
Enabling Conversations with Web Services

L. Ardissono, A. Goy and G. Petrone
Dipartimento di Informatica - University of Torino

Corso Svizzera 185 - Torino, Italy

{liliana, goy, giovanna}@di.unito.it

ABSTRACT
The emerging standards for the publication of Web Services
enable the invocation of services having simple interaction
protocols, but they fail to support complex e-business inter-
actions, where the peers exchange several messages. In or-
der to extend the classes of services which can be invoked by
the consumers, we propose a conversational model support-
ing the management of complex interactions between clients
and Web Services. Our model supports the consumer in the
management of a conversation which respects the business
logic of the service without imposing the explicit manage-
ment of the conversational context.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Inter-
face definition languages

General Terms
Languages

Keywords
Conversational agents, Web Services

1. INTRODUCTION
Web Services are subject to several limitations that re-

duce their applicability to realistic domains. For instance,
the management of the interaction between the client and
the service provider is difficult, unless very simple tasks are
requested. In fact, the emerging communication standards,
such as WSDL [23], support simple interactions, structured
as question-answer pairs, but they are not expressive enough
to define conversations including more than two turns. The
fruition of services may require non trivial conversations be-
tween the consumer and the provider. For instance, during
the interaction with a Web Service selling medium complex-
ity, configurable items (e.g., bicycles), the specification of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03,July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-6683-8/03/0007 ...$5.00.

the item features may require more than one interaction
step; moreover, failures may occur and have to be repaired
before the solution for the consumer is generated. Finally,
the Web Service might need to suspend the interaction, e.g.,
waiting for a sub-supplier, or a human operator to contribute
to the generation of the solution.

This paper presents a conversational model aimed at ex-
tending the conversational capabilities of Web Services, by
supporting complex interactions, where several messages
have to be exchanged before the service is completed, and
the conversation may evolve in different ways, depending
on the state and the needs of the two participants. The
proposed model has been defined by taking the speech-act
theoretical model of dialog management [17, 7] as a starting
point. However, it has been simplified to take into account
two main factors: on the one hand, the types of interac-
tion to be supported are complex, but not as flexible as
human-computer dialog; on the other hand, the open Web
environment imposes important scalability requirements.

We assume that the matching phase between service de-
scription and request has been performed and we focus on
the service execution phase, by providing an explicit rep-
resentation of the possible flow of the interaction. Our
approach separates the specification of the conversational
model from the implementation of the peers (e.g., the in-
ternal workflow specification), in order to support a simple
specification of their external behavior, which can be suit-
ably bound to the peers’ internal implementation; see also
[22] and [12]. Each peer should conform to the specified
conversational behavior, depending on the role it fills (client
or supplier). In particular, we propose a framework that en-
ables the provider to assist the consumer during the service
invocation in order to satisfy two main goals: first, we want
to guarantee that the consumer respects the constraints im-
posed by the business logic declared in the provider’s con-
versational flow. Second, we want to make this task as light
as possible for the consumer, in order to enhance the appli-
cability of our approach.

Section 2 provides background on the Web Services com-
munication. Section 3 presents a conceptual dialog model
based on speech acts. Section 4 proposes a framework for the
lightweight management of conversations with Web Services,
specifying the representation language and a framework for
the server-side management of the interactions. Section 5
discusses some related work and closes the paper.

2. BACKGROUND
In order to improve the description of services in the Web,

Inform(S, C, BookedRooms(S,nrOfRooms,hotel,reservNr))

Inform(S, C, HasAvailableRooms(hotel,nrOfRooms))

Request(C, S, BookRooms(S,nrOfRooms,hotel,cardN)))

Failure(S, C, BookRooms(S,nrOfRooms,hotel,cardN)))

Query-if(C, S, HasAvailableRooms(hotel,nrOfRooms))

Inform(S, C, not(HasAvailableRooms(hotel,nrOfRooms)))

Figure 1: Speech-act based interaction flow for the hotel booking service.

