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Abstract—The problem we deal with is the analysis of a class
of large structured Markov chains. In particular we assume that
the whole state space can be partitioned into disjoint sets (called
macro states) in which the process corresponds to the parallel
execution of independent jobs. Petri nets and process algebras
with phase type (PH) distributed execution times give rise to this
kind of model. These models are subject to the phenomenon of
state space explosion. It is known that the infinitesimal generator
of such models can be handled in a memory efficient way
by storing only the “structure” of the infinitesimal generator
as Kronecker expressions or decision diagrams. Less is known
instead on how to perform the analysis of the model in a memory
efficient manner because in case of most of the available methods
the vector of transient or steady state probabilities are stored in
an explicit manner.

In this paper we consider the calculation of measures con-
nected to the probability that the process passes through a
given series of macrostates. We show that such measures can be
calculated in a memory efficient manner by Laplace transform
techniques. The method is illustrated by numerical examples.

I. INTRODUCTION

Model based, stochastic performance evaluation of dis-
tributed systems is usually based on a high level descrip-
tion. Modelling formalisms for the descriptions of the model
under study are, for example, stochastic Petri nets [1] or
stochastic process algebra [23], [6], [17], [21]. In order to
obtain a tractable stochastic model, it is usual to assume that
all durations of the system are exponentially distributed. In
this case the underlying model is a continuous time Markov
chain (CTMC). In many situations, however, the exponential
distribution is not a satisfactory approximation of the durations
of the real system. In these cases it is possible to make the
model more realistic by approximating the actual durations by
phase type distributions [24]. For surveys on fitting methods
the reader is referred to [20], [18], [5].

It is clear that if many simultaneously active events of the
system are modeled by phase type distributions, then the state
space of the model explodes. The structure of the CTMC,

however, allows for very efficient storage of the state space and
the infinitesimal generator through expressions in Kronecker
algebra and/or decision diagrams techniques [25], [26], [22],
[2]. Solution methods based on these techniques are also
available [15], [11], [12], [8], [10]. There remains, however,
the problem of storing the vector containing the transient
or steady state probabilities of the states. To overcome this
problem, in [7] and [13] approximate stationary measures are
computed based on aggregation while [9] proposes a compact
Kronecker representation for the vector which leads to an
approximate solution.

In this paper we consider a class of structured Markov
chains. We assume that the state space of the model can be
partitioned into macrostates in such a way that

• inside a macrostate the process is described by the parallel
execution of independent tasks,

• transition from a macrostate to another happens when a
tasks finishes its activity (during the transitions between
macrostates active tasks can become inactive and inactive
ones can become active).

For what concerns the infinitesimal generator, the description
of the process inside a macrostate is given by the Kronecker
sum of small matrices while the transition between two
macrostates is given by Kronecker products of small matrices.
Petri nets with PH distributed firing times [26] and process
algebras with PH distributed event durations give rise to a
Markov chain of this kind.

We show that in such models measures connected to the
probability of passing through a given series of macrostates
can be calculated by Laplace transform techniques in a mem-
ory efficient manner, i.e., in a way that does not necessitate the
storage of a vector with as many entries as many states we have
in the series of macrostates. To the best of our knowledge this
is the first attempt to tackle the state space explosion problem
by Laplace transform techniques.

The rest of paper is organised as follows. In Section II
the considered model class is described. In Section III we
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provide the details of the calculations. Since the calculations
make use of the Jordan normal form of the infinitesimal
generator of the PH distributions, in Section IV we present
the Jordan normal form for two classes of PH distributions.
In Section V we discuss issues concerning the implementation
of the algorithm. In Section VI we illustrate the approach by
numerical examples. Section VII concludes the paper.

II. CONSIDERED MODEL

The considered model consists of N macrostates and de-
scribes the interaction of A activities (also called jobs or tasks)
denoted by ai, 1 ≤ i ≤ A.

The duration of the activities are described by PH dis-
tributions. PH distributions are given by the distribution of
time to absorption in a Markov chain [24]. The number of
phases, the row vector of the initial probabilities and the
infinitesimal generator of the PH distribution associated to
activity ai is denoted by ni, bi and Ti, respectively. Further,
the column vector containing the rates from transient states to
the absorbing one is denoted by fi, i.e., fi = −Tie where e
is the column vector of ones. In the following we call fi the
finishing vector of job ai. In case of preemption of an activity,
the amount of work already done is either lost or maintained.
In the second case, at restart of the preempted activity the
associated PH distribution has to be restarted in the phase in
which it was at the instant of preemption.

Consequently, in a given macrostate a given activity is either
• active, i.e., it is under execution;
• suspended, i.e., its PH distribution will be restarted in the

phase in which it was when the preemption occured;
• inactive, i.e., it is neither under execution nor suspended.

The set of active, suspended and inactive activities in
macrostate i is denoted by AA

i , AS
i and AI

i , respectively.
Change of macrostate occurs when the execution of an activity
ends. When execution of a job ai ∈ AA

j ends in macrostate
j then the next macrostate is macrostate k with probability
p
(j,k)
i .
In order to describe the Markov chain underlying the pro-

cess we follow [26]. The infinitesimal generator of the Markov
chain has the block structure shown in Table I. The blocks in
the diagonal are given by a Kronecker sum of matrices while
those off-diagonal by a Kronecker product of matrices. A given
block of Q will be denoted as Q(i,j), 1 ≤ i, j ≤ N .

