that meta-argumentation is particularly useful for
agent theory [18]. This meta-level could be used, potentially, to speed up argumenta-
tions by means of a kind of “caching” function. Just like in chess (Polish opening), you
can use patterns of arguments, give them a name, and know that such a pattern attacks
or defends another pattern. If you respect your opponent, there is no need to “play out”
the whole argument.

Wooldridge et al [18] propose a hierarchical first-order meta-logic, which enables
them to distinguish object level statements, arguments made about these object level
statements, and statements about arguments. Such a distinction is commonly accepted
in dialogue systems [13]. However, as a consequence their formal system appears to
be more complex, and it is less clear how to relate their formal system to other for-
mal approaches in the way we have related our system to reasoning about prefer-
ences or conditionals. A comparison between the two approaches is left for further
research.
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7 Concluding Remarks

In this paper we introduce a logic of abstract argumentation called LAA, with two prop-
erties usually not considered in formal theories of argumentation: it formalizes logical
relations among attack and defend formulas, and it formalizes reasoning which does
not assume a fixed argument system, but which quantifies over argument systems. We
first define a logical system that is very close to Dung’s theory. We show some proper-
ties of this logical system, focussing on the logical relations among attack and defend
formulas. We also relate the logic and its properties to more traditional preference and
conditional logics. To generalize Dung’s setting, we turn the logic LAA into a normal
bimodal logic MLAA. We define positions as sets of arguments, and define the attack
relation as a binary relation between positions. We suggest that in reasoning about ar-
guments, Dung’s assumption that an argument system is given is too strong.

There are several issues for further research. For example, the modal logic represents
negations and disjunctions in the left and right hand side of the attack and defend con-
nectives. Can they be given a useful interpretation? When ‘a’ means that argument a
has been made, then ‘—a’ may mean that a is withdrawn in the sense that there is no
longer a commitment to defend it. In such a setting, one may look into properties like:

a>bAc,al>bA-c at>b,-b>c
arb ab>c

Moreover, the content level of argumentation contains much more than just proposi-
tional logic, including attacks and defend expressions. In a straightforward extension of
our logic, reasoning about arguments such as “a I> b attacks ¢ @ b” can be studied using
nested connectives:

(a>b)>(cob)

Reasoning becomes argumentation once there are two agents with opposing views.
Such agents may have have beliefs and goals. Moreover, in a goal-based dialogue with
sub-goals to achieve it, there may be dialogue fragments representing each of the sub-
goals, probably in the same order. The use and extension of our logic for such dialogues
is another topic for further research.

The modal characterization outlined in the paper raises an interesting issue, which
might be worth exploring in future research. At first sight it opens the door for the appli-
cation of model-checking techniques, initially used for automatically verifying a Kripke
structure (describing the execution of a program) against a number of ‘correctness’ re-
quirements. It is natural to ask if such techniques can be applied to argumentation. The
Kripke structure to be model-checked describes an argument system (or, if you wish,
a dialogue) rather than the execution of a program. And the “correctness” requirement
is expressed as a formula f in MLAA rather than a temporal formula. For instance,
termination seems to be an essential property of both programs and dialogues.

Finally, Bochman [5] recently introduced a logic of propositional argumentation
based on the assumption-based argumentation framework of Bondarenko et al. [6]. A
comparison is left for further research.
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