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Abstract. Fluid (or Hybrid) Petri Nets are Petri net based models with two classes of places: discrete places that
carry a natural number of distinct objects (tokens), and fluid places that hold a positive amount of fluid, represented
by a real number. With respect to previous formulations, theFSPNmodel presented in this paper, is augmented
with a new primitive, called flush-out arc. A flush-out arc connects a fluid place to a timed transition, and has
the effect of instantaneously emptying the fluid place when the transition fires. The paper discusses the modeling
power of the augmented formalism, and shows how the dynamics of the underlying stochastic process can be
analytically described by a set of integro-differential equations. A procedure is presented to automatically derive
the solution equations from the model specifications. The whole methodology is illustrated by means of various
examples.
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1. Introduction

Fluid Stochastic Petri Nets (FSPN) or Hybrid Petri Nets (HPN) are Petri net based models,
in which some places may hold a discrete number of tokens, and some places a continuous
quantity represented by a non-negative real number. Places that hold continuous quantities
are referred to asfluid or continuous places, and the non-negative real number is said to
represent the fluid level in the place. Discrete tokens move along discrete arcs with the
enabling and firing rules of standardPN, while the fluid moves along special continuous
(or fluid) arcs according to an assigned instantaneous flow rate.

FSPN (Horton et al., 1998) andHPN (Alla and David, 1998) have been introduced
in the literature mainly with the aim of providing a feasible approximation to discrete-
state systems in which the number of objects to be considered (customers, packets, tasks,
workpieces etc.) tends to become exceedingly large to be treated with the usual discrete
state approach common toSPN.

In the formulation of this paper, we enlarge the above view, by showing thatFSPNcan be
profitably employed to model actual continuous physical quantities (like the temperature)
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whose behaviour in time is influenced by a discrete controller. Moreover, we may as well
assign to the continuous quantity the physical meaning of the flowing of the time, thus
allowing the stochastic marking process associated to the model to have a complex time-
dependent behaviour that cannot be mapped into a Continuous Time Markov Chain (CTMC)
(Gribaudo et al., 1999).

It should, however, be noted that the analogy of the continuous part of the model with a
physical fluid may be misleading, and we prefer to interpret the model semantic in a more
abstract view (Gribaudo et al., 1999), where the instantaneous flow rate associated to fluid
arcs represents an instantaneous reward rate associated to the underlying stochastic process,
and the level of the fluid in the continuous places becomes the accumulated reward (Horton,
1996). Hence,FSPNcan be thought as a graphical language to represent (non-Markovian)
stochastic processes with rewards. It is shown that this view, provides a natural environment
for the definition of performance measures related to the accumulation of the reward, that
were not easily cast in previous models.

Two main research lines have appeared in the literature. TheFSPN model was first
proposed in (Trivedi and Kulkarni, 1993) and further elaborated in (Horton et al., 1998).
The analytical solution of the model is presented in (Horton et al., 1998), while a simulative
approach has been discussed in (Ciardo et al., 1999). For theHPN, a comprehensive review
is in (Alla and David, 1998). TheHPN defines, in addition, also continuous transitions as
model primitives. In principle, timing can be either deterministic or stochastic, but extensive
applications have been reported only with deterministic timing. Only a simulative approach
is available.

The present paper assumes the basic model ofFSPN(Bobbio et al., 1999; Gribaudo et al.,
1999; Horton et al., 1998) by adding a new feature calledflush-out arc. The flush-out arc
connects a timed transition to a fluid place and has the effect of instantaneously emptying
the fluid place as the transition fires. It is shown that flush-out arcs considerably increase
the modeling power of the previously defined fluid models.

The FSPNmodel proposed in the present paper is introduced in Section 2. The firing
rate of the timed discrete transitions, and the flow rate of the continuous arcs are function
both of the discrete part of the marking (the number of tokens in the discrete places) as
well as of the continuous part (the fluid levels in the continuous places). Flush-out arcs
connect fluid places with timed transitions: the extension of allowing flush-out arcs to point
to immediate transitions is possible but involves more cumbersome notation and does not
enlarge the semantics of the model, and is therefore avoided in this paper. The dynamic
behaviour of the marking process can be described analytically: Section 3 considers first the
case of a single fluid place and then enlarges the formalism to any number of fluid places.

Section 4 introduces the performance measures that can be naturally specified on aFSPN
and shows how continuous measures related to the accumulation of the fluid (reward) may
become part of the standard specification. In this section we briefly discuss the numeri-
cal aspects related with the solution of FSPN models. Section 5 presents an illustrative
example. Finally, Section 6 concludes the paper outlining possible future works on this
topic.
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2. Definitions and Notations

Throughout the paper calligraphic symbols are used to denote sets, boldface symbols to
denote vectors and matrices (lowercase for vectors and uppercase for matrices), and up-
percase symbols to denote functions. WithN, R, andR+ we denote natural, real, and non
negative real numbers, respectively.

The definition of the FSPNs is derived from (Horton et al., 1998) with standard notation
inherited from (Ajmone et al., 1995).

A FSPN is a tuple〈P, T ,A, B, F,W, R,M0〉, where:

– P is the set of places partitioned into a set of discrete placesPd = {p1, . . . , p|Pd|}, and
a set of continuous placesPc = {c1, . . . , c|Pc|} (with Pd ∩ Pc = ∅ andPd ∪ Pc = P).
The discrete places may contain a natural number of tokens, while the marking of
a continuous place is a non negative real number. In the graphical representation a
discrete place is drawn as a single circle while a continuous place is drawn with two
concentric circles. The complete state (marking) of a FSPN is described by a pair of
vectorsM = (m, x), where the vectorm, of dimension|Pd| is the marking of the
discrete part of the FSPN and the vectorx, of dimension|Pc|, represents the fluid levels
in the continuous places (withxl ≥ 0 for anycl ∈ Pc). We useS to denote the partially
discrete and partially continuous state space. In the following we denote bySd andSc

the discrete and the continuous component of the state space respectively. The marking
M = (m, x) evolves in time. We denote the time byτ , and we can think the marking
M at timeτ as the stochastic marking processM(τ ) = {(m(τ ), x(τ )), τ ≥ 0}.