the Semantic Web community is defining standards for the
representation of semantic Web Services [15, 18]. These
standards propose semantic representations of the interface
and structure of a service and might represent the future ap-
proach to the publication of services in the Web. However,
at the current stage, the semantic approach is still under
development and a simpler approach, based on the current
specification standards, is needed to improve the interaction
with Web Services. In this perspective, an important issue
is the support for a flexible type of communication between
service consumers and providers. This issue has to be ad-
dressed to provide non-trivial services and can be handled
by offering an effective mechanism to help the consumer to
interact with the provider in the correct way, i.e., by re-
specting the constraints imposed by the business logic of
the service.

The emerging standards for the definition of Web Services,
such as WSDL [23], support the publication of elementary
services. However, when complex services are defined, the
flow of the operations to be performed cannot be specified.
Therefore, the client may send the requests in the wrong
order, possibly violating service preconditions which might
cause the failure of the overall service. To regulate the peer-
to-peer interaction, an explicit specification of the possible
sequences of messages to be exchanged is needed. In the
multi-agent systems research, this issue has been addressed
by defining coordination protocols such as the FIPA Con-
tract Net [10], and JAFMAS conversations [6]. However,
the application of these approaches is not straightforward
because it requires the agreement on specific communication
languages and interaction protocols, such as in the AgentC-
ities project [1]. Within the multi-agent systems area, the
definition of middle agents has also been proposed to provide
intelligent mediation services and coordination capabilities
[14]. However, middle agents mainly focus on the flexible se-
mantic matching between service descriptions and requests,
leaving the possibly complex execution of the selected ser-
vice as an open issue.

In the following subsections, we describe our proposal by
introducing two alternative approaches to the representation
of the conversation flow. Moreover, we sketch a framework
for the development of conversational Web Services which
we are implementing.

3. A SPEECH-ACT BASED REPRESENTA-
TION OF CONVERSATIONS

Traditionally, social behavior of human and software
agents in task-oriented interactions has been described by
exploiting finite state automata [19]; moreover, hierarchical
scripts and plan-based approaches have been introduced to

model more complex, goal-oriented behavior; e.g., [5, 16,
10]. If we consider Web Services and their clients as in-
teracting agents, the same approaches could be considered
for modeling their conversational behavior. As the action-
based conversational management approach is particularly
clear, we will first use it to describe our proposal at a con-
ceptual level, even though it will not be applied as it is for
the reasons explained at the end of this section.

As a concrete example for the specification of conversation
flow, we consider an hotel booking service: in order to book
a room, the client is expected to start the interaction by
asking if there are any available rooms. If all the rooms are
booked, the interaction must stop. Otherwise, the client can
provide the possibly private information needed to complete
the transaction, such as the credit card number. Figure 1
shows a possible representation of the admissible turn se-
quences in the hotel booking service. Each action specifies
a speech act representing a conversational turn performed
by one of the peers; we have named the speech acts accord-
ing to the FIPA specifications. We consider two main con-
versational roles: the client (consumer, C) and the service
provider (S). The first parameter of a speech act represents
the role filler that should perform the speech act, i.e., the
agent sending the message. The second parameter denotes
the recipient and the third parameter represents the content
of the speech act. The arcs represent the possible turn se-
quences and the actions having more than one output arc
represent situations where alternative speech acts can fol-
low a certain turn, i.e., the responding peer is expected to
perform only one of the turns. The interaction starts with
the Query-if action, where the consumer (C) asks the ser-
vice provider (S) whether the hotel has at least nrOfRooms
available rooms (HasAvailableRooms(hotel, nrOfRooms)).
The service provider may answer positively (Inform(S, C,
HasAvailableRooms(hotel, nrOfRooms))), or negatively (In-
form(S, C, not(HasAvailableRooms(hotel, nrOfRooms)))).
In the second case, the interaction has to be terminated,
as there is no way to book the rooms. In the first case,
the client may request to book a certain number of rooms,
by providing a credit card number (Request(C, S, Book-
Rooms(S, nrOfRooms, hotel, cardN))). At this point, there
are two possible continuations: the service provider notifies
the client that the rooms have been booked and provides
a reservation number (Inform(S, C, BookedRooms(S, nrOf-
Rooms, hotel, reservNr))), or the booking action has failed
(Failure(S, C, BookRooms(S, nrOfRooms, hotel, cardN))).
The failure is a possible continuation because, although the
room availability was checked before starting the transac-
tion, in the meanwhile, some rooms might have been booked
by other customers. Also exceptions might be handled: for

