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Abstract

This paper addresses steady state solution of discrete
time stochastic models in which every activity duration
is given either by a geometric or a finite support distri-
bution. Finite support distributions can be described by
discrete time phase type (DPH) distributions. The be-
haviour of the whole stochastic model is given by a dis-
crete time Markov chain (DTMC). The DTMC is sub-
ject to the so-called state space explosion. We present a
technique for obtaining the steady state solution that al-
leviates this problem. The technique is based on Gaus-
sian elimination combined with an iterative technique.

1 Introduction

This paper deals with models in which duration of
an activity (task,job) can be given either by a memo-
ryless distribution or by a finite support distribution.
In any state of the system a set of tasks is active with
no limitation on the number of active finite support
tasks. Completion of a task alters the global state of
the model and may cause to interrupt active tasks or to
start inactive ones. These models can arise either from
description of discrete time systems or from approxi-
mation of continuous time, non-Markovian models.

Many solution techniques were presented for con-
tinuous time, non-Markovian models. The supplemen-
tary variable approach [13] was applied in [15, 25, 18]
for the analysis of non-Markovian Petri nets with var-
ious preemption policies (see [1, 5] for the definition
of preemption policies). All these works assume that a
single supplementary variable is enough to describe the
state of the stochastic model (there is only one active
non-exponential activity at a time). For the descrip-
tion of models in which more than one non-exponential

task is active, more than one supplementary variable is
needed (see, for example, [16]). Unfortunately, no good
solution technique is known for such models in gen-
eral. Solution techniques for models with exponential
and deterministic durations are implemented in DSP-
Nexpress [20]. This tool put a limit on the number of
concurrent deterministic activities is limited.

An approach to solve non-Markovian models is dis-
crete time approximation. Finite support distributions
can be approximated by DPH distributions maintain-
ing the finite support property [3, 4]. Infinite support
can be approximated by DPH distributions through
fitting procedures [17]. Exponential distributions can
be approximated by geometric distributions. The dis-
crete time approximation gives rise to DTMC. The
structure of the DTMC allows for very efficient stor-
age of the transition matrix through Kronecker expres-
sions [21, 22, 2]. Solution techniques for Markov chains
described by Kronecker expressions are discussed in
[11, 7, 10]. There remains however the problem of stor-
ing the vector containing the probabilities of the states.
To overcome this problem, in [6, 12] approximate sta-
tionary measures are computed based on aggregation
while [9] proposes a compact Kronecker representation
for the vector which leads to an approximate solution.

In this paper an exact solution technique is proposed
for steady state analysis for a special class of DTMCs.
By successive application of Gaussian elimination the
number of states of the DTMC can be decreased. Then
the resulting reduced DTMC can be solved by any iter-
ative method. Gaussian elimination can cause fill-in of
the transition matrix of the reduced DTMC. The prob-
lem of finding the minimal fill-in is NP complete [26],
and therefore, heuristics are used. The most widely
used is the minimal degree algorithm [14]. In general,
these heuristic algorithms are hard to implement in
such a way that the entries of the reduced matrices are
not stored directly but computed on the fly based on
the parameters of the model. We propose an algorithm

1



which, by exploiting the structure of the model, per-
forms Gaussian elimination in such a way that prevents
fill-in and allows for computing entries of the reduced
matrix on the fly. This way the computations are car-
ried out on vectors which have significantly less number
of entries than the number of states of the DTMC.

The paper is organized as follows. Section 2 intro-
duces the considered class of DTMCs. The proposed
solution technique is presented in Section 3. A simple
numerical example is provided in 4. Possible directions
for future work is discussed in Section 5. The paper is
concluded in Section 6.

2 Considered Model Class

In this section we describe the model class whose
steady state computation will be addressed. We start
by discussing the distribution of the duration of the
activities. Then the composition of the activities into
a complex model is described. The presented descrip-
tion can be easily obtained from high level description
languages like Petri nets or process algebra. The sec-
tion ends with presenting the DTMC that describes the
stochastic behaviour of the model.

