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Abstract

In order to assist the performance evaluation of complex stochastic models, automatic program tools were developed since
a long time. Stochastic Petri nets (SPN) are applied as an effective model description language supported by several analytical
and simulation tools. The analytical description and the numerical analysis of non-Markovian stochastic Petri net models
gained attention recently. There are different theoretical approaches and numerical methods considered in recent works, such
as the Markov renewal theory and the supplementary variable approach, but to find the most effective way of the analysis of
such models is still an open research problem.

The supplementary variable approach was successfully applied to the transient and steady state analysis of Markov regener-
ative stochastic Petri nets (MSRPN) when the preemption policy associated with the Petri net (PN) transitions was preemptive
repeat different (prd), but it was not applicable with other preemption mechanisms. In this paper we extend the applicability
of the supplementary variable approach to a class of MRSPNs in which preemptive resume (prs) policy can also be assigned
to the transitions of the PN. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The semantics of SPN with generally distributed random firing times has been considered for a long
time. To completely define the stochastic behavior of the marking process a firing time distribution and a
memory policy are assigned to each timed transition [1]. The latter specifies how the firing of the transition
depends on its past history.

Based on the concepts presented in [1], Ajmone et al. developed the deterministic and stochastic PN
(DSPN) model [3], where in each marking, at most one transition with deterministic firing time is allowed
to be enabled. In the DSPN model only the prd policy can be assigned to the transitions with deterministic
firing time. In [3], the steady state analysis of DSPNs was provided. Choi et al. [8] have derived the transient
solution of the same model in terms of a Markov regenerative process, and have subsequently extended
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the DSPN model by accommodating at most a single transition with generally distributed firing time
in each marking. They have called this class of models Markov regenerative stochastic PN (MRSPN).
Independent of [8], German and Lindemann [13] applied a different method to the steady state and
German [11] to the transient analysis of DSPNs based on the method of supplementary variables [10].
A prototype tool was presented for the steady state analysis of MRSPNs with prd and prs policies based
on the supplementary variable approach by German in [12]. Further elaborations of SPN models with
non-exponential distributions but restricted to prd policy only have been presented in [9,19].

Bobbio and Telek [7] have enlarged the class of MRSPN by introducing the concept of marking
processes with non-overlapping memories. Roughly speaking, it means that the firing processes of the
timed transitions with non-exponentially distributed firing time (referred to as MEM transitions) do not
overlap. In this new framework, they have accommodated into the model the prs [7] and preemptive
repeat identical (pri) policies [4] and provided the steady state [6,22] and the transient analysis [4,7] of
the considered class of MRSPNs.

In the past, discrete event simulation was the only way to evaluate numerically non-Markovian SPNs.
Due to the theoretical results available for the analysis of MRSPNs, the research for effective numerical
analysis methods has started. There are effective computational methods, based on the solution of linear
systems of equations, for the steady state analysis of these models [3,6,13,22]. With respect to the transient
analysis an effective solution method is proposed for the class of MRSPNs with only exponentially dis-
tributed and identical deterministic firing times in [20]. The general transient analysis methods published
in the literature so far are based on one of the following approaches:

• analysis of an expanded Markov model;
• supplementary variable approach;
• Markov renewal theory.

The first approach is exact only when the firing time of the MEM transitions are phase type distributed.
The latter two approaches provide the exact analytical description of the stochastic marking process,
but, in general, they do not provide closed-form expressions (in time domain) for the required model
parameters. In both cases numerical analysis methods have to be applied to find the required measures and
the applicability of these approaches depend on the chosen numerical method. It is still an open research
problem to find the most effective methods for the transient analysis of non-Markovian SPN models.

In this paper we provide a detailed analytical description of a subclass of MRSPNs, called Age-MRSPNs
[21], by the method of supplementary variables, which was not available before. In the Age-MRSPN class
the MEM transitions are of prs type. Based on the provided analytical description we introduce a numerical
method of transient analysis.

The rest of the paper is organized as follows. Section 2 introduces the preemption types of Petri net
transitions, the considered class of SPN models, and the base concept of the supplementary variable
approach. Section 3 discusses the application of the supplementary variable approach for the analysis of
MRSPNs with prd type transitions, while in Section 4 the new method for the case of prs type transitions
is explained. Application examples are evaluated in Section 5, and the paper is concluded in Section 6.