– T is the set of transitions partitioned into a set of stochastically timed transitionsTe

and a set of immediate transitionsTi (with Te ∩ Ti = ∅ andTe ∪ Ti = T ). A timed
transitionTj ∈ Te is drawn as a rectangle and has an instantaneous firing rate associated
to it. An immediate transitionth ∈ Ti is drawn with a thin bar and has a constant zero
firing time. We denote the timed transitions with uppercase letters and the immediate
transitions with lowercase letters.

– A is the set of arcs partitioned into four subsets:Ad, Ah,Ac, andA f . The subsetAd

contains the discrete arcs which can be seen as a function1 Ad: ((Pd × T ) ∪ (T ×
Pd)) → N. The arcsAd are drawn as single arrows. The subsetAh contains the
inhibitor arcs,Ah: (Pd × T ) → N. These arcs are drawn with a small circle at the
end. Given a transitionTj ∈ T , we denote with•Tj = {pi ∈ Pd: Ad(pi , Tj ) > 0}
and with T•j = {pi ∈ Pd: Ad(Tj , pi ) > 0} the input and the output sets and with
◦Tj = {pi ∈ Pd: Ah(pi , Tj ) > 0} the inhibition set. The definition of•Tj , T•j , and◦Tj

involves only discrete places and is the same as for the standard GSPNs.

The subsetsAc andA f define arcs that are related with the continuous places. The
subsetAc defines the continuous arcs. These arcs are drawn as double arrows to suggest
a pipe.Ac is a subset of(Pc × Te) ∪ (Te × Pc), i.e., a continuous arc can connect a
fluid place to a timed transition or it can connect a timed transition to a fluid place. The
subsetA f contains theflush-outarcs.A f is a subset of(Pc × Te). These arcs connect
continuous places to timed transitions, and describe the capability of a transition to
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empty in zero time the existing fluid from a continuous place when it fires. Flush-out
arcs have been introduced in (Bobbio et al., 1999; Gribaudo et al., 1999) and represent
an extension of the FSPN formalism proposed in (Horton et al., 1998) in which discrete
jumps in the fluid level are not allowed. The arcsA f are drawn as thick single arrows.

– The functionB: Pc→ R+ ∪ {∞} describes the fluid upper bounds on each continuous
place. This bound has no effect when it is set to infinity. Each fluid place has an
implicit lower bound at level 0. From this, it follows that∀M = (m, x) ∈ S and
cl ∈ Pc, 0≤ xl ≤ B(cl ).

– The firing rate functionF is defined for timed transitionsTe so thatF : Te× S → R+.
Therefore, a timed transitionTj enabled at timeτ in a discrete markingm(τ ) with fluid
levelx(τ ), may fire with rateF(Tj ,m(τ ), x(τ )), that is:

lim
1τ→0

Pr{Tj fires in(τ, τ +1τ)|M(τ ) = (m(τ ), x(τ ))} = F(Tj ,m, x)1τ

We also use as a short hand notationF(Tj ,M), whereM = (m, x)).
– The weight functionW for immediate transitionsTi (W: Ti ×Sd → R+) has the usual

meaning and it may depend only on the discrete part (Ajmone et al., 1995).

– The functionR: Ac× S → R+ ∪ {0} is called theflow rate functionand describes the
marking dependent flow of fluid across continuous arcs.

– The initial state of the FSPN is denoted by the pairM0 = (m0, x0).

The role of the previous sets and functions will be clarified by providing the enabling and
firing rules.
Let us denote bymi thei -th component of the vectorm, i.e., the number of tokens in place
pi when the discrete marking ism. We say that a transitionTj ∈ T has concession in
markingM = (m, x) iff

∀ pi ∈ •Tj , mi ≥ Ad(pi , Tj ) and ∀ pi ∈ ◦Tj , mi < Ah(pi , Tj ).

If an immediate transition has concession inM = (m, x), it is enabled and the marking
is vanishing. Otherwise, the marking is tangible and any timed transition with concession
is enabled in it. Note that the previous definition is exactly the one of standard GSPNs
(Ajmone et al., 1995), i.e., the concession and the enabling conditions depend only on
the discrete part of the FSPN. LetE(M) denote the set of enabled transitions in marking
M = (m, x), we have thatE(M) = E(M ′), for any markingM ′ = (m, x’).

For the firing rule we must distinguish two cases.

1. An immediate transitiontj ∈ Ti enabled in markingM = (m, x) yields a new marking
M ′ = (m’, x), i.e., the firing of an immediate transition does not change the continuous

part of the marking. We can write(m, x)
tj−→ (m’, x), where

∀ pi ∈ Pd, m′i = mi + Ad(tj , pi )− Ad(pi , tj ).
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2. If marking M = (m, x) is tangible, the firing of a timed transitionTj ∈ Te enabled in

M = (m, x) yields a new markingM ′ = (m’, x’), i.e.,(m, x)
Tj−→ (m’, x’), where

∀ pi ∈ Pd, m′i = mi + Ad(Tj , pi )− Ad(pi , Tj ) and

∀ cl ∈ Pc, x′l =
{

0 if (cl , Tj ) ∈ A f

xl otherwise.

In other words, the firing of a timed transitionTj immediately empties (flushes out) all the
continuous places that are connected with flush-out arcs toTj .