Activity Duration

Activities of the model are divided into two classes.
The set G =

{
g1, g2, . . . , gNg

}
of cardinality Ng con-

tains the activities with geometric duration. The
probability that a geometric activity gi, 1 ≤ i ≤ Ng

finishes in a step is denoted by pi. The set F ={
f1, f2, . . . , fNf

}
of cardinality Nf is the set of the

activities with finite support distribution. The prob-
ability that a finite support task fi, 1 ≤ i ≤ Nf fin-
ishes in 1 ≤ n ≤ mi steps is denoted by qi,n where
mi is the largest number of steps for finite support ac-
tivity fi to finish. Further, q̄i,n stands for the prob-
ability that finite support activity fi finishes after
1 ≤ n ≤ mi steps given that it did not finish before,
i.e., q̄i,n = qi,n/(1 − ∑n−1

j=1 qi,j). By assuming that fi-
nite support activities finish with probability 1, we have∑mi

j=1 qi,j = 1 for all 1 ≤ i ≤ Nf . When a finite sup-
port activity is active since x time units we say that its
age is x. The age of an activity is larger or equal to 0
and must be smaller than its maximal finishing time.

Composed Model

The composed model has N global states1. The set
of active tasks in state i, 1 ≤ i ≤ N is denoted by

1We use the term global state in order to distinguish be-
tween states of the composed model and states of the underlying
DTMC.

Ei. Further, Ei is divided into two subsets according to
the type of the activities: Eg

i (Ef
i ) contains the set of

active geometric (finite support) tasks in global state
i. In order to define the effect of the completion of
activities, we introduce the quantity

si,C,j = Pr{next global st. is j |
current global st. is i, tasks in C finish}

with 1 ≤ i, j ≤ N and C is a non-empty subset of Ei.
For a model to be correct we must have

∑N
j=1 si,C,j = 1

for all 1 ≤ i ≤ N , C ∈ 2Ei and C �= ∅.
When a global state change i → j occurs the tasks

that were active in the last state but are not active in
the current one (task in Ei − Ej) get disactivated (pre-
empted). The applied preemption policy is preemptive
repeat different, i.e. the portion of the task already
performed is lost. The tasks that are present in Ej −Ei

get activated.

DTMC Underlying the Composed Model

A state of the DTMC underlying the composed model
is characterized by the global state and the age of
the active finite support tasks. Since the geomet-
ric distribution is memoryless, it is not necessary to
keep track of the age of geometric activities. Global
state i is represented by

∏
j:fj∈Ef

i
mj states of the

DTMC. The number of states of the whole DTMC is∑N
i=1

∏
j:fj∈Ef

i
mj . Given a state S of the DTMC, Sg

stands for its global state and Sfi , fi ∈ Ef
Sg

denotes the
age of finite support activity fi.

The transition matrix T that describes the be-
haviour of the underlying DTMC can be built as fol-
lows. We start from T = 0 and consider first the state
transitions without finishing of activities

tS,S′ =




∏
i:gi∈Eg

Sg

(1 − pi)


×




∏

i:fi∈Ef
Sg

(1 − q̄i,Sfi
+1)


 (1)

with S′
g = Sg and for all i : fi ∈ Ef

Sg
we have

S′
fi

= Sfi +1. The expression in (1) gives the probabil-
ity that none of the active tasks finish. When none of
the tasks finish the process remains in the same global
state and the age variables of the active finite support
tasks is incremented by one. As expected (1) results
in 0 if any of the active finite support tasks reaches its
maximal finishing time. Next, in order to consider fin-
ishing of activities, the following operation is performed
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for every state S of the DTMC and every non-empty
subset C of ESg

tS,S′ += sSg,C,S′
g




∏
i:gi∈Eg

Sg
,gi �∈C

(1 − pi)


×




∏

i:fi∈Ef
Sg

,fi �∈C
(1 − q̄i,Sfi

+1)