instance, the customer might enter a wrong card number, or
the card might be blocked.

The interaction flow specified in Figure 1 is simpler than
the typical (hierarchical) plans used in human-computer task-
oriented dialogs (see [5]), because we need to model much
simpler and predictable types of interaction. In particu-
lar, we have not specified any conditions on the actions of
the pre-compiled action sequences in order to minimize the
amount of information that has to be understood by the
consumer. A peer may choose a specific course of action
on the basis of its internal state, which may depend on the
(un)successful execution of actions that the other peer does
not need to be informed about. For instance, if the service
provider informs the client that there are (not) available
rooms, the client does not need to know the reason deter-
mining the answer: the only relevant fact is the performed
speech act. In this way, the only type of information to
be understood by both partners is the correct sequence of
speech acts that can be executed.

The described conversational model enables a consumer
agent to require the services provided by another agent by
conforming to a specific interaction flow. In fact, if we as-
sume that the service provider publishes the conversation
script, the client may interpret it and start the interaction
by performing the first turn specified in the script. Then,
depending on the provider’s reaction, the client can perform
the correct turns, until the end of the interaction. However,
this approach is not applicable to the current situation of
Web Services, for the following reasons:

• The imposition of speech acts on Web Services, now
publishing services by means of very simple languages
(RPC invocations or WSDL services) is not realistic;

• The client is required to interpret both the speech acts
and the conversation script published by the service
provider. Moreover, to identify the admissible reac-
tions to the provider’s turns, the client has to maintain
an internal representation of the interaction context:
for example, the current focus of the conversation, i.e.
the last executed action. The last requirement imposes
supplementary efforts on the consumer than those re-
quired to invoke standard Web Services.

To support lightweight conversations, we propose a different
approach, which uses emerging standards for the represen-
tation of the workflow and relies on the service provider for
the control of the interaction.

4. LIGHTWEIGHT CONVERSATION MAN-
AGEMENT

We propose that the service provider guides the consumers
in the fruition of services by specifying, at each step of the
interaction, the set of eligible turns they may perform. In
this way, each client can rely on explicit instructions to cor-
rectly invoke the providers. Of course, to provide a picture of
the admissible interaction flows, the service provider could
publish both the service and the flow descriptions. This
information represents documentation and can be used by
the client to suitably bind the service invocations to its own
business logic.

Each service has to be invoked with an initial request,
performed by the client to trigger the interaction with the

service provider. When the provider receives an init re-
quest, it responds by performing an agreement notification
(or a rejection message if the interaction cannot be carried
out).1 In the same message, the service provider also spec-
ifies the set of alternative turns that the client may reply
with. Such turns are invocations of the operations that the
service provider can perform at that stage of the interaction.
For instance, as far as the hotel booking service is concerned,
after the agreement notification, the client may invoke the
room availability check. After a confirmation that there are
enough available rooms, the client can book the rooms, and
so forth.

When the client receives the response, it has to retrieve
the eligible operations, specified in the message. Then, the
client has to choose the one to be invoked, sending back
the request. The conversation continues in the same way,
with the service provider performing the requested action
and sending back results and possible continuations.

From the viewpoint of the client, this approach supports
a seamless management of the interaction with the service
provider. In fact, it only imposes the init operation as
the initiation of any conversation, and the retrieval, from
each incoming message, of the set of eligible continuations
to choose from. The eligible operations are specified in the
individual messages because they change along time. In con-
trast, the definition of the services needed to invoke them is
provided in the public service specification.