Let us see how enabled transitions may influence the continuous part of the marking. Each
continuous arc that connects a fluid placecl ∈ Pc to an enabled timed transitionTj ∈ Te

(resp. an enabled transitionTj to a fluid placecl ), causes a “change” in the fluid level of
placecl . LetM(τ ) be the marking process, i.e.,M(τ ) = M if at time τ the marking
of the FSPN isM = (m, x). Thus, when the FSPN marking isM(τ ), for each (timed)
transitionTj enabled inM(τ ), fluid can leave placecl ∈ Pc along the arc(cl , Tj ) ∈ Ac

at rateR((cl , Tj ),M(τ )) and can enter the continuous placecl at rateR((Tj , cl ),M(τ )).
The potential rate of change of fluid level for the continuous placecl in markingM(τ ) is:

r p
l (M(τ )) =

∑
Tj∈E(M(τ ))

R((Tj , cl ),M(τ ))− R((cl , Tj ),M(τ )).

We require that for every discrete markingm and continuous arc(cl , Tj ) (resp.(Tj , cl )), the
rateR((cl , Tj ), (x,m)) (resp.R((Tj , cl ), (x,m))) is a piecewise continuous function ofx.

Now let Xl (τ ) be the random variable representing the fluid level at timeτ in a continuous
placecl ∈ Pc. The fluid level, in each continuous placecl can never become negative or
exceed the boundB(cl ), so the (actual) rate of change over time,τ , when the marking is
M(τ ), is

rl (M(τ )) = d Xl (τ )

dτ
=



r p
l (M(τ )) if Xl (τ ) = 0 andr p

l (M(τ )) ≥ 0

r p
l (M(τ )) if Xl (τ ) = B(cl ) andr p

l (M(τ )) ≤ 0

0 if Xl (τ ) = 0 andrl (M(τ )) < 0

0 if Xl (τ ) = B(cl ) andr p
l (M(τ )) > 0

r p
l (M(τ )) if 0 < Xl (τ ) < B(cl ) and

r p
l (M(τ−))r p

l (M(τ+)) ≥ 0

0 if 0 < Xl (τ ) < B(cl ) and

r p
l (M(τ−))r p

l (M(τ+)) < 0.

(1)

The first two cases of Equation (1) concern situations whenXl (τ ) = 0 (resp.Xl (τ ) = B(cl ))
and the potential rate isr p

l (M(τ )) ≥ 0 (resp.r p
l (M(τ )) ≤ 0). In both cases the actual

rate is equal to the potential rate. The third and the fourth cases prevent the fluid level to
overcome the lower and the upper bound. The last two cases require a deeper explanation (a
reference for a complete discussion is (Elwalid and Mitra, 1994)). As it has been assumed
in (Horton et al., 1998) the flow rate functionR(·, ·) is a piecewise continuous function of
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the continuous part of the marking. The meaning of the last case is that a sign change (from
+ to−) in r p

l (M(τ )) will “trap” Xl (τ ) to be constant. With this assumption, the analysis
of the stochastic processM(τ ) is simplified (see (Elwalid and Mitra, 1994) for a discussion
on this type of situation). The fifth case, which is the most common one, accounts for the
fact that there is no sign change from+ to− in r p

l (M(τ )) and hence the actual rate is equal
to the potential rate.

3. Analysis

In this section, we derive the equations for the joint processM(τ ) = (m(τ ), x(τ )) that
describes the dynamic behaviour of the FSPN model as a function of the time. First, we
introduce the infinitesimal generator, then we present the complete equations for the case
in which the FSPN has only a single fluid place. Finally, we extend the results to FSPNs
with more than a single fluid place.

3.1. The Infinitesimal Generator

The marking processM(τ ) is characterised by a matrixQ, that we callinfinitesimal gen-
erator. The setS = (Sd × Sc) of all the states is decomposed in two parts, whereSd

represents the discrete component of the state space andSc the continuous component.
In order to derive the complete equations we start investigating the behaviour of the

discrete part of the system. Since fluid arcs and flush-out arcs do not change the enabling
condition of a transition, standard analysis techniques can be applied to the discrete marking
processm(τ ) (Ajmone et al., 1995). These techniques split the discrete state space into two
disjoint subsets, called respectively thetangible markingset and thevanishing markingset.
Since the process spends no time in vanishing markings, they can be removed and their
effect can be included in the transitions between tangible markings. From this point on,
we will consider only tangible markings. In GSPNs, the underlying stochastic process is a
CTMC, whose infinitesimal generator is a matrixQ. Each entryqi j represents the rate of
transition from a tangible statemi to a tangible statemj , that is:

qi j =
∑

Tk∈E(mi )|mi
Tk→mj

F(Tk,mi ),

whereE(mi ) represents the set of enabled transitions in markingmi , andmi
Tk→ mj means

that the firing of transitionTk changes the discrete state of the system frommi to mj .
In the FSPN model defined in (Horton et al., 1998), the firing rate of each timed tran-

sition can be dependent on the continuous component of the state. With this extension,
the infinitesimal generator matrix must be also dependent on the fluid component of the
state, that is:Q(x). The addition of flush-out arcs requires a further extension. We must
differentiate between transitions that cause flush-out of continuous places, and transitions
that do not. Moreover, since a transition may flush-out more than one single fluid place, all
the possible combinations of fluid places must be treated separately. We do this by making
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matrixQ dependent also on the power set of the fluid places:Q(x, s), wheres ∈ 2Pc. The
matrix Q(x,∅) accounts for the transition rates among tangible states when no flush-out
occurs, andQ(x, {cl }) accounts for the transition rates among tangible states when flush-out
of placecl does occur. If a transition flushes out two fluid placescl andck, its effect is
included inQ(x, {cl , ck}) and so on. In particular, we define:

Q(x, s) = [qi j (x, s)]

whereqi j (x, s) represents the transition rate from statemi to statemj when the level of the
fluid is x and the considered transition flushes out the fluid places belonging to the (possibly
empty) sets, that is:

qi j (x, s) =
∑

Tk ∈E(mi ) |

mi
Tk→mj ∧ cl ∈s⇔ (cl ,Tk)∈A f

F(Tk,mi , x).