×




∏
i:gi∈Eg

Sg
,gi∈C

pi


×




∏

i:fi∈Ef
Sg

,fi∈C
q̄i,Sfi

+1


 (2)

where for all i : fi ∈ Ef
S′

g

S′
fi

=




Sfi + 1 if fi ∈ Ef
Sg

, fi ∈ Ef
S′

g
and fi �∈ C,

0 if fi ∈ Ef
Sg

, fi ∈ Ef
S′

g
and fi ∈ C,

0 if fi �∈ Ef
Sg

and fi ∈ Ef
S′

g
.

(3)
The expression in (2) gives the probability that the
activities in C finish and the next global state is S′

g.
The ages of the activities change according to (3). In
(2) + = is applied because from a state S different sets
of finishing activities can lead to the same state. Note
that for every state of the DTMC in which at least one
age is grater than 0, the probability of leaving the state
in one step is 1.

For models in which there are active finite support
tasks in some global states the transition matrix is
highly sparse and has a lot of structure. For what con-
cerns the computation of the steady state results, it is
not necessary to build the transition matrix because its
entries can be computed on the fly. The main problem
is the storage of the iteration vector which has as many
entries as many states there are in the Markov chain.

3 Computation of the Steady State So-
lution

Basic Step

The basic step of the procedure consists in eliminating
a state by Gaussian elimination2. We consider elimi-
nation only of those states which the DTMC leaves in

2For detailed description of the following expressions see, for
example, Section 2.2.1 of [24].

one step with probability 1. Let us consider a DTMC
with n states described by its transition matrix T for
which tn,n = 0 (without loss of generality we assume
that the state to eliminate is state n). We construct a
new matrix T ′ of size (n − 1) × (n − 1) whose entries
are given as

t′i,j = ti,j + ti,n tn,j (4)

and a new vector u′ of size n − 1 whose entries are

u′
i = ui + ti,n un (5)

where u is a vector of size n with all entries equal to
1. For example, if

T =

∣∣∣∣∣∣
0.5 0.2 0.3
0.1 0.5 0.4
0.2 0.8 0.0

∣∣∣∣∣∣
then

T ′ =
∣∣∣∣

0.56 0.44
0.18 0.82

∣∣∣∣ and u′ = | 1.3 1.4 | .

Matrix T ′ is a proper transition matrix again. The
vector u can be seen as a normalization vector for
the DTMC described by T ′ and is used to recover the
steady state solution of the original DTMC from the
steady state solution of the reduced DTMC. For a tran-
sition matrix with more than one 0 entry in its diag-
onal, the procedure described by (4) and (5) can be
repeated starting from T ′ and u′.

Assuming that the steady state solution of the
DTMC described by T ′ is π′, we can recover the steady
state solution for the DTMC described by T as

πi =
π′

i∑n−1
j=1 π′

j u′
j

for 1 ≤ i ≤ n − 1,

πn =
n−1∑
i=1

(u′
i − 1) πi . (6)

For the example given above π′ = |0.29 0.71| from
which one can recover the steady state solution of the
original chain π = |0.21 0.52 0.27|.

Successive Application of the Basic Step

By successive application of the procedure described
in the previous section the size of the DTMC can be
reduced. The iteration vector as well becomes smaller.
The problem is that if an unsuitable set of states is
eliminated the resulting reduced transition matrix fills
up with non-zero entries loosing its structure.

The way in which states are eliminated has to fulfill
two requirements. First, it must be possible to deter-
mine the entries of the final reduced transition matrix
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without performing the reduction state by state. Sec-
ond, the computation of the steady state probabilities
of the global states of the original model must be possi-
ble without the storage of the steady state probability
vector corresponding to the “unreduced” DTMC.