The service provider, in addition to managing its own ac-
tivities, has to guide the conversation with the client by
computing the eligible reactions to its own turns. To this
extent, the service provider has to maintain an explicit in-
teraction context, storing the interaction status, and the last
performed turn.2 However, this is not an extra-overhead for
the service provider, which has anyway to know the status
of the interaction, in order to carry out the activities related
to the requested services.

4.1 Simplified specification of conversations
To summarize, we propose that:

• The service provider publishes the services by specify-
ing the operations that can be invoked by the clients;

• The service provider maintains a local interaction con-
text, for each active conversation.

• Within each individual conversation, the service
provider informs the client about the admissible
turns it may perform, at each step.

The services can be published in a standard format, such
as RPC interfaces, or WSDL operations. Moreover, the
messages to be exchanged by the peers can be seamlessly
extended with turn management information. Being imple-
mented as SOAP messages, such information can be added
as new parts in the message body [21]. Thus, only the repre-
sentation of the conversation flow has to be simplified, with
respect to the speech-act based approach, in order to make

1This extends the flow in Figure 1: the init message is the
new root node and has an output arc entering the service
provider’s agreement message. The agreement message has
an output arc entering the room availability check node.
2As the service provider may communicate with multiple
clients in parallel, a separate interaction context has to be
maintained for each active conversation.

SendM(C, S, CheckAvailableRooms(hotel, nrOfRooms))

SendM(S, C, UpdatePositive(hotel, nrOfRooms)) SendM(S, C, UpdateNegative(hotel, nrOfRooms))

SendM(C, S, BookRooms(nrOfRooms, hotel, cardN)))

SendM(S, C, Failure(nrOfRooms, hotel, cardN)))

SendM(S, C, UpdatePositive(nrOfRooms, hotel, reservNr))

Figure 2: Portion of the simplified workflow description for the hotel booking service.

our proposal applicable to real cases. The specification of
the interaction flow can be simplified as follows:

• The interaction turns can be modeled as generic con-
versational activities, by omitting the performed speech
act (Inform, Query-if, etc.). Each turn corresponds to
a send message (sendM) activity, whose parameters
specify the actor (the sender of the message), the re-
cipient and the content (involved operation). For in-
stance, Query-if(C, S, HasAvailableRooms(hotel, nrOf-
Rooms))) in Figure 1 is replaced with SendM(C, S,
CheckAvailableRooms(S, hotel, nrOfRooms)), where
CheckAvailableRooms is a domain-specific operation.
Moreover, the Inform(S, C, HasAvailableRoom(hotel,
nrOfRooms)) is replaced by SendM(S, C,
UpdatePositive(hotel, nrOfRooms)), where
UpdatePositive (UpdateNegative) is a belief revision
operation: the beliefs of the peer performing the oper-
ation are changed as specified by its arguments.

• The actors of the operations specified as the third argu-
ment of the sendM activities can be omitted, because
they coincide with the recipients of the messages.

Figure 2 shows the simplified representation of the interac-
tion flow. Although this representation does not support
the specification of different types of speech acts, with their
semantics [20], the send message activities can be seen as
requests to perform domain-specific operations; thus, the in-
teraction is modeled as a sequence of turns where one of the
peers requires that the other peer performs an operation.
The conversational activity is clearly separated from the
domain-specific behavior: similar to the speech-act based
approaches, a send message activity specifies the required
domain-specific behavior at the object level, as one of its ar-
guments [7]. Thus, the conversational turns specified in the
diagram of Figure 2 can be understood by the consumer,
provided that the service provider describes in some way
(even as natural language annotations) the meaning of the
object level operations. Notice also that each turn is an
asynchronous message, which one of the peers performs to
carry the conversation one step forward. If the partner that
should perform the next turn does not respond, the interac-
tion is suspended, with time out.