A block in the diagonal describes transitions inside a
macrostate:

Q(j,j)
k =

⎧⎪⎨
⎪⎩

Tk if ak ∈ AA
j

0k,k if ak ∈ AS
j

0 if ak ∈ AI
j

(1)

where 0i,i is a matrix of 0s of size ni × ni. Cases in (1) are:
• if a job is active, it evolves according to its infinitesimal

generator matrix;
• if a job is suspended, then it cannot change phase but it

contributes in the state space of the macrostate;
• an inactive job does not contribute to the description of

the macrostate (i.e., its contribution to the Kronecker sum
is a scalar 0).

An off-diagonal block describes transitions from a macrostate
to another. It is built as a sum of Kronecker products of
matrices, Q(i,j)

k,l , which describes what happens to activity ak

when the process arrives to macrostate j from macrostate i as
a consequence of finishing of activity al. These matrices are

Q(i,j)
k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk if ak ∈ AA
i and k = l and ak ∈ AI

j

fkbk if ak ∈ AA
i and k = l and ak �∈ AI

j

1k,1 if ak �∈ AI
i and k �= l and ak ∈ AI

j

Ik if ak �∈ AI
i and k �= l and ak �∈ AI

j

bk if ak ∈ AI
i and ak �∈ AI

j

1 if ak ∈ AI
i and ak ∈ AI

j
(2)

with i �= j and where Ik denotes an identity matrix of size nk

while 1n,m denotes a matrix of 1s of size n×n. Cases in (2)
are

• if a job is active in macrostate i, it ends and it is not
active in macrostate j, then its contribution is given by
its finishing vector;

• if a job is active in macrostate i, it ends and it is active
again in macrostate j, then its contribution is given by the
product of its finishing vector and its initial probability
vector;

• if a job is not inactive in macrostate i, it does not end
and it is inactive in macrostate j, then its contribution
is given by a vector 1s, i.e. we can simply “forget” the
phase of this job;

• if a job is not inactive in macrostate i, it does not end
and it is not inactive in macrostate j, then its contribution
is given by an identity matrix, i.e. the phase of this job
is maintained in the new macrostate;

• if a job is inactive in macrostate i and it is not inactive
in macrostate j, then its starting phase is determined
according to its initial probability vector;

• if a job is inactive in macrostate i and it is inactive in
macrostate j, then it does not contribute to the block.

III. COMPUTING PATH PROBABILITIES

Given a series of macrostates of length L,
i1, i2, . . . , iL, 1 ≤ ij ≤ N , 1 ≤ j ≤ L, let us denote
by Wi1,i2,...,iL

(t) the probability that the process, started
in macrostate i1, walks through the series of macrostates
arriving in macrostate iL in less than t time units. Naturally,
the process does not follow a given series of macrostates with
probability 1. The probability that the process goes through
the series without considering time will be denoted by
Wi1,i2,...,iL

(∞). The derivative of Wi1,i2,...,iL
(t) according

to t, which will be denoted by wi1,i2,...,iL
(t), provides the

possibly defective probability density function of the time
of arriving to macrostate iL walking through the series
i1, i2, . . . , iL. The nth moment of the time needed to go
through the series on condition that the model goes through
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Q =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊕A
i=1Q

(1,1)
i

∑
j:aj∈AA

1
p
(1,2)
j ⊗A

i=1 Q(1,2)
i,j . . .

∑
j:aj∈AA

1
p
(1,N)
j ⊗A

i=1 Q(1,N)
i,j

∑
j:aj∈AA

2
p
(2,1)
j ⊗A

i=1 Q(2,1)
i,j ⊕A

i=1Q
(2,2)
i . . .

∑
j:aj∈AA

2
p
(2,N)
j ⊗A

i=1 Q(2,N)
i,j

...
...

. . .
...∑

j:aj∈AA
N

p
(N,1)
j ⊗A

i=1 Q(N,1)
i,j

∑
j:aj∈AA

N
p
(N,2)
j ⊗A

i=1 Q(N,2)
i,j . . . ⊕A

i=1Q
(N,N)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
TABLE I

BLOCK STRUCTURE OF THE INFINITESIMAL GENERATOR OF THE CONSIDERED CLASS OF MARKOV CHAINS

the series will be denoted by W
(n)
i1,i2,...,iL

, i.e.,

W
(n)
i1,i2,...,iL

=
1

Wi1,i2,...,iL
(∞)

∫ ∞

0

tnwi1,i2,...,iL
(t)dt .

Our aim is to find a memory efficient way for the calculation
of the above introduced quantities.

In the following, in Section III-A, we describe how to
perform the calculation in a straightforward manner in time
domain, based on uniformisation. This way of calculation
requires the storage of possibly huge transient probability
vectors. Then, in Section III-B, we suggest a transform domain
procedure (i.e., based on calculating the Laplace transform of
the measure of interest) which can instead be implemented in
a memory efficient manner.