In order to have reduction procedure that meets the
above requirements, a state S is removed if and only if

• there is at least one active finite support task and
none of the ages are 0, i.e., Ef

Sg
�= ∅ and for all

i : fi ∈ Ef
Sg

we have Sfi �= 0; and

• state S is reachable in one step only from states
where the set of active finite support tasks is iden-
tical to the set of active finite support tasks in S,
i.e., tS′,S �= 0 implies Ef

S′
g

= Ef
Sg

.

A state fulfilling the above requirements is reachable
in one step only from a limited number states. As a
result, eliminating these states leads to a controllable
reduction process. It is easy to see that if some states of
global state i are to eliminate than the number of states
eliminated from global state i is

∏
j:fj∈Ei

(mj − 1) .
Before proceeding with the description of the re-

duced transition matrix, we need to introduce the fol-
lowing notation. The set of global states from which
some of the states are removed will be denoted by R.
Instead, R̄ stands for the set of global states from which
none of the states are removed. For a set of finite sup-
port activities A, the matrix TA of size N×N describes
how the process moves among those global states in
which the set of active finite support tasks is A assum-
ing that none of the finite support tasks finish. Entries
of TA are given as

tA,i,j =




0 if Ef
i �= A or Ef

j �= A,∑
C:C⊆Eg

i
si,C,j

(∏
k:gk∈C pk

)
×(∏

k:gk �∈C(1 − pk)
)

otherwise.

Entries of T k
A will be denoted by t

(k)
A,i,j . Let R stand

for the transition matrix of the DTMC resulting from
the elimination of all the states that fulfill the criteria
presented above. In the following the computation of
R is presented.

It is clear from (4) that during the elimination of
a state S, if tS′,S = 0, then the entries in the row
corresponding to S′ do not change. As a consequence,
the entries in those rows of R that correspond to the
global states in R̄ can be determined by (1) and (2).
For what concerns the vector u which is used to recover
the steady state solution of the original DTMC, we
have uS = 1 for every S such that Sg ∈ R̄.

Now we turn our attention to the states correspond-
ing to global states in R. In particular, let us consider

state S which is in global state Sg ∈ R and is present
in the reduced DTMC. Entries of the row of R that
corresponds to S and entry uS of u can be determined
by Algorithm 1. In order to determine R, Algorithm 1
has to be executed for all S such that Sg ∈ R.

Demonstration that the transition matrix of the
DTMC resulting from the reduction process is equal
to the matrix resulting from the execution of the al-
gorithm is rather elementary but cumbersome. Here
we confine ourselves to describe the quantities com-
puted during the algorithm. All these quantities can
be interpreted considering the behaviour of the original
DTMC. Being in state S, the quantity Smax computed
in step 3 gives the maximal number of time units that
can elapse before finishing at least one of the active fi-
nite support tasks. The quantity P1 computed in step
5 is the probability that assuming that the process is
in state S none of the finite support tasks finish before
k time units. In step 7, P2 is computed by multiplying
P1 with the probability that the process is in global
state l after k time units as a consequence of finishing
of geometric activities whose finishing does not change
the set of active finite support tasks. In step 10, P2

is multiplied by the probability that the tasks in set C
finish after k steps. In step 12, we identify the state
S′ that we reach if we start in state S, none of the
finite support activities finish in k steps, the set of ac-
tive finite support tasks remain the same for k steps,
and after k steps the finishing of activities including at
least one finite support task leads to global state m.
Finally, in step 13 P3 is multiplied by the probability
that finishing of the tasks in C leads to global state m.
The resulting quantity must be added to rS,S′ . Entries
of the normalization vector u are updated in step 8.

Intuitively, state S of the reduced DTMC, for which
Sg ∈ R, incorporates the behaviour of all those states
that can be reached from S without finishing or in-
terrupting of finite support tasks. All these states are
eliminated from the original DTMC.