2. Markov regenerative stochastic Petri nets

A marked Petri net is a tuple PN = (P, T , I,O,H,M0), where P is the set of places, T the set of
transitions, I , O and H are the input, the output and the inhibitor functions, respectively, and M0 is the
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initial marking. The reachability set R(M0) is the set of all the markings that can be generated from the
initial marking M0. The marking processM(t) denotes the marking occupied by the PN at time t . In order
to obtain a consistent model description, the way in which the evolution of the marking process depends
on its past history has to be specified at the PN level. The most commonly used concept is provided in
[1]. To each timed transition tg is assigned a random firing time γg with a general distribution Gg(t)

with support on (0,∞). A clock, associated to each transition, measures the time in which the transition
has been enabled [5]. An age variable ag associated to the timed transition tg keeps track of the clock
count. A timed transition fires as soon as the memory variable ag reaches the value of the firing time γg.
Naturally, at each firing of tg the age variable ag is reset to 0, and the firing time γg is re-sampled from
the same distribution. The alternative approach in [8] would result in a bit different analytical treatment
of the same stochastic marking process.

In order to define properly the stochastic behavior of SPN models, the effect of a preemption of tg
has to be defined as well. (A preemption of tg means that after a period of time while tg was enabled it
becomes disabled before firing.)

Adopting this concept of the firing process, the following memory policies have been introduced [5].
A timed transition tg can be:

• Preemptive resume (prs): The preemption of tg does not affect ag and γg. The age variable ag is reset
and γg is re-sampled only when tg fires.

• Preemptive repeat different (prd): The preemption of tg resets ag and re-samples γg.
• Preemptive repeat identical (pri): The preemption of tg does not affect γg but it resets ag. The firing

time of tg (γg) is re-sampled only when tg fires.

We define the firing process of transition tg as the process that starts when tg becomes enabled and
ends when ag is reset to 0 and γg is re-sampled. If tg is prd type, the past of tg affects the evolution
of the marking process while it is enabled; if tg is prs type, the past of tg affects the evolution of the
marking process while it is enabled and while it is disabled, but ag is positive; if tg is pri type, the past
of tg affects the evolution of the marking process while it is enabled and while it is disabled, but γg

cannot be re-sampled. We say that the firing process of tg is active while tg affects the evolution of the
marking process. Transition tg is said to be active while its firing process is active. The active period of
an MEM transition can be concluded either by the firing of the transition, or by a preceding firing of an
EXP transition which disables the MEM one.

The class of SPN in which at most one MEM transition can be active at a time satisfies the definition
of the class of Markov regenerative stochastic Petri nets [8]. In the rest of this paper we assume that the
considered MRSPNs satisfies the property that at most one MEM transition can be active at a time.

In case of prs and prd type MEM transitions the age variable (ag) sufficiently represents the effect of
the MEM transition on the evolution of the marking process, so that the marking process can be analyzed
by the method of supplementary variables using a single variable, while for pri type transitions it seems
that one variable is not enough to capture the effect on the process.

Let a(t) be the age of the only active MEM transition at time t , if any. Since only one MEM transition
can have memory at any time, a(t) is the age of the whole model at time t . Under this restriction, the
marking process M(t) together with a(t) (i.e. (M(t), a(t))) is a Markov process over the state space
R×R, whereR is the set of reachable tangible markings and R is the set of non-negative real numbers.
The joint process can be analyzed by the method of supplementary variables [10]. This approach was
followed in [11,13,16] to analyze stochastic Petri nets with only prd MEM transitions.
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3. Analysis of MRSPNs with prd type transitions

3.1. Application of the method of supplementary variables

The method of supplementary variable has been applied to MRSPNs in which, in each (tangible)
marking, at most one enabled transition can have non-exponential distribution with prd policy, having
all the other enabled transitions exponential firing time distribution. Following the concept of [11] the
solution approach is briefly summarized.

Let T G be the set of MEM transitions. The tangible state spaceR is partitioned into |T G| + 1 disjoint
subsets. RE is the set of markings in which no MEM transition is active (a(t) = 0 whenM(t) ∈ RE),
and Rg, tg ∈ T G is the set of markings in which the general transition tg can be active, i.e., ag can be
greater than 0. The superscript E refers to the states inRE and the superscript g (or �) refers to the states
inRg (orR�).