A. Calculation in time domain

In order to perform the calculations in time domain, we
construct a Markov chain, Mi1,i2,...,iL

, that corresponds to
the series of macrostates i1, i2, . . . , iL−1 and contains a single
absorbing state in the place of the states of macrostate iL. The
block structure of the infinitesimal generator of Mi1,i2,...,iL

is depicted in Table II. Note that a macrostate can be present
more than once in the series of macrostates i1, i2, . . . , iL and,
as a consequence, its states can be present more than once in
the state space of Mi1,i2,...,iL

. The initial probability vector
of Mi1,i2,...,iL

is

bi1,i2,...,iL
=
∣∣∣(⊗i:ai �∈AI

i1
bi

)
0 . . . 0

∣∣∣ , (3)

i.e., the process is started in macrostate i1 with initial proba-
bility vector that corresponds to the combination of the initial
probability vectors of the jobs that are not inactive in i1.

The probability thatMi1,i2,...,iL
is in its last state at time t is

equal to Wi1,i2,...,iL
(t), i.e., in order to calculate Wi1,i2,...,iL

(t)
we need to perform transient analysis of Mi1,i2,...,iL

. The
quantities wi1,i2,...,iL

(t) and W
(n)
i1,i2,...,iL

can also be computed
based on transient analysis. This can be done in time domain
by uniformisation. For what concerns memory, the chain itself
is “cheap” because it can be stored as Kronecker expressions
of small matrices. The transient probability vector instead has
to be stored explicitly which requires the storage of a vector
with as many entries as many states we have in Mi1,i2,...,iL

.

B. Calculation in transform domain

The following theorem provides an expression for the
Laplace transform of Wi1,i2,...,iL

(t) in terms of the blocks
of the matrix given in Table II.

Theorem 1. Let us denote the Laplace transform of
Wi1,i2,...,iL

(t) by W ∗
i1,i2,...,iL

(s), i.e.,

W ∗
i1,i2,...,iL

(s) =
∫ ∞

0

e−stWi1,i2,...,iL
(t)dt .

W ∗
i1,i2,...,iL

(s) can be computed as

W ∗
i1,i2,...,iL

(s) = s−1
(
⊗i:ai �∈AI

i1
bi

)
(
sI−Q(i1,i1)

)−1

Q(i1,i2)

(
sI−Q(i2,i2)

)−1

Q(i2,i3) · · · (4)(
sI−Q(iL−1,iL−1)

)−1

Q(iL−1,iL)e .

Proof: By time domain transient analysis of the Markov
chain,Mi1,i2,...,iL

, we have that Wi1,i2,...,iL
(t) equals the last

entry of the vector

bi1,i2,...,iL
exp(Qi1,i2,...,iL

t) (5)

where exp(•) denotes matrix exponential while bi1,i2,...,iL
and

Qi1,i2,...,iL
are as given in (3) and in Table II, respectively.

The Laplace transform of (5) is∫ ∞

0

e−stbi1,i2,...,iL
exp(Qi1,i2,...,iL

t)dt =

bi1,i2,...,iL
(sI−Qi1,i2,...,iL

)−1 (6)

where I denotes the identity matrix of the proper size. By con-
sidering the bi-diagonal block structure of Qi1,i2,...,iL

(shown
in Table II), the matrix inversion in (6) can be evaluated.
Performing (6) and taking its last entry result in (4).

Based on basic properties of the Laplace transform we
have that the Laplace transform of wi1,i2,...,iL

(t), denoted by
w∗

i1,i2,...,iL
(s), is

w∗
i1,i2,...,iL

(s) = sW ∗
i1,i2,...,iL

(s)

and Wi1,i2,...,iL
(∞) can be calculated as

Wi1,i2,...,iL
(∞) = lim

s→0
w∗

i1,i2,...,iL
(s) (7)
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Qi1,i2,...,iL
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q(i1,i1) Q(i1,i2) 0 · · ·
0 Q(i2,i2) Q(i2,i3) 0 · · ·

. . .
. . .

0 · · · 0 Q(iL−1,iL−1) Q(iL−1,iL)e
0 . . . 0 · · · · · · 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
TABLE II

INFINITESIMAL GENERATOR OF THE MARKOV CHAIN FOR THE COMPUTATION OF THE PROBABILITY OF WALKING THROUGH
MACROSTATES i1, i2, . . . , iL

while the moments, W
(n)
i1,i2,...,iL

, can be calculated based on
the derivative of w∗

i1,i2,...,iL
(s) as

W
(n)
i1,i2,...,iL

=

(−1)n

Wi1,i2,...,iL
(∞)

lim
s→0

dnw∗
i1,i2,...,iL

(s)
dsn

. (8)

The following theorem describes the derivative that needs to
be evaluated in (8).

Theorem 2. The nth derivative of w∗
i1,i2,...,iL

(s) at s = 0 is

lim
s→0

dnw∗
i1,i2,...,iL

(s)
dsn

=

(
⊗i:ai �∈AI

i1
bi

)⎡⎣L−1∑
j1=1

L−1∑
j2=1

· · ·
L−1∑
jn=1

L−1∏
j=1

(−1)cj1,...,jn,j

cj1,...,jn,j !
(
−Q(ij ,ij)

)−cj1,...,jn,j−1

Q(ij ,ij+1)

]
e (9)

where cj1,...,jn,j = #{k : jk = j, 1 ≤ k ≤ n}, i.e.,
cj1,...,jn,j denotes the number of occurrences of j in the vector
|j1, . . . , jn|.