The summation considers the transition rate of all the transitionsTk that bring the net from
statemi to mj , flushing out exactly all the fluid places specified in the (possibly empty)
sets. In the standard equations that describe a CTMC, the terms on the diagonal of the
infinitesimal generator accounts for the probability of exiting from a state. Here we have to
consider not only standard transitions, but also changes of state that cause a flush-out. We
denote by

qi (x) =
∑

mj ∈ Sd

∑
s ∈2Pc

qi j (x, s) (2)

the total exit rate from statemi , when the fluid level isx. This function takes into account
the sum of the rates from statei to any statemj , with any combination of flush-outs. The
diagonal element defined in (2) is included in the matrixQ(x,∅) and hence:

qii (x,∅) = −qi (x). (3)

The above defined matrixQ(x, s) of dimensions|Sd| × |Sd| is an infinitesimal generator,
that is, each row sum of

∑
s∈2Pc Q(x, s), is equal to zero.

3.2. Equations for the Case of a Single Fluid Place

Let us denote bycl the single fluid place of the net and let us use the shorthand notation
r (i, x) = rl (M), whereM = (mi, x) (the subscript index that identifies the fluid place is
removed).

For each statemi ∈ Sd we computeπi (τ, x) = Pr{M(τ ) = (mi, x)} which is the
probability density of finding the system in statemi with fluid level x in placecl at timeτ .
Theorem 1 describes the transient behaviour of the FSPN.

THEOREM1 For eachmi ∈ Sd the probabilityπi (τ, x) is given by:

∂πi (τ, x)

∂τ
+ ∂ (r (i, x)πi (τ, x))

∂x
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=
∑

mj∈Sd

(
πj (τ, x)qji (x,∅)+ δ(x)

∫ ∞
0
πj (τ, x′)qji (x

′, {cl })dx′
)
, (4)

whereδ(x) is the Dirac’s delta function. Equation (3), may be written in vector notation.
If we denote byπ(τ, x) the vector whosei -th component isπi (τ, x), and byR(x) =
diag(r (i, x)) the diagonal matrix whose components account for the actual flow rate out of
cl , Equation (3) becomes:

∂π(τ, x)

∂τ
+ ∂ (R(x)π(τ, x))

∂x
= π(τ, x)Q(x,∅)

+ δ(x)
∫ ∞

0
π(τ, x′)Q(x′, {cl })dx′. (5)

No boundary conditions are needed, since they are included in the definition of the potential
flow rate (Equation (1)). Dirac’s delta functions in the solution, represent cases where there
is a non zero probability of finding the system in a particular marking (both discrete and
continuous).

The proof of Theorem 1 is given in Appendix. Here we give a more intuitive interpretation
of the theorem. Equation (3) is composed of four terms. The first term accounts for the time
that elapses in the state. The second term instead, is related to the fluid flow: matrixR(x)
represents the actual flow rate in each discrete state. It is defined in such a way that the flow
is stopped (i.e.,R(x) = 0) whenever a boundary is reached. SettingR(x) = 0, has also the
effect of generating Dirac’s deltas in the solution. These are equivalent to probability masses
generated at the boundaries. The third term (on the right hand side), accounts for both the
transitions into the state that do not flush out the place, and for the transitions out from
the state (this comes out from the definition ofqii (x,∅), i.e., Equation (2)). The last term,
accounts for the entrance into the state, caused by transitions that flush out the fluid place.
The Dirac’s delta that multiply the term, has the effect of considering the entrance only at
zero level (due to the flush-out), and the integral means that an entrance can happen from
every fluid level. The Dirac’s delta includes the boundary condition inside the equation.

3.3. Steady State Solution

Steady state exists only if the system is stable. Unfortunately, stability conditions on FSPNs
are still a research topic. In FSPN with flush-out, we guess that standard stability condition
(as expressed in (Horton et al., 1998)) can be applied. Moreover, the addition of flush-out
arcs, limiting the growth of the fluid level in the continuous places seems to provide even
more stable systems. However, if the system is stable, we know that, for everyπi (τ, x),

lim
τ→∞

∂πi (τ, x)

∂τ
= 0.

If we denote byπi (x) = limτ→∞ πi (τ, x), the steady state equation can be written in the
following manner:

∂ (R(x)π(x))
∂x

= π(x)Q(x,∅)+ δ(x)
∫ ∞

0
π(x′)Q(x′, {cl })dx′. (6)
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Figure 1. FSPN for a producer/consumer system with failures and with flush-out of the buffer content (a), discrete
state space diagrams (b), example of flow rate functionα(x) (c), and example of firing rate functionµ3(x) (d).

EXAMPLE 1 We consider a pharmaceutical manufacturing system. In this field, common
policies in manufacturing lines are generally determined by specific rules. For example,
if the equipment fails during the sterilisation of a given product contained in a buffer, the
product is no longer “safe” and all the content of the buffer should be discarded. We
consider a producer/consumer system, in which we also model the occurrence of failures in
the sterilisation phase. In the case of failure, all the content of the buffer has to be discarded.
We model such a system with the FSPN of Figure 1(a).

The producer alternates between two independent, exponentially distributed states that
represent the conditions “producing” (token in placep1) and “non-producing” (token in
place p2). The buffer is represented by the fluid place. When the producer is in service
it is able to produceα(x) unit of product (represented in term of fluid) per unit time. The
production rate is driven by the buffer level and is confined between two thresholds: when
the buffer is empty the production is at maximum rate; when the buffer fills up the production
rate decreases and attains a minimum constant rate. An example of such a function can be

α(x) = A1

(
1− 1

1+ exp(B1− x)

)
+ C1,

whereA1, B1, andC1 are constants values. Figure 1(c) plots this fluid dependent flow rate
function.