Q = [qij] denotes the |R|× |R| infinitesimal generator matrix of the Markov chain describing the evo-
lution of the marking process considering only the firing of the transitions with exponentially distributed
firing time (referred to as EXP transitions). According to the above partitioning of the state space Q can
be partitioned as well. Q�,g (Qg) contains the intensity of the state transitions fromR� toRg (insideRg)
due to the firing of an EXP transition and QE,g, Qg,E , and QE are similarly defined. Each row of Q can
be generated by considering the firing rate of the enabled EXP transitions in the particular marking.

The probability of being in state i at time t is Πi(t) = Pr{M(t) = i}. Given that the MEM transition
tg ∈ T G, with firing time distribution Gg(x), is the only active transition in state i ∈ Rg at time t , the
so-called, age rate is defined as follows:

hi(t, x) =




Pr{M(t) = i, x < a(t) ≤ x + dx}
dx

1

1 − Gg(x)
if Gg(x) < 1,

0 if Gg(x) = 1.

where a(t) equals to age of the only active MEM transition at time t .
The probability of state transitions due to the firing of an MEM transition is given by a branching

probability matrix ∆ = {∆ij} whose generic entry has the following meaning [2]:

∆ij = Pr{next marking is j |tg fires in marking i}.
The following analytical description utilizes some special features of the marking processes of the consid-
ered class of MRSPNs. As it is mentioned above, the active period of an MEM transition can be concluded
either by the firing of the transition, or by a preceding firing of an EXP transition which disables the MEM
one. This way a state transition from R� to Rg (� = g) due to the firing of an EXP transition concludes
the activity period of t� and starts a new activity period of tg. Further, the age of the process (a(t)) is
continuously increasing during a sojourn in Rg, tg ∈ T G, and a(t) is constant (a(t) = 0) during the
sojourn inRE .

With the above assumptions and definitions, the evolution of the age rate (hi(t, x), i ∈ Rg) is charac-
terized by the following partial differential equation [11]:

∂

∂t
hi(t, x) + ∂

∂x
hi(t, x) =

∑
k∈Rg

hk(t, x)qki, (1)
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hence the age rate vector hg(t, x) = {hi(t, x)}, i ∈ Rg satisfies
∂

∂t
hg(t, x) + ∂

∂x
hg(t, x) = hg(t, x)Qg. (2)

Given the proper ordering of states the transient state probability vector Π(t) = {Πi(t)}, can be calculated
in the partitioned form: Π(t) = {ΠE(t), Πg(t),Π�(t), . . . }. The process evolution inRE is described by
the following ordinary differential equation:

d

dt
ΠE(t) = ΠE(t)QE +

∑
tg∈T G

∫ ∞

0
hg(t, x) dGg(x)∆g,E +

∑
tg∈T G

Πg(t)Qg,E. (3)

In (3), the state probabilities inside RE can change: (i) by the firing of an EXP transition which results
in a new marking (the diagonal elements characterize the transitions also out of RE) (first term); (ii) by
the firing of a general transition when the reached state is inRE (second term); (iii) by the disabling of a
general transition when the reached state is inRE (third term).

The initial conditions are ΠE(0) and hg(0, x) = Πg(0)δ̂(x − 0), where δ̂(x − 0) is the Dirac impulse
at x = 0. The boundary condition for Eq. (1) is given by

hg(t, 0) = ΠE(t)QE,g +
∑
t�∈T G

∫ ∞

0
h�(t, x) dG�(x)∆�,g +

∑
t�∈T G,�=g

Π�(t)Q�,g. (4)

In (4), a general transition tg can be activated: (i) by the firing of an EXP transition in RE leading to a
state in which tg is enabled (first term); (ii) by the firing of a general transition t� when in the reached
state tg is enabled (or re-enabled if tg = t�) (second term); (iii) by the firing of an EXP transition which
disables the active general transition t� and in the reached marking the general transition tg is enabled
(third term). Immediate re-enabling of the general transition is not considered; it would require to further
partition Qg to distinguish the state jumps that temporarily disables tg from those that do not.