Proof: We need to compute the derivative of the expres-
sion (

⊗i:ai �∈AI
i1
bi

)(
sI−Q(i1,i1)

)−1

Q(i1,i2)

(
sI−Q(i2,i2)

)−1

Q(i2,i3) · · ·(
sI−Q(iL−1,iL−1)

)−1

Q(iL−1,iL)e .

The result presented in (9) can be verified based on the fact
that

d (sI−Q)−1

dsn

∣∣∣∣∣
s=0

=

(−1)nn! (sI−Q)−n−1
∣∣∣
s=0

= (−1)nn!(−Q)−n−1

(where |s=0 denotes the value of the function at s = 0) and
by applying rules of derivative of a product and taking into
account that matrix multiplication is not commutative.

In (4) the quantities like(
sI−Q(j,j)

)−1

(10)

corresponds to the Laplace domain description of the process
inside a given macrostate. The matrix Q(j,j) is given as
the Kronecker sum of the matrices that describe the tasks
in macrostate j, i.e., Q(j,j) = ⊕A

i=1Q
(j,j)
i . The following

theorem provides the possibility of computing the entries of
(10) based on computations with the matrices Q(j,j)

i .

Theorem 3. Given the Jordan normal form of the matrices
Q(j,j)

i , 1 ≤ j ≤ N, 1 ≤ i ≤ A such that

Q(j,j)
i = Vj,iJj,iV−1

j,i

the terms in (4) corresponding to sojourns in macrostates can
be calculated as(

sI−Q(j,j)
)−1

=
(
sI−⊕A

i=1Q
(j,j)
i

)−1

=(⊗A
i=1Vj,i

) (
sI−⊕A

i=1Jj,i

)−1 (⊗A
i=1V

−1
j,i

)
. (11)

Proof: In order to simplify the notation we will omit the
reference to the macrostate (index j in (11)). Furthermore,
I will denote the identity matrix whose size corresponds to
the size of the macrostate (i.e., the identity matrix in (11))
while the identity matrices with different size will be denoted
differently. Applying the Jordan normal form and the definition
of Kronecker sum Q can be written as

Q = ⊕A
i=1Qi = ⊕A

i=1

(
ViJiV−1

i

)
=(

V1J1V−1
1

)⊗ I2 ⊗ · · · ⊗ IA+

I1 ⊗
(
V2J2V−1

2

)⊗ I3 ⊗ · · · ⊗ IA+

I1 ⊗ · · · ⊗ IA−1 ⊗
(
VAJAV−1

A

)
(12)

which, by writing Ii as ViIiV−1
i and applying compatibility

of ordinary and Kronecker product, becomes(
V1J1V−1

1

)⊗ (V2I2V−1
2

)⊗ · · · ⊗ (VAIAV−1
A

)
+(

V1I1V−1
1

)⊗ (V2J2V−1
2

)⊗ (V3I3V−1
3

)⊗ . . .

⊗ (VAIAV−1
A

)
+ · · ·+(

V1I1V−1
1

)⊗ · · · ⊗ (VA−1IA−1V−1
A−1

)⊗ (VAJAV−1
A

)
=(⊗A

i=1Vi

)
(J1 ⊗ I2 ⊗ · · · ⊗ IA)

(⊗A
i=1V

−1
i

)
+(⊗A

i=1Vi

)
(I1 ⊗ J2 ⊗ I3 ⊗ · · · ⊗ IA)

(⊗A
i=1V

−1
i

)
+ · · ·+(⊗A

i=1Vi

)
(I1 ⊗ · · · ⊗ IA−1 ⊗ JA)

(⊗A
i=1V

−1
i

)
.
(13)

The identity matrix, I, can be written as a Kronecker product
of identity matrices whose size corresponds to the sizes of
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Qi, 1 ≤ i ≤ A, as I1 ⊗ I2 ⊗ · · · ⊗ IA. Applying again
Ii = ViIiV−1

i and compatibility of ordinary and Kronecker
product, sI can be written as

sI = sI1 ⊗ I2 ⊗ · · · ⊗ IA =

sV1I1V−1
1 ⊗V2I2V−1

2 ⊗ · · · ⊗VAIAV−1
A =

s
(⊗A

i=1Vi

)
(I1 ⊗ I2 ⊗ · · · ⊗ IA)

(⊗A
i=1V

−1
i

)
. (14)

By considering (13) and (14), sI−Q can be written as(⊗A
i=1Vi

)
(sI1 ⊗ · · · ⊗ IA − J1 ⊗ I2 ⊗ · · · ⊗ IA−

I1 ⊗ J2 ⊗ I3 ⊗ · · · ⊗ IA − · · ·−
I1 ⊗ · · · ⊗ IA−1 ⊗ JA)

(⊗A
i=1V

−1
i

)
=(⊗A

i=1Vi

) (
sI−⊕A

i=1Ji

) (⊗A
i=1V

−1
i

)
. (15)

For two matrices, A and B, the inverse of ordinary and
Kronecker product have the properties

(AB)−1 = B−1A−1 and (A⊗B)−1 = A−1 ⊗B−1

and hence the inverse of sI−Q given in (15) becomes(⊗A
i=1V

−1
i

)−1 (
sI−⊕A

i=1Ji

)−1 (⊗A
i=1Vi

)−1
=(⊗A

i=1Vi

) (
sI−⊕A

i=1Ji

)−1 (⊗A
i=1V

−1
i

)
which concludes the proof.