4.2 WSFL-like specification of a conversation
We decided to represent the conversation flow by exploit-

ing, as far as possible, an emerging standard for the rep-
resentation of workflow in Web Services: the IBM’s WSFL

<types>
<schema targetNameSpace=

"http://example.com/hotelBook.xsd"
lns="http://www.w3c.org/2000/10/XMLSchema">

<element name="Book">
<complexType>
<all>

<element name="hotel" type="string"/>
<element name="nrOfRooms" type="integer"/>
<element name="cardN" type="integer"/>

</all>
</complexType>

</element>

<element name="PositiveResult">
<complexType>
<all>

<element name="res" type="string"/>
</all>

</complexType>
</element>

<element name="Exception">
<complexType>
<all>

<element name="res" type="string"/>
<element name="comment" type="string"/>

</all>
</complexType>

</element>
</schema>
</types>

Figure 3: XML-schema definition of data types.

[13] service composition language.3 This language enables
a Web Service consumer to integrate the services offered by
multiple providers by specifying several types of informa-
tion. For instance, it includes an explicit declaration of the
roles to be filled in the workflow and of the binding of such
roles to concrete Web Service providers. Moreover, it sup-
ports the definition of state diagrams specifying the partial
order relations between the services (operations) to be com-
posed. Finally, it relies on WSDL for the definition of the
integrated service and of the bindings to specific communi-
cation protocols, such as SOAP over HTTP. As WSFL is
aimed at service composition, its syntax has to be extended

3WSFL has evolved in the Business Process Execution
Language for Web Services (BPEL4WS)[8], which merges
WSFL and Microsoft XLang and is positioned to become
the Web Services standard for composition.

<message name="BookRooms">
<part name="body" element="xsd:Book"/>

</message>

<message name="OK">
<part name="body"

element="xsd:PositiveResult"/>
</message>

<message name="Fault">
<part name="body" element="xsd:Exception"/>

</message>

<portType name="HotelBookingPortType">
<operation name="Booking">
<output message="tns:BookRooms"/>

</operation>

<operation name="Confirmation">
<output message="tns:OK"/>

</operation>

<operation name="Error">
<output message="tns:Fault"/>

</operation>
</portType>

Figure 4: WSDL representation of operations.

to represent conversation-specific activities. For instance,
WSFL only defines supplier roles, because it corresponds to
the viewpoint of the service integrator. However, in a con-
versation, both the client and the service provider are active
partners and must be represented. In spite of the required
syntax extensions, we decided to use such a language, as it
represents an already defined proposal, instead of introduc-
ing a totally different representation language.

In the following, we describe a WSFL-like representation
of the hotel booking service. We first describe the WSDL
operations; then, we describe the conversation flow by com-
posing such operations. We assume that the client is able
to interpret a WSDL specification, while it does not need
to know WSFL. The WSFL specification is used by the ser-
vice provider to manage the interaction flow by employing
a suitable workflow engine.

4.2.1 WSDL specification of operations
Figures 3 and 4 show the WSDL representation of the ho-

tel booking service. More specifically, Figure 3 shows a por-
tion of the XML-schema defining the structure (action-name
and arguments) of the object level actions. For instance, the
Book action has three arguments: the hotel (a string), the
nrOfRooms and the cardN (two integer variable). Moreover,
the PositiveResult action has one argument res storing the
description of the result of an event. Such actions are the sig-
natures of methods to be executed by a peer when it receives
a message from its conversational partner. For instance, the
Book action corresponds to a method used by the service
provider to reserve a number of hotel rooms. Moreover, the
PositiveResult and NegativeResult actions are belief revision
methods aimed at collecting positive or negative results.

Figure 4 shows the abstract definition of some operations
published by the service; moreover, it shows the port type
grouping the operations. Each operation is characterized
by a name and a message to be handled. The message is

specified as follows:

• The structure of the message is defined by specifying
the type of the action to be included in its body. For
instance, the message to be handled in the Booking op-
eration has as its body an action of type BookRooms.