The consumer is able to consumeβ units of product per unit time. The sterilisation
process alternates between two states that represent the conditions “normal” (token in place
p3) and “abnormal” (token in placep4). The inhibitor arc from placep4 to transition
T1 stops the producer when the system is in the abnormal state. When transitionT3 fires
(occurrence of a fault in the sterilisation process) the content of the buffer is discarded. This
is represented by the flush-out arc from placec1 to transitionT3. The discrete state space of
the FSPN is presented in Figure 1(b). It is composed by four states representing the possible
combinations of the producer and the sterilisation processes: (producing, normal) (state
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1), (non-producing, normal) (state 2), (producing, abnormal) (state 3), (non-producing,
abnormal) (state 4). When the FSPN is in state 3, due to the presence of the inhibitor arc,
the production is stopped even if the producer is in the working state. According to the
FSPN formalism we can also model faults of the sterilisation process that depend on the
quantity of fluid present in the buffer. Withµ1, µ2, andµ4 we denote the (constant) firing
rate of transitionsT1, T2, andT4 respectively, while the transition rate ofT3 depends on the
buffer level. A possible fluid dependent firing rate is

µ3(x) = A2
1

1+ exp(B2− x)
+ C2

whereA2, B2, andC2 are constants values. Figure 1(d) plots this fluid dependent firing rate
function. It can be used to reflect the fact that the probability of having a fault (chance of
being infected) increases with the quantity of product present in the buffer.

The potential rate of change of the fluid place, isr p
1 = α(x) − β in state 1, since both

transitionT1 andT5 are enabled, andr p
1 = −β in states 2, 3 and 4 since onlyT5 is enabled.

If we suppose thatβ < C1, the actual rate of change of the fluid place is equal to the
potential rate of change in state 1, since no boundary can be reached (beingα(x)− β > 0,
for anyx). In states 2, 3 and 4 instead, the actual rate of change is defined as:

r1(x) =
{

0 x = 0
−β x > 0

The matrices entering in Equation (4) have the following form:

Q(x,∅) =


−µ1− µ3(x) µ1 0 0

µ2 −µ2− µ3(x) 0 0
µ4 0 −µ4 0
0 µ4 µ2 −µ4− µ2



Q(x, {c1}) =


0 0 µ3(x) 0
0 0 0 µ3(x)
0 0 0 0
0 0 0 0



R(x) =


α(x)− β 0 0 0

0 r1(x) 0 0
0 0 r1(x) 0
0 0 0 r1(x)

 .
In Section 5 we present some numerical results obtained for the FSPN presented in this
example.

3.4. Generalisation to More Than One Fluid Place

We extend Equation (4) to FSPNs having more than one fluid place. Recall thatx =
(x1, x2, . . . , x|Pc|) is the vector whose componentxl represents the fluid level in the con-
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tinuous placecl . We denote by 2Pc the power set of the fluid place set. Lets ∈ 2Pc be a
subset (possibly the empty set) ofPc.

Since we have more than one fluid place, we collect all the possible actual flow rates in
a diagonal matrixR({cl }, x), with {cl } ∈ Pc. The elementr j j ({cl }, x) of R(x), represents
the fluid flow rate of continuous placecl , in discrete statej , conditioned to the fluid level
x, that is:r j j ({cl }, x) = rl (M = (mj , x)).

Matrix Q, together with matrixR, describe completely the stochastic process. Since
we need to consider also the case of multiple flush-outs induced by a single transition,
the equation that describes the system, should have an integral term for each possible
combination of fluid places flushed out together. For example, with two fluid placesPc =
{c1, c2}, andx = (x1, x2), the power set ofPc is {{∅}, {c1}, {c2}, {c1, c2}} and the equation
becomes:

∂π(τ, x1, x2)

∂τ
+ ∂ (R(c1, x1, x2)π(τ, x1, x2))

∂x1
+ ∂ (R(c2, x1, x2)π(τ, x1, x2))

∂x2

= π(τ, x1, x2)Q(x1, x2,∅)+ δ(x1)

∫ ∞
0
π(τ, x′1, x2)Q(x′1, x2, {c1})dx′1

+ δ(x2)

∫ ∞
0
π(τ, x1, x′2)Q(x1, x′2, {c2})dx′2

+ δ(x1)δ(x2)

∫ ∞
0

∫ ∞
0
π(τ, x′1, x′2)Q(x

′
1, x′2, {c1, c2})dx′1dx′2.

In order to write the equation in a more compact form, and extend it to an arbitrary number
of fluid places, a special notation is introduced. First we define a Dirac’s delta extended to
a set:

δ(x, s) =
1 s = ∅∏

cl∈s

δ(xl ) s 6= ∅.

This special function corresponds to a product of Dirac’s deltas, one for each element of
the set. It is used to allow a special entrance at level zero, for all the fluid places that are
simultaneously flushed out by the firing of a transition.
We define also the integral extended to a set:

∫ ∞
0

F(· · ·)ds =
F(· · ·) s = ∅∫ ∞

0

∫ ∞
0
· · ·
∫ ∞

0
F(· · ·)dx′i1dx′i2 · · ·dx′i |s| s 6= ∅. (7)

This symbol is a short-hand notation, used to describe the fact that each flush-out may happen
at any level of the fluid places that will be emptied with the transition. This behaviour is
caught by integrating the solution over each fluid component which represents a continuous
place involved in the flush-out. We also need a projection operator:

σ(x, s) = (σ1, σ2, . . . , σ|Pc|) σl =
{

xl cl 6∈ s
x′l cl ∈ s.

(8)
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Figure 2. FSPN with all the possible combination of flush-out.

The purpose of this operator is just to select the correct integration variables in the extended
integral notation defined in (7).