Since the matrices Jj,i are resulting from Jordan decompo-
sitions, they are of an almost diagonal special form. Therefore,
the entries of (

sI−⊕A
i=1Jj,i

)−1

in (11) can be computed on the fly. Consequently, applying
(11) to the expression given in (4) (and also the one given in
(9) with s = 0 in (11)) can be evaluated based on computations
with small matrices without the necessity of storing large
vectors.

IV. JORDAN NORMAL FORM FOR SPECIAL CLASSES OF PH
DISTRIBUTIONS

In many applications special classes of PH distributions are
used. For this reason, in the following two subsection, we
describe the Jordan normal form for Erlang distributions and
for acyclic PH distributions.

A. Jordan normal form for Erlang distributions

An Erlang distribution with shape parameter equal to n
and rate parameter equal to λ can be represented as a PH
distribution with initial probability vector, b, and infinitesimal
generator, T, as

b =
∣∣ 1 0 . . . 0

∣∣ ,

T =

∣∣∣∣∣∣∣∣∣∣∣

−λ λ 0 · · ·
0 −λ λ 0 · · ·

. . .
· · · 0 −λ λ

· · · 0 −λ

∣∣∣∣∣∣∣∣∣∣∣

and the Jordan normal form of the generator is T = VJV−1

with

J =

∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 · · ·
0 −λ 1 0 · · ·

. . .
· · · 0 −λ 1

· · · 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
,

V =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · ·
0 λ−1 0 · · ·

. . .
· · · 0 λ−n+2 0

· · · 0 λ−n+1

∣∣∣∣∣∣∣∣∣∣∣
, (16)

V−1 =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · ·
0 λ1 0 · · ·

. . .
· · · 0 λn−2 0

· · · 0 λn−1

∣∣∣∣∣∣∣∣∣∣∣
.

In the following we provide the Laplace domain descrip-
tion of a macrostate in which all the tasks are of Erlang
distributed duration. In particular, consider a macrostate in
which we have E active Erlang distributed jobs and there
are not suspended activities. Let ni, λi and Ri with 1 ≤
i ≤ E denote the number of phases, the parameter and the
infinitesimal generator of the Erlang distributions, respectively.
In order to describe the process inside the macrostate in
transform domain we need to calculate the entries of the matrix(
sI−⊗E

i=1Ri

)−1
. This matrix is clearly of size

∏E
i=1 ni.

In order to describe it, we refer to its entries by the so-
called mixed based numbering scheme, that is, a given row (or
column) of the matrix is identified by a vector |i1, i2, . . . , iE |
with 0 ≤ ij ≤ nj − 1, 1 ≤ j ≤ E. Precisely, the vector
|i1, i2, . . . , iE | refers to row iE + nE(iE−1 + nE−1(iE−2 +
nE−2(iE−3 + . . . (i2 + i1n1) . . . ))) + 1. Based on (16) and
(11), by rather cumbersome but basic algebra, it can be shown
that the entry of

(
sI−⊗E

i=1Ri

)−1
in row |i1, i2, . . . , iE | and

column |j1, j2, . . . , jE | is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if ∃k : 1 ≤ k ≤ E and ik > jk(∑E
k=1 jk − ik

)
!
∏E

k=1 λjk−ik

k(∏E
k=1(jk − ik)!

)(
s +

∑E
k=1 λk

)1+
∑E

k=1 jk−ik

otherwise.

Entries of the matrix
(
sI−⊗E

i=1Ri

)−1
can be computed on

the fly based on the parameters of the Erlang distributions.
Moreover,

(
sI−⊗E

i=1Ri

)−1
is strongly structured with a high

number of repeated entries which can be exploited in the
computations. In order to show this feature, let us consider
the case E = 2 with n1 = 2, n2 = 3. In Table III(
sI−⊗E

i=1Ri

)−1
is given.

B. Jordan normal form for acyclic PH distribution

Acyclic PH distributions are frequently applied in modelling
because they have a canonical form with a relatively small
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
s + λ1 + λ2