Once hg(t, x) is computed from (1), the transient state probability vector inRg can be calculated from

Πg(t) =
∫ ∞

0
hg(t, x)(1 − Gg(x)) dx. (5)

3.2. A numerical analysis method

An iterative algorithm for the numerical approximation of the above equations based on an equidistant
(d) discretization of the continuous variables has been proposed in [14]. The algorithm is restricted to the
case when there is not initial enabling of general transitions. The steps of the algorithm are the following:

1. Initially, set hg(nd, 0) = 0 and compute the age rates

hg(nd, md) = hg((n − 1)d, (m − 1)d) eQg
d

for the next time instant.
2. Given the age rates hg(nd,md), m = 0, 1, . . . , compute the state probabilities Πg(nd) from (5).
3. Compute the state probabilities ΠE(nd) from the ordinary differential equation (3).
4. Recompute the activation rate of the general transitions hg(nd, 0) from the boundary conditions (4).
5. Correct the state probabilities Πg(nd) in order to have the proper sum (with a discretization scheme

that conserves the sum of probabilities this correction is not necessary) going back to step (2) or start
with the next time instant (n + 1)d.
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An improved numerical procedure, based on the same approach, but with an adaptively varying interval
length (d) has been recently described in [16]. The steady-state behavior of the considered class of MRSPN
can be easily obtained, based on the above set of equations, by setting the time derivatives to 0 [12].
Lindemann [18,19] proposed an effective numerical method to evaluate the steady-state probabilities of
DSPN based on Markov renewal theory approach.

4. Analysis of MRSPNs with prs type transitions

4.1. Application of the method of supplementary variables

Let T G be the set of MEM transitions. The tangible state spaceR is partitioned into |T G| + 1 disjoint
subsets, as before. RE is the set of states in which no general transition can be active (a(t) = 0 when
M(t) ∈ RE), and Rg, tg ∈ T G is the set of states in which the general transition tg can be come active
(a(t) = ag whenM(t) ∈ Rg). The state probability (Πi(t)) and the age rate (hi(t, x)) are defined as
before.

The stochastic behavior of an active prs transition depends on its enabling condition. Let ri denote the
enabling indicator of tg in state i ∈ Rg, i.e., ri = 1 if tg is enabled in state i and ri = 0 if tg is disabled
in state i. Now, we further partition theRg, tg ∈ T G set into two disjoint subsets.Rg′

(Rg′′
) is the subset

of Rg in which tg is enabled (disabled). Transition tg can fire only whenM(t) ∈ Rg′
and it cannot fire

whenM(t) ∈ Rg′′
.

The considered class of MRSPN with prs type MEM transitions have different features from the above
described prd case. The active period of a prs type MEM transition can be concluded only by the firing of
the transition. Since we exclude overlapping active periods of MEM transitions, there is no state transition
possible from Rg to any R�, g = � or to RE due to the firing of an EXP transition, i.e., Qg,� = 0 ∀�, g,
g = � and Qg,E = 0 ∀g. (If Qg,�, g = � were different from 0, tg and t� might become active at the same
time. If there were an i ∈ Rg and a j ∈ RE such that [Qg,E]ij > 0 then tg would be active in j ∈ RE ,
which is in contrast with the definition ofRE .)

The age of the process (a(t)) is continuously increasing at rate 1 during a sojourn inRg′
, tg ∈ T G, and

a(t) is constant during the sojourn inRE (a(t) = 0) and inRg′′
, tg ∈ T G (a(t) ≥ 0). Hence, there can be

a probability mass at x = 0 whenM(t) ∈ Rg′′
. Let denote this by Hg′′

(t) = {Hg′′
i (t)}; i ∈ Rg′′

, where

H
g′′
i (t) = Pr{M(t) = i ∈ Rg′′

, a(t) = 0} ≥ 0.

For example this probability mass exists if the initial marking is in RE and there is an exponential
transition leading to a marking in Rg′′

. More generally this mass may be accumulated if a state in Rg′′

may be entered by the firing of a general transition or directly fromRE .
The next theorem gives the differential equation that describes the evolution of age rate for prs type

transition.

Theorem 1. The age rate hi(t, x) (i ∈ Rg) satisfies the partial differential equation

∂

∂t
hi(t, x) + ri

∂

∂x
hi(t, x) =

∑
j∈Rg

hj (t, x)qji. (6)
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Proof. Let us use the notation

ki(t, x) = Pr{M(t) = i, x < a(t) ≤ x + dx}
dx

. (7)

To obtain ki(t + δ, x + riδ) the following cases have to be considered in the interval (t, t + δ):

• Neither an EXP nor the active general transition fire with probability

(1 + qiiδ + σ(δ))

(
1 − (G(x + δ) − G(x))/δ

1 − G(x)
δ

)
= (1 + qiiδ + σ(δ))

1 − G(x + δ)

1 − G(x)
,

where σ(x) is such that limx→0σ(x)/x = 0.
• There is a state transition from j to i due to the firing of an EXP transition and the general transition

does not fire with probability

(qjiδ + σ(δ))
1 − G(x + δ)

1 − G(x)
.