• The direction of the message is specified: in the stan-
dard WSDL specification, all the operations are de-
scribed from the service provider’s viewpoint and they
include one or more messages between the peers. In
particular, there are input and output messages, where
input messages represent the messages to be received
by the service provider and output messages represent
those that the provider sends to the client. For in-
stance, a typical WSDL operation includes an input
message requesting the execution of a method and an
output message returning the result to the client.
In our approach, we avoid assembling multiple turns
within the same operation. Moreover, the operations
can be performed either by the service provider, or by
the client. Thus, all the messages are declared as out-
put messages as they are, indeed, messages which the
actor sends to the recipient.

4.2.2 WSFL-like specification of conversation flow
Given the WSDL specification of the operations, the in-

teraction flow can be represented by defining the conversa-
tional activities to be performed by the peers and the par-
tial order relations between such activities. The activities
correspond to the send message actions (sendM) shown in
Figure 2. Each activity is characterized by a name and the
arguments: the actor, the recipient and the content opera-
tion, which represents the object level operation requested
by sending the message to the peer. Figure 5 shows a portion
of the flow model for the hotel booking service:4

• The “serviceProvider” and “client” specifications char-
acterize the two conversational roles and the peers fill-
ing such roles.

• Some of the activities to be carried out by the peers
are defined by specifying the requested WSDL oper-
ation and the actor that should perform the activity.
For instance, activity “sendBookingRequest” has to
be performed by the client and has as its content the
“BookRooms” operation; the client requests that the
service provider books the rooms.

• The controlLink specifications define the partial order
relations between activities.

The operations associated to complex domain-specific ac-
tions, such as BookRooms, are triggered by the consumer
by means of a message and are executed by the service
provider. In contrast, the provider typically requests the
client to perform confirmation, disconfirmation and error
operations, needed to collect the results of the performed

4The “client” and “actor” labels are extensions to the orig-
inal WSFL syntax. Moreover, no dataLinks are defined,
because, different from the representation of a domain-level
workflow, no sub-suppliers are invoked; thus, no instantiated
parameters have to be passed in such invocations. Finally,
some of the controlLink relations refer to activities which we
could not specify due to the space constraints.

<flowModel name="HotelBookingFlow"
serviceProviderType="HotelService">

<serviceProvider name="hotelServer"
type="HotelServiceWS">

<locator type="static"
service="ourHotelServer.com"/>

</serviceProvider>
<client name="client" type=""/>

<activity name="sendBookingRequest">
<performedBy actor="client"/>
<implement>

<export>
<target portType="hotelServicePT"

operation="Booking"/>
</export>

</implement>
</activity>

<activity name="sendBookingConfirmation">
<performedBy actor="hotelServer"/>
<implement>

<export>
<target portType="hotelServicePT"

operation="Confirmation"/>
</export>

</implement>
</activity>

<activity name="sendErrorMessage">
<performedBy actor="hotelServer"/>
<implement>

<export>
<target portType="hotelServicePT"

operation="Error"/>
</export>

</implement>
</activity>

<controlLink source="sendAvailabilityRequest"
target="sendConfirmation"/>

<controlLink source="sendConfirmation"
target="sendBookingRequest"/>

<controlLink source="sendBookingRequest"
target="sendBookingConfirmation"/>

</flowModel>

Figure 5: WSFL-like conversation flow specification.

tasks. This is the reason why, in the conversation flow, the
activities performed by the client have domain-specific oper-
ations as their argument. In turn, most activities performed
by the service providers are acknowledgments that the previ-
ously requested operations were (un)successfully performed,
or results of such operations.