λ2

(s + λ1 + λ2)2
λ2

2

(s + λ1 + λ2)3
λ1

(s + λ1 + λ2)2
2λ1λ2

(s + λ1 + λ2)3
3λ1λ

2
2

(s + λ1 + λ2)4

0
1

s + λ1 + λ2

λ2

(s + λ1 + λ2)2
0

λ1

(s + λ1 + λ2)2
2λ1λ2

(s + λ1 + λ2)3

0 0
1

s + λ1 + λ2
0 0

λ1

(s + λ1 + λ2)2

0 0 0
1

s + λ1 + λ2

λ2

(s + λ1 + λ2)2
λ2

2

(s + λ1 + λ2)3

0 0 0 0
1

s + λ1 + λ2

λ2

(s + λ1 + λ2)2

0 0 0 0 0
1

s + λ1 + λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
TABLE III(

sI −⊗E
i=1Ri

)−1
WITH E = 2 AND Ri DESCRIBING ERLANG DISTRIBUTIONS OF SIZE n1 = 2, n2 = 3 WITH PARAMETERS λ1 AND λ2

number of parameters [14] which can be exploited in PH
fitting problems [4], [3], [19]. In particular, any N -phase APH
distribution can be transformed into the form

b =
∣∣ b1 b2 . . . bN

∣∣

T =

∣∣∣∣∣∣∣∣∣∣∣

−λ1 λ1 0 · · ·
0 −λ2 λ2 0 · · ·

. . .
· · · 0 −λN−1 λN−1

· · · 0 −λN

∣∣∣∣∣∣∣∣∣∣∣
(17)

where we must have
∑N

i=1 bi = 1 and λi ≤ λi+1, 1 ≤ i ≤
N − 1. When all λis are different, the Jordan decomposition
of T results in T = VJV−1 with

J =

∣∣∣∣∣∣∣∣∣∣∣

−λ1 0 · · ·
0 −λ2 0 · · ·

. . .
· · · 0 −λN−1 0

· · · 0 −λN

∣∣∣∣∣∣∣∣∣∣∣
and entries of V and V−1 given as

[V]i,j =

⎧⎪⎪⎨
⎪⎪⎩

0 if i > j
1 if i = j∏j−i−1

k=0

λi+k

λi+k − λj
otherwise

[
V−1

]
i,j

=

⎧⎪⎪⎨
⎪⎪⎩

0 if i > j
1 if i = j∏j−i−1

k=0 (−1)i+j λi+k

λi − λi+k+1
otherwise.

(When some of the λis are equal, matrix J is not diagonal but,
naturally, it is a Jordan diagonal block matrix.) The above ex-
pressions clearly suggest the numerical difficulties connected
to the Jordan normal form of acyclic PH distributions. The
matrix V can become stiff for relatively small sizes as well.
We investigate this issue in practice in Section VI.

V. IMPLEMENTATION ISSUES

The complexity of computing the Jordan normal form de-
pends on the applied algorithm. It is at most O(n4). Since the

PH distributions describing event durations are small and/or
structured and we consider large Markov chains, this part
of the computation is negligible for what concerns execution
times. As it is illustrated in Section VI, the calculation of
the Jordan normal form is an ill-conditioned problem if the
eigenvalues are close to each other. This problem can be
tackled by an implementation that allows for computation with
arbitrary precision.

There are several algorithms available to perform Kronecker
products and sums, see [10] for a comparison. In order to
follow the process inside a macrostate, we have to multiply a
vector by an expression of the form of (11). This expression
contains two Kronecker products composed of matrices that
are either sparse or dense depending on the PH distributions
that represent task durations. In case of dense matrices the
fastest approach to perform the Kronecker product is the
perfect shuffles algorithm [25] while for sparse matrices other
algorithms presented in [10] perform better. The remaining
part of (11) involves calculations with almost diagonal matri-
ces and has a negligible effect on the execution time as it will
be illustrated in Section VI as well.

As described at the end of Section III-B, the computation
of the measures connected to a series of macrostates can
be performed storing only the matrices that describe the PH
distributions of the tasks (including their Jordan normal form).
This requires the application of (11) in (4) which requires
the implementation of several nested cycles. Proceeding this
way the execution times would become intolerable. We suggest
instead the storage of one vector initialised as

v = s−1
(
⊗i:ai �∈AI

i1
bi

)
(18)

and perform L− 1 times

v← v
(
sI−Q(ik,ik)

)−1

(19)

v← vQ(ik,ik+1) (20)

with 1 ≤ k ≤ L − 1 where (19) is performed in three parts
as suggested by (11). Hereinafter, the first and third part of
(11) will be referred to as Phase I of the computation, while
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the second part of (11) as Phase II. Phase III instead refers
to the computation of (20). Finally, the value of (4) is given
by ve. Proceeding this way, the peak length of v, i.e., the
peak memory consumption of the computation, is given by
the number of states of the largest macrostate in the series.

The inversion of the Laplace transform requires the evalu-
ation of (4) for a set of values of s. This requires to perform
(18-20) several times. A significant part of the computation for
different values of s are common. Therefore, the computations
can be sped up but the memory consumption increases since
we need to store a vector v for every values of s. We illustrate
this possibility in Section VI.

VI. NUMERICAL EXPERIMENTS

In this section we illustrate the numerical properties and the
execution times of the proposed approach.

Instead of considering a model describing a real phe-
nomenon, we apply the calculations to a model that illustrate
the numerical properties and the execution times well and
whose parameters are easy to change in order to see their
effect. Because of its simplicity, it is possible that the model
we consider hereinafter can be evaluated with other methods
in less time. However, the method we present in this paper
can be used to solve more complicated problems and the
simple model we use to illustrate its properties has the same
(or higher) computational complexity as a more complicated
model would have. The experiments were performed on a
standard portable computer with processor operated at 2GHz
and with 2GB of RAM. Our implementation is written in C.