• There are more than one state transitions due to the firing EXP transitions with probability σ(δ).

The probability of firing of the active general transition does not contribute to the probability
ki(t + δ, x + riδ) because its firing resets the age variable. This probability appears in the boundary
conditions. In the above mentioned cases the increase of the age variable during the (t, t + δ) interval is:

• if neither an EXP nor the active general transition fire:

a(t) = a(t + δ) − riδ,

• if there is a state transition from j to i due to the firing of an EXP transition and the general transition
does not fire:

a(t + δ) − rj δ < a(t) < a(t + δ) − riδ if ri < rj ,

a(t + δ) − riδ < a(t) < a(t + δ) − rj δ if ri > rj ,

to simplify the description of this cases we introduce the notation O(x) such that limx→0O(x) = 0,
hence

a(t) = a(t + δ) +O(δ),

• if there are more than one state transitions due to the firing EXP transitions:

a(t + δ) − rminδ < a(t) < a(t + δ) − rmaxδ ⇒ a(t) = a(t + δ) +O(δ),

where rmin = minj∈Rg rj and rmax = maxj∈Rg rj .

Based on these considerations:

ki(t + δ, x + riδ) = 1 − G(x + riδ)

1 − G(x)
(1 + qiiδ)ki(t, x)

+
∑

j∈Rg,j =i

1 − G(x + riδ)

1 − G(x +O(δ))
qjiδkj (t, x +O(δ)) + σ(δ).
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Since ki(t, x) = hi(t, x)(1 − G(x)) it may be rewritten as

hi(t + δ, x + riδ) = (1 + qiiδ)hi(t, x) +
∑

j∈Rg,j =i

qjiδhi(t, x +O(δ)) + σ(δ),

from which

hi(t + δ, x + riδ) − hi(t, x) = qiiδhi(t, x) +
∑

j∈Rg,j =i

qjiδhi(t, x +O(δ)) + σ(δ)

=
∑
j∈Rg

qjiδhj (t, x +O(δ)) + σ(δ).

Dividing both sides by δ and using some algebra we have

hi(t + δ, x + riδ) − hi(t, x + riδ)

δ
+ hi(t, x + riδ) − hi(t, x)

δ
=

∑
j∈Rg

qjihi(t, x +O(δ)) + σ(δ).

Taking the limit δ → 0 gives the theorem. �

Using the vector notation

∂

∂t
hg(t, x) + ∂

∂x
hg(t, x)Rg = hg(t, x)Qg, (8)

where the diagonal matrix Rg = diag〈ri〉, i ∈ Rg.
In (6) the enabling indicator (ri) captures the fact that the age does not increase in state i ∈ Rg′′

. If
∀i ∈ RG ri = 1 we have the same differential equation as for prd type transitions.

The process evolution inRE is described by the following theorem.

Theorem 2. The transient state probability Πi(t), i ∈ RE satisfies the following ordinary differential
equation:

d

dt
Πi(t) =

∑
j∈RE

Πj(t)qji +
∑
tg∈T G

∑
j∈Rg

∫ ∞

0
hj (t, x)rj dGg(x)∆

g,E

ji . (9)

Proof. As in Theorem 1 we consider the cases that play role in the evolution of Πi(t) in the interval
(t, t + δ):

• No EXP transition fires with probability 1 + qiiδ + σ(δ).
• There is one state transition from j to i due to the firing of an EXP transition with probability qjiδ+σ(δ).
• There are multiple state transitions due to the firing of EXP transitions with probability σ(δ).
• An active MEM transition fires and the next tangible state is i with probability (using the notation

defined in Theorem 1)
∑
tg∈T G

∑
j∈Rg

∫ ∞

x=0
kj (t, x)rj

Gg(x + δ) − Gg(x)

1 − Gg(x)
dx ∆

g,E

ji + σ(δ)

=
∑
tg∈T G

∑
j∈Rg

∫ ∞

x=0
hj (t, x)rj (G

g(x + δ) − Gg(x)) dx ∆
g,E

ji + σ(δ).
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Considering the above possibilities we have

Πi(t + δ) = (1 + qiiδ)Πi(t) +
∑

j∈RE,j =i

qjiδΠj(t)

+
∑
tg∈T G

∑
j∈Rg

∫ ∞

x=0
hj (t, x)rj (G

g(x + δ) − Gg(x)) dx ∆
g,E

ji + σ(δ),

which may be rewritten as (using similar steps as in Theorem 1)