Having obtained the steady state solution π for
the DTMC described by R, the vector v of length N
containing the steady state probabilities of the global
states of the original model can be computed by Algo-
rithm 2. Algorithm 2 starts with normalizing accord-
ing to vector u (step 1). Then, in steps 2-4 we com-
pute how the probabilities of the states of the reduced
DTMC contribute to the probabilities of the global
states. Steps 6 and 8 are identical to steps 3 and 5 of
Algorithm 1 and were described earlier. Step 10 con-
siders the probabilities of the states that are eliminated
from the original DTMC according to (6).
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Algorithm 1 Computation of rS,S′ for a given S (Sg ∈
R) and for all S′

1: set rS,S′ = 0 for all S′

2: set uS = 0
3: set

Smax = max
i:fi∈Ef

Sg

{mi − Sfi − 1}

4: for k = 0 to Smax do
5: set

P1 =
∏

i:fi∈Ef
Sg

∑mi

j=Sfi
+k+1 qi,j∑mi

j=Sfi
+1 qi,j

6: for all l such that 1 ≤ l ≤ N and Ef
l = Ef

Sg
do

7: set
P2 = P1 t

(k)

Ef
Sg

,Sg,l

8: perform uS+ = P2

9: for all C such that C ⊆ El and Cg �= ∅ do
10: set

P3 =P2


 ∏

i:gi∈Eg
l ,gi �∈C

(1 − pi)


×


 ∏

i:gi∈Eg
l ,gi∈C

pi


×


 ∏

i:fi∈Ef
l ,fi �∈C

(1 − q̄i,Sfi
+k+1)


×


 ∏

i:fi∈Ef
l ,fi∈C

q̄i,Sfi
+k+1




11: for all m such that 1 ≤ m ≤ N do
12: set S′ the state such that S′

g = m and for
all i : fi ∈ Ef

m

S′
fi

=




Sfi + k

if fi ∈ Ef
l , fi ∈ Ef

m and fi �∈ C ,
0
if fi ∈ Ef

l , fi ∈ Ef
m and fi ∈ C ,

0
if fi �∈ Ef

l and fi ∈ Ef
m .

13: perform rS,S′+ = P3 sl,C,m

14: end for
15: end for
16: end for
17: end for

Algorithm 2 Recovering steady state probabilities of
global states
1: set v = 0 and π = π/(

∑
S πS uS)

2: for all state S of the reduced DTMC do
3: perform vSg+ = πS

4: end for
5: for all state S of the reduced DTMC such that

Sg ∈ R do
6: set

Smax = max
i:fi∈Ef

Sg

{mi − Sfi − 1}

7: for k = 1 to Smax do
8: set

P1 =
∏

i:fi∈Ef
Sg

∑mi

j=Sfi
+k+1 qi,j∑mi

j=Sfi
+1 qi,j

9: for all l such that 1 ≤ l ≤ N and Ef
l = Ef

Sg

do
10: perform

vl+ = πS P1 t
(k)

Ef
Sg

,Sg,l

11: end for
12: end for
13: end for

Implementation

Efficient implementation of the algorithm is not
straightforward and its discussion is out of the scope
of the paper. We provide only a few notes here. As
suggested by Algorithm 1, several steps of the compu-
tation are repeated many times. The ordering of the
states has a heavy effect on the execution time. More-
over, several quantities can be stored, once computed,
and reused after on resulting in faster computations.
The right ordering and the quantities that are worth
to store depend on the structure of the model.

For testing the algorithm we have implemented four
variants for the steady state solution. First, we ei-
ther use the complete (original) DTMC or the reduced
(compressed) one. Second, we either build and store
the transition matrix in sparse form or compute its en-
tries on the fly. When the transition matrix is built in
advance, the computations are carried out by the LAS-
Pack sparse matrix package [23]. For all the four cases
the pure Gauss-Seidell method as presented in [24] is
applied. More sophisticated iterative steady state so-
lution methods could also be implemented (see [8] for
a broad overview) but we believe that the conclusions
drawn hereinafter are widely valid.
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4 Numerical Example

As an example, we consider a discrete time
M/D/S/K queue which is not of major interest from
modeling point of view but, by changing its parame-
ters, it allows us to test the proposed procedure in sev-
eral different situations. For this model those global
states are reduced in which all the servers are active.
The utilization is set to 0.8 for all the test cases.