As example I we consider a series of L macrostates in which
in every macrostate there are A running activities. The PH
distributions representing the duration of the activities are of
the same size (denoted by n), general (i.e., the infinitesimal
generators, Ti, 1 ≤ i ≤ A, are full matrices) and randomly
generated. Finishing of the first activity takes the model from
a macrostate to the following one. In the following macrostate
the activity restarts while the others keep on executing. Passing
through the series means that the first activity was executed
L − 1 times before any of the other activities finished their
task. The process inside a macrostate is described simply by
the Kronecker sum of the generators of the activities, i.e.,

Q(i,i) = ⊕A
k=1Tk.

The transition from a macrostate to another is described by

Q(i,i+1) = f1b1 ⊗
(⊗A

k=2Ik

)
, (21)

i.e., the first activity terminates and restarts while the others
remain in the phase they were. The initial probability vector
in the first macrostate is given by

⊗A
k=1bk.

We compute the probability of passing through the series
which is given by (7) and (4) as

(⊗A
k=1bk

)(L−1∏
i=1

((
−Q(i,i)

)−1

Q(i,i+1)

))
e. (22)
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Fig. 1. Time of computation in case of jobs represented by PH
distributions of the same size (example I)
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Fig. 2. Size of the macrostate in case of jobs represented by PH
distributions of the same size (example I)

By computing the Jordan normal form of the infinitesimal
generators of the PH distributions, Tj = VjJj (Vj)

−1,
according to Theorem 3 we have that(
−Q(i,i)

)−1

= ⊗A
j=1Vj

(−⊕A
j=1 Jj

)−1 ⊗A
j=1 (Vj)

−1
.

In the following we report on execution times for L = 2,
i.e., we have only one factor in the product in (22). For other
values of L, the computation times can simply be achieved by
multiplying the reported numbers by L − 1 (e.g., for L = 3
one has to compute the reported numbers by 2). The reported
execution times do not include the Jordan decomposition
because for large models its effect is negligible. Figure 1
depicts the total time needed to perform (22) for different
values of A and different degrees of the PH distributions
representing the tasks. On Figure 2 we show the size of one
macrostate of the series which is equal to nA. The size of one
macrostate corresponds to the length of the vector that has to
be stored in order to perform the computation. Note that the
amount of memory needed does not depend on L. The curves
finish at a given point for higher values of A because there is
not enough RAM in our computer to go further.

For what concerns other measures, computing the nth
moment of the time needed to pass through the series is Ln

times the time indicated in Figure 1.
In order to stress the strength of the proposed method, let

us compare it against the time domain approach. With the
time domain approach one should store a vector with as many
entries as many states are involved in the series of macrostates.
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Fig. 3. Time of computation in phase I in case of jobs represented
by PH distributions of the same size (example I)
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Fig. 4. Time of computation in phase II in case of jobs represented
by PH distributions of the same size (example I)

For example I, this means that one needs a vector with LnA

entries. With our approach we need a vector of size nA. As
a consequence, the probability of performing the series, for
example, with L = 100, n = 15 and A = 5 cannot be
computed in reasonable amount of time in time domain (it
would require storing entries of the transient probability vector
on the hard disk) but can be computed with the proposed
method in about 150 seconds.

In Figures 3-5 we report on computation times connected
to different phases of the computation. Phases I and II refer
to the calculations inside a macrostate. In particular, phase I
refers to multiplication by ⊗A

i=1Vj,i and ⊗A
i=1 (Vj,i)−1

while phase II to multiplication by
(−⊕A

j=1 Jj

)−1
. Phase

III refers instead to the transition from one macrostate to the
following one, i.e., to the multiplication by the expression
given in (21). One can observe that performing phase II is
the lightest part of the computation. The execution time of
phase III is approximately the half of the execution time of
phase I. This is due to the fact that in our implementation we
use the same function to perform phase I and phase III (since
both correspond to multiplication by a Kronecker product of
matrices). Note, however, that while in phase I the matrices
involved in the Kronecker product are dense (they are the result
of the Jordan decomposition of Ti, 1 ≤ i ≤ A), the matrices
involved in phase III are not. With an implementation that
exploit this characteristics of the computation, phase III could
be made drastically faster, speeding up the total computation
by about 25%.
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Fig. 5. Time of computation in phase III in case of jobs represented
by PH distributions of the same size (example I)

size A composition phase I phase II phase III

28 4 22222222 2.53e-04 2.63e-05 1.13e-04
28 2 2424 3.45e-04 2.88e-05 1.60e-04
28 2 2226 6.70e-04 2.86e-05 3.27e-04
28 3 222224 2.80e-04 2.89e-05 1.34e-04

212 6 222222222222 5.70e-03 4.04e-04 2.62e-03
212 4 23232323 5.85e-03 4.08e-04 2.82e-03
212 3 242424 7.69e-03 4.33e-04 3.67e-03
212 2 2626 3.10e-02 4.19e-04 8.38e-03
212 4 22222424 6.85e-03 4.30e-04 3.41e-03
212 4 22222226 1.25e-02 4.17e-04 6.41e-03
212 5 2222222224 6.69e-03 4.10e-04 3.03e-03