Using this notation, we can collapse all the integrals into a single summation term. If we
denote byπ(τ, x) the probability density vector at timeτ with levelx, the equation for the
general case is:

∂π(τ, x)
∂τ

+
∑

cl∈Pc

∂(R(cl , x)π(τ, x))
∂xl

=
∑

s∈2Pc

δ(x, s)
∫ ∞

0
π(τ,σ(x, s))Q(σ(x, s), s)ds. (9)

The first term of Equation (9) represents the time, and the second accounts for the fluid flow
in all the fluid places. Each continuous place has a term in the summation which represents
its instantaneous fluid change in each discrete state. The term in the right hand side of
Equation (9), accounts for the probability change due to state change. Each term of the
summation corresponds to transitions that flush-out a particular subset of fluid places. If
the system is also stable, its steady state solutionπ(x) may be computed by means of the
following equation:∑

cl∈Pc

∂(R(cl , x)π(x))
∂xl

=
∑

s∈2Pc

δ(x, s)
∫ ∞

0
π(σ(x, s))Q(σ(x, s), s)ds.

EXAMPLE 2 Consider a person who uses a mailer. During his work, he writes mails offline.
Sometimes he goes on-line, sends the queued mails and downloads the new ones. While
he is on-line, he continues writing mails and has three possible choices: send the newly
written mails, get the mails received in the meantime, or go off-line. Figure 2, models
this system. Fluid placec1 contains the mails on the server that are going to be received,
and fluid placec2 contains the mails queued to be sent. The two fluid arcs model the
arrival of mails to the server (arc connectingTf to c1) and the process of writing new
mails by the user (arc connectingTf to c2). TransitionTf , which is always enbaled, has
the only purpose of keeping the fluid flowing along the two fluid arcs. Discrete placep1

models the off-line state, and discrete placep2 models the on-line state. Timed transition
T0 models the action of going on-line: the two flush-out arcs that empty both fluid places,
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represent the action of sending the queued mails and getting the ones present on the server.
TransitionT3 represents the action of going off-line. TransitionT1 models the action of
getting the mails while on-line: it does this by flushing out the server buffer when it fires
(through the flush-out arc that connectsc1 to T1). TransitionT2 corresponds to the action
of sending the newly written mails. It does this by flushing out placec2. We assume
that transitionTi has a constant transition rateλi , with i = 0 · · ·3. This system has two
fluid places and has only two discrete states. The problem is that all the combinations
of flush-outs of the two places are possible. The set of all the possible combinations
of flush-outs is: 2Pc = {∅, {c1}, {c2}, {c1, c2}}. The equations that describe this system
are:

∂π(τ, x)
∂τ

+ ∂(R(c1, x)π(τ, x))
∂x1

+ ∂(R(c2, x)π(τ, x))
∂x2

=
∑

s∈2Pc

δ(x, s)
∫ ∞

0
π(τ,σ(x, s))Q(σ(x, s), s)ds,

where

Q(x,∅) =
(−λ0 0
λ3 −λ1− λ2− λ3

)
, Q(x, {c1}) =

(
0 0
0 λ1

)
,

Q(x, {c2}) =
(

0 0
0 λ2

)
, Q(x, {c1, c2}) =

(
0 λ0

0 0

)
,

R(c1, x) =
(
α1 0
0 α1

)
, R(c2, x) =

(
α2 0
0 α2

)
.

3.5. Generation of Matrices Q and R

The previous example allows to point out that the key point in the derivation of equations
that describe a given FSPN is the generation of the matricesQ andR.

The first step of this generation is the elimination of the immediate transitions, this can
be done using the procedure described in (Ajmone et al., 1995). In this manner, we can
assume that the input for the algorithm presented in this section is a FSPN without immediate
transitions.

Procedure GenerateMatrices(FSPN)
Generate the discrete state spaceSd

for all mi ∈ Sd do
for all fluid placecl ∈ Pc do

ri i ({cl }, x)← rl (mi, x)
end for
for all each transitionTk ∈ E(mi) do

Let mj the state after the firing ofTk (mi
Tk→ mj)

Let s be the set of fluid places flushed out with the firing ofTk
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qi j (x, s)← qi j (x, s)+ F(Tk,mi, x)
end for

end for
End Procedure GenerateMatrices

4. Application of FSPN

In order to make the technique useful and appealing from an application point of view, two
issues need to be addressed:i) - how to define performance measures at the net level;
ii) - how to numerically solve the model and compute the specified measures.

4.1. Performance Measures Defined on FSPN Models

In general, the set of performance measures that can be evaluated from a FSPN encompasses
the set of measures that can be evaluated in discrete SPN models. In fact, in addition,
we can define new measures that are specifically related to the fluid (or continuous) part
of the net. The measures connected to the discrete part of the FSPN are referred to as
discrete performance measuresand those connected to the continuous part ascontinuous
performance measures.

Discrete performance measurescan still be classified asdiscrete state measures(when
the measure refers to the probability of occurrence of some condition on the discrete mark-
ings) andthroughput measures(when the measure refers to the passage of tokens through
the net or to the number of firings of a transition). Similarly,continuous performance
measurescan be classified asfluid state measuresandflow measures. Fluid state mea-
sures give the probability of a condition connected to the fluid levels in the net, while
flow measures can be considered as the continuous counterpart of discrete throughput mea-
sures.

A very elegant and unifying way to define and to compute discrete performance measures
in discrete SPNs is by means of the concept of reward (Howard, 1971; Ciardo et al.,
1991; Bobbio et al., 1998). In FSPN, the flow rate assigned to a continuous arc may
be interpreted as a reward rate, and hence the reward specification is directly associated
with the graphical representation of the model. In this view, the continuous performance
measures can be defined at the net level as a function of the model primitives (Horton,
1996).

In Markov Reward Models, like those generated from Discrete SPNs, only the expected
instantaneous reward and the expected accumulated reward can be evaluated at the same
cost as the solution of the standard Markov equation (Bobbio et al., 1998). The evalua-
tion of thecdf of the reward accumulated over a finite time interval (sometimes called the
performability) requires a considerable additional computational effort and is usually not
offered in SPN packages. On the contrary, FSPNs allow to define and to evaluate these
distribution measures within the default structural specifications.
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4.1.1. Discrete Performance Measures

A typical example ofdiscrete state measureis the distribution of the tokens in a discrete
placepj . This measure can be computed as:

P{#(pj ) = i } =
∑

m: mj=i

∫ ∞
0
· · ·
∫ ∞

0
π(m, x1, . . . , x|Pc|)dx1 · · ·dx|Px |.