Results with single server are reported in Figure 1-
5. Service time is either 10, 100 or 1000 and the buffer
size is varied between 2 and 200. Figure 1 shows the
number of states of the complete and of the reduced
DTMC. For this model, the number of states in the
reduced model does not depend on the service time.
Note that the number of states reflects the memory re-
quirement of the computations. The number of states
in the complete model is approximately D × K while
it is about K for the reduced one. Consequently the
vectors to store the steady state probabilities are D
times smaller. Figure 2 reports the number of non-
zero entries in the matrices. Thanks to the choice of
the set of eliminated states, the number of non-zero en-
tries remains low in the reduced model. The number of
iterations to reach the desired precision (computation
is stopped when the error is below 1e-08) is depicted in
Figure 3. The number of iterations is somewhat lower
for the reduced models because the reduction makes
the DTMC more “compact” in a probabilistic sense as
well. The time to achieve the results is shown in Figure
4 for the case when the transition matrices are stored
in the memory and in Figure 5 when the entries of
the transition matrices are computed on the fly. When
the matrices are stored, one iteration takes less time
with a reduced matrices than with the corresponding
complete one and less iterations are necessary. How-
ever, since the reduced matrix must be built and the
steady state probabilities have to be recovered (Algo-
rithm 2) the proposed method is slower for large values
of K. When the computations are performed without
storing the transition matrices, the proposed reduction
method is either slower or faster depending on the ser-
vice time. As illustrated by Figure 4 and 5, the compu-
tations without storing the reduced matrix are slower,
however, the slow down is not drastic.

Figures 6 and 7 show the structure of the transition
matrices before and after reduction with D = 10 and
K = 100. (The figures were produced with MatView
[19]). The original transition matrix has 1001 states
while the reduced has 101. In the reduced matrix we
have a single state for having x, 1 ≤ x ≤ 100 jobs in
the buffer.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0  20  40  60  80  100  120  140  160  180  200

K

original, D=10
original, D=100

original, D=1000
compressed, D=10,100,1000

Figure 1. Number of states in DTMC with sin-
gle server
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 100

 1000

 10000

 100000

 1e+006

 0  20  40  60  80  100  120  140  160  180  200

K

original, D=10
original, D=100

original, D=1000
compressed, D=10

compressed, D=100
compressed, D=1000

Figure 2. Number of non-zero entries in the
DTMC with single server

 1
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 0  20  40  60  80  100  120  140  160  180  200

K

original, D=10
original, D=100

original, D=1000
compressed, D=10

compressed, D=100
compressed, D=1000

Figure 3. Number of iterations to achieve the
results with single serve
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 0  20  40  60  80  100  120  140  160  180  200
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original, D=10
original, D=100
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compressed, D=10
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Figure 4. Time to achieve the results with
DTMC stored in memory and single server
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 1
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 0  20  40  60  80  100  120  140  160  180  200

K

original, D=10
original, D=100

original, D=1000
compressed, D=10

compressed, D=100
compressed, D=1000

Figure 5. Time to achieve the results without
storing the DTMC and with single server

Figure 6. Structure of the complete DTMC with
service time 10 and K = 100

Figure 7. Structure of the reduced DTMC with
service time 10 and K = 100

Figure 8-12 presents results with 2 servers. Ser-
vice times of the servers (10,10), (10,100), (10,1000)
or (100,100), buffer size is between 2 and 100. Figure
8 present the number of states in the DTMCs. For the
cases (10,1000) and (100,100) the number of states are
almost equal. The reduction is more significant in case
of service times (100,100) than in case of service times
(10,1000). This is due to the fact that we eliminate
the states in which none of the servers are in their first
phase. There are more states of this kind with service
times (100,100). For this example the number of non-
zero entries in the reduced matrices can be higher than
in the original ones. As it can be seen in Figure 10,
the number of iterations needed to achieve accuracy
is lower for the reduced matrices. Case (10,1000) has
particularly slow convergence even for small values of
K. Runtimes are reported in Figures 11 and 12. As
in the single server case, computations without storing
the reduced matrix are slower but the slow down is not
drastic.