Πi(t + δ)−Πi(t)

δ
=

∑
j∈RE

Πj(t)qji +
∑
tg∈T G

∑
j∈Rg

∫ ∞

x=0
hj (t, x)rj

Gg(x + δ) − Gg(x)

δ
dx ∆

g,E

ji + σ(δ),

and taking the limit δ → 0 gives the theorem. �

Using vector notations (9) may be written as

d

dt
ΠE(t) = ΠE(t)QE +

∑
tg∈T G

∫ ∞

0
hg(t, x)Rg dGg(x)∆g,E. (10)

The evolution of the probability mass Hg′′
(t) in Rg′′

is described by the following ordinary differential
equation (this and the following equations may be proved using similar steps as in Theorems 1 and 2):

d

dt
Hg′′

(t) = ΠE(t)QE,g′′ + Hg′′
(t)Qg′′ +

∑
t�∈T G

∫ ∞

0
h�(t, x)R� dG�(x)∆�,g′′

. (11)

Eq. (11) is very similar to (10), but in (11) there can be state transition due to the firing of an EXP transition
not only insideRg′′

, but also fromRE toRg′′
.

The boundary condition for Eq. (6) is given by

hg′
(t, 0) = ΠE(t)QE,g′ + Hg′′

(t)Qg′′,g′ +
∑
t�∈T G

∫ ∞

0
h�(t, x)R� dG�(x)∆�,g′

. (12)

The boundary condition (12) means that the real initialization of tg, when its age starts increasing, can
happen: (i) by the firing of an EXP transition inRE leading to a state in which tg is enabled (first term);
(ii) by the firing of an EXP transition when tg was disabled and its age was 0 (second term); (iii) by the
firing of an MEM transition t� when in the reached state tg is enabled (or re-enabled if tg = t�) (third
term). For the technique to prove (12) see [17].

The transient state probability vector inRg can be calculated as

Πg′
(t) =

∫ ∞

0
hg′

(t, x)(1 − Gg(x)) dx, Πg′′
(t) =

∫ ∞

0
hg′′

(t, x)(1 − Gg(x)) dx + Hg′′
(t). (13)

The initial conditions are ΠE(0), hg′
(0, x) = Πg′

(0)δ̂(x − 0) and Hg′′
(0) = Πg′′

(0).
The steady state behavior [22] can also be obtained based on the above description of the process by

eliminating the time dependence from the description measures [15] (i.e., eliminating the parameter t of
the functions and setting all the derivatives of t to 0).
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4.2. A numerical analysis method

In this section, we introduce a simple but asymptotically correct numerical method to approximate the
stochastic behavior described by the above set of equations. We also use equidistant discretization of
the time and the age, but in contrast with the previously discussed iterative method based on an implicit
discretization scheme [14], we propose an explicit scheme for the calculation of the transient parameters
in each time interval. This method is faster and simpler (easier to implement), but might be less accurate.

The initial parameters are given by the initial marking of the PN, i.e., ΠE(0) and hg(0, 0) = Πg(0).
The evaluation of the transient behavior at time nd is composed by the following steps:

1. Compute the age rates in the next time instant (i ∈ Rg, and m ≥ 1):

hi(nd, md) =
∑
k∈Rg

hk((n − 1)d, (m − rk)d)[e
Qgd]ki.

2. Compute the state probabilities ΠE(nd) from the ordinary differential equation (10) (i ∈ RE):

ΠE(nd) = ΠE((n − 1)d) eQEd +
∑
tg∈T G

j
g
max∑

j=1

hg′
((n − 1)d, (j − 1)d) eQg′

d∆g′,EG
g

j ,

where G
g

j = Gg(jd) − Gg((j − 1)d) and the firing time of tg is less than j
g
maxd.

3. Compute the probability mass Hg′′
(nd) from the ordinary differential equation (11) (i ∈ Rg′′

):

Hg′′
(nd) = Hg′′

((n − 1)d) eQg′′
d + ΠE((n − 1)d) eQE,g′′

d

+
∑
t�∈T G

j
g
max∑

j=1

h�′
((n − 1)d, (j − 1)d) eQ�′d∆�′,g′′

G
g

j .