Using the extended integral notation defined in Equations (7) and (8), the above expression
becomes:

P{#(pj ) = i } =
∑

m: mj=i

∫ ∞
0
π(m,σ(x,Pc))dPc.

If we denote byE(Tj ) the set of discrete markings in which transitionTj is enabled,
and recalling thatF(Tj ,M) is the firing rate ofTj in marking M , then the throughput of
transitionTj can be expressed as:

χ(Tj ) =
∑

m∈E(Tj )

∫ ∞
0
π(m,σ(x,Pc)) F(Tj ,m,σ(x,Pc))dPc.

4.1.2. Continuous Performance Measures

The continuous measure, corresponding to the distribution of tokens in a place, is the
probability density of the fluid level in a fluid place. LetX(cl ) be the random fluid level in
placecl , the probability density ofX(cl ) can be computed from:

P{X(cl ) = xl } =
∑
m∈Sd

∫ ∞
0
π(m,σ(x,Pc/{cl }))d(Pc/{cl }).

The computation of the flow rate across a continuous arc (the continuous throughput),
requires a more detailed analysis. In fact, a problem arises when the fluid level reaches
one of the boundary conditions (Eq. (1)). Consider the fluid placec1 with fluid level x1 in
Figure 3(a). Ifα1+ α2 < β1+ β2, the fluid level as function of the time decreases linearly
with rate(α1+α2)− (β1+β2) as in Figure 3(b), until it reaches the boundary valuex1 = 0.
From this point on, the potential rate of change of Equation (1) is set to 0 and placec1

remains constantly empty. The equations of Section 3 are still completely defined, but, in
order to compute the continuous throughput along the arcs, the individual flow rates along
each arc must be redefined in such a way that the difference between input and output rates
remains equal to 0. By renaming the new output flow ratesβ ′1 andβ ′2, different semantics
can be adopted (Alla and David, 1998) to redistribute the flow rate such that the following
relation is verified:α1+ α2 = β ′1+ β ′2. Under apriority semantic, the input flows are used
to saturate the output flows in a predefined order. If for example the arc labeledβ1 has
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Figure 3. A fluid place with multiple inputs and outputs.

priority over the arc labeledβ2, then:

– if α1+ α2 ≤ β1, thenβ ′1 = α1+ α2 andβ ′2 = 0.

– if β1 < α1+ α2 ≤ β1+ β2, thenβ ′1 = β1 andβ ′2 = α1+ α2− β1.

Under aproportional semanticinstead, the input flow is partitioned in a way that keeps
constant the ratio between the output flows, that is:

β ′i = βi
α1+ α2

β1+ β2
.

In order to respect these semantics, and the potential rate of change established in Equa-
tion (1), the individual flow ratesR((cl , Tj ),M) of each fluid arc must be changed to an
actual flow rateR∗((cl , Tj ),M) that differs from the original at the boundary points and
reflects the chosen semantic. For example, with the proportional semantic defined above,
R∗((c1, T1), x) of the net defined in Figure 3(a), becomes:

R∗((c1, T1), x) =
{
β1 x > 0

β1
α1+α2
β1+β2

x = 0

With this consideration, the mean flow rate across a continuous arc that connects placecl

to transitionTj , can be defined as:

8(cl , Tj ) =
∑

m∈E(Tj )

∫ ∞
0
π(m,σ(x,Pc))R

∗((cl , Tj ),m,σ(x,Pc))dPc.

Mean fluid flow across continuous arcs that connects transitions to places, may be computed
in a similar way.

The mean fluid flushed out by a flush-out arc that connects placecl to transitionTj , can
be computed as:

9(cl , Tj ) =
∑

m∈E(Tj )

∫ ∞
0

xl π(m,σ(x,Pc))F(Tj ,m,σ(x,Pc))dPc.
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4.2. Numerical Solution Methods

When both the fluid rates and the transition rates do not depend on the continuous part of
the marking, even simple explicit time-domain discretisation schemes (as those described
in (Horton et al., 1998)) provide high accuracy. When the flow and/or transition rates
are marking dependent, these schemes may become inaccurate since the the error may
accumulate step by step. In this case, more sophisticated discretisation techniques should
be applied where both the fluid level and time are discretised using different stepsizes.

When the system has more than one fluid place, the size of the equidistant discretised
state space grows geometrically with the number of continuous variables and setting the
stepsizes small enough for accurate results makes the computation very time consuming.
Finding a general method to solve FSPN models with more than one fluid place is an open
problem. Possible directions for future investigation could be based on finite elements or
finite volumes techniques (Patankar, 1980). Laplace transform methods (Cox, 1955) may
be efficiently used only when the distributions associated with the process have rational
Laplace transform. Yet it is possible to solve FSPN models using “ad hoc” discretisation
schemes based on the understanding of the dynamics of the model as in (Bobbio et al.,
1999).

A possible alternative is the simulative approach. Because of the mixed discrete and
continuous state space, when the transition rates depend on the fluid level, the marking
process is no longer time homogeneous, and simulation of FSPN poses some interesting
challenges which are addressed in (Ciardo et al., 1999; Gribaudo and Sereno, 2000).

5. FSPN Formalism: An Illustrative Example

Some numerical results for the FSPN described in Example 1 are presented. The example
exhibits two interesting features that motivates the use of FSPNs. The need of modeling a
continuous quantity (the plant production) suggests the use of a formalism able to manage
both discrete and continuous entities. On the other hand, the discarding action of the buffer
when the system fails, due to the nature of the sterilisation process, motivates the use of a
flush-out arc. The example was analysed using the following set of parameters:

µ1 = 0.05, µ2 = 5, µ4 = 10, β = 1,

A1 = 2, B1 = 5, C1 = 1,

A2 = 0.2, B2 = 6,7 and 8, C2 = 0.01.