 10

 100

 1000

 10000

 100000

 1e+006

 20  40  60  80  100

K

original, D=10,10
original, D=10,100

original, D=10,1000
original, D=100,100

compressed, D=10,10
compressed, D=10,100

compressed, D=10,1000
compressed, D=100,100

Figure 8. Number of states in DTMC with two
servers
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Figure 9. Number of non-zero entries in the
DTMC with two servers
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Figure 10. Number of iterations to achieve the
results with two servers

 0.01

 0.1

 1

 10

 100

 1000

 20  40  60  80  100

K

original, D=10,10
original, D=10,100

original, D=10,1000
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Figure 11. Time to achieve the results with
DTMC stored in memory and two servers
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Figure 12. Time to achieve the results without
storing the DTMC and with two servers

The original and the reduced matrices with service
times (10,10) and K = 10 are depicted in Figures 13
and 14. Among the states in which with both servers
active, only those are not eliminated in which one of
the servers is in its starting phase.

Figure 13. Structure of the original DTMC with
service times (10,10) and K = 10

Two further cases are reported in Tables 1 and
2. The model parameters are given in the first three
columns: number of servers, service times, buffer size.
Columns with header COMP contain results for the
complete DTMC, those with REDU for the reduced
model. Missing entries indicate that the computation
could not be performed for lack of memory or was ter-
minated because took more than 1e+05 seconds.

5 Future work

The present version of the algorithm can handle
the preemptive repeat different memory policy only,
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Model parameters # States # Non-zeros # Iterations Time to build

S D K COMP REDU COMP REDU COMP REDU COMP REDU

2 10000,10000 5 4.00e+08 1.00e+05 1.21e+09 7.80e+05 4.40e+01 2.58e+01
3 100,100,100 10 8.03e+06 2.68e+05 2.31e+07 4.13e+06 1.58e+02 1.53e+02 1.71e+01 1.55e+00

Table 1. Number of states, number of non-zeros in the transition matrix, number of iterations and
time to build the transition matrix

Model parameters Sec. per iteration Sec. per solution

Matrix Built On the fly Matrix Built On the fly

S D K COMP REDU COMP REDU COMP REDU COMP REDU

2 10000,10000 5 9.75e-02 7.80e-01 1.06e+02 6.74e+01
3 100,100,100 10 4.34e-01 2.11e+01 7.26e+00 6.79e+01 1.11e+03

Table 2. Time per iteration and time per solution

Figure 14. Structure of the reduced DTMC
with service times (10,10) and K = 10

i.e. when a task is preempted before completion the
amount of work done is lost. We plan to investigate
how to include preemptive repeat resume and preemp-
tive repeat identical policies [5].

In several cases, as suggested by Figure 14, the re-
sulting reduced matrix is still sparse, and since fur-
ther application of Gaussian elimination could be per-
formed. We plan to increase the set of eliminated
states. This must be done in a way that the entries
of the matrix describing the reduced DTMC can still
be calculated on the fly.

6 Conclusions

In this paper we have presented a solution technique
for discrete time models with geometric and finite sup-
port activity duration. DTMC of such model can be
built by expansion. This DTMC is subject to state

space explosion. The proposed steady state solution
technique combines Gaussian elimination and an iter-
ative technique. Gaussian elimination is performed ex-
ploiting the structure of the DTMC in such a way that
entries of the reduced DTMC can be computed on the
fly. This way the steady state solution of the DTMC
can be obtained by performing computations on vec-
tors with significantly less number of entries than the
number of states of the DTMC. As illustrated by an
example, the procedure results in significant memory
saving without causing drastic slow down.
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