4. Compute the initialization rate of the general transitions hg′
(id, 0) from the boundary conditions (12)

(i ∈ Rg′
):

hg′
(nd, 0) = ΠE((n − 1)d) eQE,g′

d + Hg′′
((n − 1)d) eQg′′,g′

d

+
∑
t�∈T G

j�
max∑

j=1

h�′
((n − 1)d, (j − 1)d) eQ�′d∆�′,g′

G
g

j .

5. Given the age rates hg(nd, md), m = 0, 1, . . . , compute the state probabilities Πg(nd) from (13). For
Rg′

:

Πg′
(nd) =

j
g
max∑

j=0

hg′
(nd, jd)(1 − Gg(jd)),

and forRg′′
:

Πg′′
(nd) = Hg′′

(nd) +
j
g
max∑

j=1

hg′′
(nd, jd)(1 − Gg(jd)).
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6. Repeat the same steps at the next time instant (n + 1)d.

The algorithm is able to handle the initial enabling of general transitions, this case is captured when
one of the age rates hg′

(0, 0) = Πg′
(0) is positive. Due to the described equidistant explicit discretization

scheme the discrete quantities in hg′
(t, x) are carried precisely and in a natural way.

Let us denote the number of markings in which a general transition tg is active by ng and the largest
considered firing time of tg by ug. Assuming that the number of markings in which no general transition
is active is nE the size of the discretized state space is

nE +
∑
tg∈T G

ng

⌈ug

d

⌉
,

where �x� denotes the smallest natural number larger than x.

4.3. Complex models

The SPN model of real systems may contain MEM transitions with associated prd and prs policy as
well. The set of equations provided for the analytical description of the marking process with only prd
type MEM transitions (Section 3) and the set of equation describes the SPN models with only prs type
MEM transitions (Section 4) can be combined for the analysis of these SPN models.

In order to have the set of equations for the combined case T G is partitioned into two disjoint sets:
T G

prd (T G
prs) contains the general transitions with associated prd (prs) policy. Since overlapping active

periods are excluded we have the following restrictions on Q: Qg,� = 0 ∀g ∈ T G
prs ∀� ∈ T G, and g = �,

Qg,E = 0 ∀g ∈ T G
prs. As defined in Section 4, ri is the enabling indicator of tg in state i ∈ Rg, i.e., ri = 1

if tg is enabled in state i and ri = 0 if tg is disabled in state i (note that ri = 1 ∀i ∈ Rg ∀g ∈ T G
prd).

The differential equation that describes the evolution of the age rate is the same for the combined case as
(8). The process evolution in RE is described by the same ordinary differential equation as for prd type
transitions (3). The boundary condition for the age rate associated with a prd type transition tg, g ∈ T G

prd is

(4), while it is (12) for a prs type transition tg, g ∈ T G
prs. The evolution of the probability mass Hg′′

(t) inRg′′

(g ∈ T G
prs) is described by (11). The transient state probabilities may be calculated using (5) and (13). The

set of equations describes the behavior of SPNs with prd and prs general transitions is provided in Table 1.
There is an SPN model with combined firing policies evaluated among the subsequent numerical

examples.

5. Numerical examples

The above introduced numerical method (with equidistant intervals, explicit evaluation at each interval)
has been used to evaluate the following examples.

5.1. Terminal system

The SPN of Fig. 1a models a system of two terminals. The jobs submitted by terminal 2 have higher
priority and preempt the jobs submitted by terminal 1. The server adopts a prs service discipline, i.e., after
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Table 1
Set of equations for SPNs with prd and prs general transitions

Partial differential equation
(∂/∂t)hg

(t, x) + (∂/∂x)hg
(t, x)Rg = hg

(t, x)Qg

Ordinary differential equations
(d/dt)ΠE(t) = ΠE(t)QE + ∑

tg∈T G

∫ ∞
0 hg

(t, x)R� dGg(x)∆g,E + ∑
tg∈T G

prd
Πg(t)Qg,E ,

(d/dt)Hg′′
(t) = ΠE(t)QE,g′′ + Hg′′

(t)Qg′′ + ∑
t�∈T G

∫ ∞
0 h�

(t, x)R� dG�(x)∆�,g′′ + ∑
t�∈T G

prd ,� =gΠ
�(t)Q�,g′′

Boundary condition
hg′

(t, 0) = ΠE(t)QE,g′ + Hg′′
(t)Qg′′,g′ + ∑

t�∈T G

∫ ∞
0 h�

(t, x)R� dG�(x)∆�,g′ + ∑
t�∈T G

prd ,� =gΠ
�(t)Q�,g′

State probabilities
Πg′

(t) = ∫ ∞
0 hg′

(t, x)(1 − Gg(x)) dx, Πg′′
(t) = ∫ ∞

0 hg′′
(t, x)(1 − Gg(x)) dx + Hg′′

(t)