Various performance measures have been evaluated. As an example ofdiscrete state mea-
sures, the probability that the sterilisation process is stopped is depicted in Figure 4(a) as
a function of the time. Since the sterilisation process is stopped when placep4 is marked,
the above measure was computed by the equation:

P{sterilisation stopped at timeτ } =
∑

mi : m4=1

∫ ∞
0
πi (τ, x1)dx1.
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(a) Crash probability (b) Frequency of faults

Figure 4. Discrete state measure.

(a) Buffer distribution (b) Mean quantity of product wasted

Figure 5. Fluid state measure

As an example ofthroughput measures, Figure 4(b) reports the throughput of transitionT3

(representing the frequency of faults) as a function of the time. Such a measure is obtained
from:

χ(T3) =
∑

T3 is enabled inmi

mi ∈ Sd such that

∫ ∞
0
πi (τ, x1) µ3(x1) dx1.

The probability density function (pdf) of the distribution of the fluid level in placec1

at different time instants and in steady state is depicted in Figure 5(a) forB2 = 7. This
measure, which is an example of afluid state measure, represents the pdf of the accumulated
reward (production) at timeτ and is calculated from:∑

mi∈Sd

πi (τ, x1).



FLUID STOCHASTIC PETRI NETS AUGMENTED WITH FLUSH-OUT ARCS 115

The above equation is solved by means of a discretisation technique, and the continuous
pdf curves are plotted by interpolating the discrete values. The peaks in the curves of 5(a)
reflect the discontinuities of the pdf. The discontinuities at non-zero fluid levels represent
the probability mass that the system does not leave the initial state up to the given timeτ .
The discontinuity at fluid level 0, instead, is the probability of having an empty buffer.

As a last example offlow measures, the throughput of the flush-out arc connecting place
c1 to transitionT3 is evaluated. This measure represents the mean quantity of wasted
production due to system failures as a function of the time. This measure is plotted in
Figure 5(b), and is computed from:

9(c1, T3) =
∑

mi ∈ Sd such that
T3 is enabled inmi

∫ ∞
0

x1 πi (τ, x1) µ3(x1) dx1

The previous numerical results agree with the ones obtained with a FSPN simulator
(Gribaudo and Sereno, 2000).

6. Conclusions

With respect to previous formulations, the paper has developed an augmentedFSPNformal-
ism by adding a novel primitive called flush-out arc that instantaneously resets the reward
accumulated in a continuous place. This novel primitive makes it possible to extend the
use of the formalism to applications in which the accumulation of a continuous quantity
(reward, work, time) can be preempted and restarted.

Despite the increased modeling power and the major complexity of the augmented model,
an analytical description of the stochastic marking process is feasible, and the paper has
indicated a general procedure to automatically derive the integro-differential equations from
the model specification. Moreover, a noticeable new feature offered by the presentedFSPN
formulation, is that the output performance measures related to the continuous part of the
model (for instance the cdf of the accumulated reward) can be specified by the user at the
net level as a function of the structural primitives. The above two points lead back the
proposed model in the main stream ofPN based model, where the solution complexity is
hidden from the modeler who interacts only through a specification interface.

Numerical discretisation schemes have been analysed and implemented. These schemes
are highly efficient with only one fluid place (one dimension in the continuous part of the
state space). Multi–dimensional discretisation patterns, able to handle more than one fluid
place at the time, are an open research topic to which further effort will be addressed. In
parallel, a simulative solution has been explored (Gribaudo and Sereno, 2000).

Proof of Theorem 1

Here we put the proof for Equation (3). Extension to the case with more than one continuous
place, can be obtained following the proposed scheme. Suppose that each time a flush-out
occurs, the level of fluid placecl is set to a random value according to a probability density
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functionb(x). We know that:

πi (τ +1τ, x + r (i, x)1τ + o(1τ 2))

= +πi (τ, x)Pr{‘not leavemi in 1τ ’}+
∑

ml∈Sd
mj 6=mi

πj (τ, x)Pr

{
jump tomi / we came frommj

with x unit of fluid, in1τ ’

}

+ Pr

{
‘set the fluid level tox+ o(1τ)/
a flush-out occured in1τ ’

}
Pr {‘a flush-out occured in1τ ’} + o(1τ 2)

= πi (τ, x)

1−
∑

mj 6= mi
mj∈Sd

qi j (x,∅)1τ −
∑

mj∈Sd

qi j (x, {cl })1τ


+

∑
mj 6= mi
mj ∈Sd

πj (τ, x)qji (x,∅)1τ

+ b (x + o(1τ))
∑

mj∈Sd

∫ ∞
0
πj (τ, x′)Pr

{
jump tomi with a flush out / we came
from mj with x′ unit of fluid in1τ ’

}
dx′

+ o(1τ 2)

= πi (τ, x) (1− qi (x)1τ)+
∑

mj 6= mi
mj∈Sd

πj (τ, x)qji (x,∅)1τ

+ b (x + o(1τ))
∑

mj∈Sd

∫ ∞
0
πj (τ, x′)qji (x

′, {cl })dx′1τ + o(1τ 2).

Equation (2) has been used at the end of the previous derivation. If we rearrange the terms
and divide by1τ , and observe that in our caseb(x) = δ(x) (since after a flush-out the fluid
level is always set to 0), we obtain:

πi (τ +1τ, x + r (i, x)1τ + o(1τ 2))− πi (τ, x)

1τ

= −πi (τ, x)qi (x)+
∑

mj 6= mi
mj∈Sd

πj (τ, x)qji (x,∅)

+ δ(x + o(1τ))
∑

mj∈Sd

∫ ∞
0
πj (τ, x′)qji (x

′, {cl })dx′ + o(1τ).

If we take the limit1τ → 0, remembering Equation (3) we obtain Equation (3).

Notes

1. Note that when the arcs are defined as a function we use uppercase symbols.
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