220 5 2424242424 4.72e+00 1.02e-01 2.33e+00
220 4 25252525 6.14e+00 1.09e-01 3.05e+00
220 5 2223242526 6.27e+00 1.10e-01 3.12e+00
220 5 2323242525 5.39e+00 1.09e-01 2.73e+00

TABLE IV
EXECUTION TIMES OF EXAMPLE II WITH DIFFERENT
COMPOSITIONS OF THE CONSIDERED MACROSTATE

As example II we consider the same model but with PH
distributions of different size. In Table IV execution times are
reported. The first column gives the size of one macrostate, the
second the number of active running tasks and the third the
sizes of the PH distributions. The remaining three columns
give the time needed to perform the different phases of the
computation. One can observe that the more activities are
present in a macrostate, the faster is the execution of phase
I and III. Also, the more homogeneous the sizes of the
active tasks are, the faster will phase I and III be performed.
Execution time of Phase II instead does not depend on the
structure of the macrostate.

In the following we turn back to example I. We illustrate
that by applying inverse Laplace transform it is possible to
compute the probability that the model passes through the
series of macrostates in a given amount of time. In particular,
we consider example I with A = 4 and n = 10 and different
values of L. The PH distributions are random but with mean
set to 1 for the first activity and to 5 for the remaining three.
The results are depicted in Figure 6. Naturally, the probability
that the first activity succeeds in finishing it tasks L times
before any other activity finishes decreases as L increases.
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Fig. 6. Probability of performing the path in a given amount of time
for example I
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Fig. 7. Estimation of error of the inverse Laplace transform for the
probabilities presented in Figure 6

The inverse Laplace transform was performed by applying
Weeks’ method as provided in [27], [16]. With this method
the Laplace transform, f∗(s), has to be evaluated at a set of
complex values of s. Then, the function in time domain, f(t),
is reconstructed based on these values of f∗(s). It is important
that the method uses the same set of complex values of s to
determine f(t) for any t, i.e., f(t) can be determined at any
number of values of t based on the same set of values of f∗(s).
The number of complex values of s has a strong impact on
the precision of the inverse transform. The numbers depicted
in Figure 6 were generated with 29 values of s. Calculating
f∗(s) for a given value of s requires the same computational
effort as computing the probability of passing through the
series (because it is computed at s = 0). Calculation of the
transient curve in Figure 6 with L = 5 takes about 72 seconds
when the computations are made in an independent manner
for different values of s and requires the storage of a vector
of complex numbers of length 10000. As it was discussed
briefly in Section V, it is possible to spare computations if the
calculations are performed in parallel for every value of s. This
requires less time, about 9.5 seconds, but much more memory
because we need to store 29 vectors of complex numbers of
length 10000.

Weeks’ method provides the possibility of estimating the
error. Figure 7 depicts the estimated error as function of time
for different number of values of s for L = 20. Other values
of L yielded almost precisely the same error estimation.

In order to investigate the numerical problems caused by the
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Fig. 8. Estimated number of accurate digits for example I with A = 2
and L = 2 with PH distributions in canonical form (CF) and general
PH distributions (PH)

necessity of Jordan decomposition, we consider once again
example I with A = 2 and L = 2 and the computation of
passing through the series. With Mathematica it is possible to
perform the calculations with arbitrary precision (i.e., we can
define with how many digits the input parameters are stored
and all the calculations are performed according to the chosen
precision). Then, having performed the calculation, Mathemat-
ica is able to give an estimation of the number of digits that
are accurate in the result. We distinguished two cases: PH
distributions in canonical form as given in (17) and general PH
distributions (with full infinitesimal generator). Moreover, in
both categories we generated random infinitesimal generators
whose entries (apart from the diagonal) are in a given range.
The ranges were [1, 2], [1, 10] and [1, 100]. Figure 8 depicts the
resulting precisions for PH distributions of size 10 and 25. For
general PH distributions neither the range of the parameters
nor the size changes the resulting precision. The precision
of the output is almost equal to the precision of the input
and grows linearly with the precision of the input. On the
contrary, for PH distributions in canonical form the precision
of the output can be much lower than that of the input and,
the narrower the range of the parameters is, the lower is the
precision of the output. This is caused by the fact that for PH
distributions in canonical form, narrower range of parameters
results in an infinitesimal generator whose eigenvalues are
close to each other which makes the computation of the Jordan
normal form ill-conditioned and the resulting matrices stiff.
For example, with 25 phases and parameters in the range [1, 2]
we need to work with at least 50 digits precision in order to get
a single precise digit in the result. The good news is, however,
that precision of the output is growing linearly with precision
of the input.

VII. CONCLUSION

In this paper we provided a method for the memory efficient
calculations of measures connected to paths of macrostates in
a class of large structured Markov chains. The technique is
based on computing the Laplace transform of the measures
of interest. The numerical properties and the execution times
of the calculations were discussed based on an illustrative
example.
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In the future we plan to work on an implementation which
allows for control of the precision of the results, to investigate
the possibility of computing other measures of interest based
on Laplace transform and to apply the technique to real
problems.
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