a preemption of the lower priority job the service of the same preempted job resumes from the point it was
preempted, once the server becomes available again. Place p1 (p3) signifies that terminal 1 (2) is in the
thinking phase, while place p2 (p4) indicates job from terminal 1 (2) under service. Transitions t1 and t3 are
EXP and model the submission of a job of type 1 or 2, respectively. t2 is an MEM transition and represents
the completion of service of the lower priority job (coming from terminal 1). The firing time of transition
t2 is assumed to be uniformly distributed with a prs service discipline. Transition t4 models the service
time of a higher priority job. Its firing time is exponentially distributed. The inhibitor arc from p4 to t2
models the described preemption mechanism: as soon as a job from terminal 2 is submitted for processing,
the job from terminal 1 under service (if any) is interrupted. After the higher priority is processed, the
service of the lower priority job is continued. The associated reachability graph is shown in Fig. 1b.

The transient and the steady state probabilities of this model was solved assuming the following values:

• firing rate of EXP transitions t1, t3 and t4: λ1 = λ3 = 0.5, λ4 = 1;
• service time of lower priority job (transition t2): uniformly distributed between 0.5 and 1.5;
• step size: d = 0.01.

The numerical results obtained by the method based on the Markov renewal theory [5,7] and the sup-
plementary variable approach, proposed in this paper, were compared. The exact steady state probabilities
are ps1 = 6

15 , ps2 = 4
15 , ps3 = 2

15 , ps4 = 3
15 . The numerical results obtained by the two methods shows a

proper coincidence (Fig. 2).

Fig. 1. PN model of the terminal system.
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Fig. 2. Transient probabilities of the marking process.

Note, that in the job completion example both H t ′′3 (t) and H t ′′4 (t) were always 0, i.e., t3 (t4) was always
enabled before reachingRt ′′3 (Rt ′′4 ), and there was not probability mass at x = 0. In this second example
there is a probability mass at x = 0 inRt ′′2 = s4 to consider.

5.2. Job completion

The SPN in Fig. 3 models a system that executes a job with two phases. A token in P3 (P4) signifies
that the job is in the first (second) phase. The work is done when the token moves to place P5. Either
phase of the job is preempted when there is a token at place P2. The token between P1 and P2 changes
its place according to two EXP transitions t1 and t2 with parameters λ1 and λ2. Transition t3 and t4 are

Fig. 3. PN model for completion time of two phase jobs.
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Fig. 4. Probabilities of the phases in case t4 is prd type.

generally distributed. The memory policy associated to t3 is prd, so if this phase is preempted the job
starts from the beginning. For the second phase we consider both prd, prs policies, in case of prs policy
the job restarts from where it was preempted. Fig. 4 shows the probabilities of the phases versus time
when the second phase adopts prd policy. The same can be seen in Fig. 5 in case of prs policy for t4. The
numerical parameters are:

• the parameters for the EXP transitions are: λ1 = 0.5, λ2 = 2;
• t3 has deterministic distribution with firing time 1.5;
• t4 has deterministic distribution with firing time 1.0;
• step size: d = 0.01.

Fig. 5. Probabilities of the phases in case t4 is prs type.
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Fig. 6. PN model for continuous service of two phase jobs.

Fig. 7. Probabilities of the phases in case t4 is prd or prs type with continuous service.
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Fig. 6 shows the SPN of our second example. It is similar to Fig. 3. The difference is that if the second
phase is done the work starts again. The probabilities are calculated using the same parameters (Fig. 7).

Note that MEM transitions with associated prd and prs policy can be found in the same SPN models
in these examples.

6. Conclusion

This paper discusses the extension of the supplementary variable approach to the analysis of MRSPNs
with prs type MEM transitions. It defines the set of differential and integral equations that describe the
stochastic marking process.

A numerical procedure based on the exact analytical description is proposed for the (numerical) transient
analysis of the considered class of models. Regarding the size of the analyzable models the applicability
of this method is similar to the one proposed for MRSPNs with prd type transitions [11] and usually
is better than the Laplace transform domain method [7], which was the only available analysis method
before.

Two application examples are evaluated. The first numerical experiences about the proposed numerical
method are promising regarding both the accuracy and the computational complexity.
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