Figure 6 shows, at the conceptual level, the complete spec-
ification of the conversation flow of the hotel booking ser-
vice. The nodes specify the send message activity to be
performed in each turn. The sendM activity has the fol-
lowing arguments: the actor, the recipient and the name of
the requested WSDL operation. Moreover, if the actor is the
service provider, the sendM activity has a further argument,
storing the list of the possible continuations of the conver-
sation. As already mentioned, the turn-related information
is stored in the body of the SOAP message, as a separate
part. In the figure, we have added in bold the name of the
requested WSDL operation, in order to help the reader to

SendM(S, C, OK(res))

SendM(S, C, OK(res), nextOperations)

SendM(C, S, BookRooms(nrOfRooms, hotel, cardN)))

SendM(S, C, Fault(res, comment)))

SendM(C, S, CheckAvailableRooms(hotel, nrOfRooms))

SendM(S, C, KO(res))

CheckAvailability

Confirmation Disconfirmation

Booking

Confirmation Error

SendM(C, S, InitConversation())
InitInteraction

SendM(S, C, OK, nextOperations)
Agreement

SendM(S, C, KO(res))
Refusal

Figure 6: Complete conversation flow for the hotel

booking service.

map the states to the related WSDL-WSFL specifications.

4.3 A possible framework for the server-side
management of complex interactions

The current Web Services typically manage the interac-
tion context by exploiting Java Servlets, or similar technolo-
gies in the Microsoft .net world, which maintain the status
of the active client sessions within the service provider. Al-
though the basic exploitation of Servlets as tools for the
communication with a Web-based application is straightfor-
ward, the embodyment of the service’s business logic is dif-
ficult, as it requires that the service exposes the operations
to be invoked according to the correct conversation flow.
Therefore, some three-tier architectures have been designed
as multi-agent systems, where a flexible frontend is devoted
to the management of the interaction with other agents. The
frontend is itself complex and separates the dialog manage-
ment activity, carried out by a conversational agent, from
the support for Web communication and low-level session
management (a Servlet); see [2, 3].

In order to manage complex conversations with the con-
sumer applications, each Web Service provider should im-
plement a module responsible for the management of the
conversational flow, based on the respective WSFL descrip-
tion. This module represents the core of the Servlet lis-
tening to the clients’ requests and invoking the appropriate
components to execute the services (e.g., Enterprise Java
Beans). The module would allow keeping track of asyn-
chronous communication between the client application and
the Web Service Provider5. A Dialog Flow state would be
maintained for each client, to allow resuming the conver-
sation when the possibly complex operation has been com-
pleted, sending back to the client the result and the next
operation to perform. The proposed architecture of the Web
Service Provider would be similar to the one shown in Fig-
ure 7: a Servlet would support the (SOAP) HTTP-based
communication with the client, by catching the incoming
requests and forwarding them to an Interaction Flow Man-
ager for their management. Different types of components,
an internal one like Component A in the Figure, or an ex-
ternal Supplier, can be invoked to provide the service. The

5Currently, handling the losely coupled (asynchronous) Web
Services is declared to be one of the biggest challenges for
the Web Services infrastructures industry.

client

Web server

WSDL service
description

Interaction
Flow
ManagerSOAP

Request

SOAP
Response

Web
Service
Servlet

Interaction
 Context-j

Interaction
 Context-i

Component
 A

Supplier

Figure 7: Interaction with a web service provider.

Servlet would also send back the SOAP response messages to
the client application. The Interaction Flow Manager would
exploit an internal representation of the possible interaction
flows in order to compute the possible continuations of each
interaction. The figure shows a situation where the Inter-
action Flow Manager is managing two parallel interactions,
and thus maintains two interaction contexts: i and j. The
Interaction Flow Manager invokes an internal component,
e.g., an EJB, or an external supplier to execute the possibly
complex operations necessary to complete the service.

The approach to the representation of the conversation
flow we described in the previous sections supports the un-
ambiguous specification of the interaction flow between the
client and the Web Service provider. Therefore, it can be
used as the basis for the development of a tool that lever-
ages the implementation of a conversational agent taking
care of the server-side management of interactions with the
clients. In particular, a Web Service Provider Framework
can be designed to make the implementation of the Inter-
action Flow Manager straightforward, given the sequence of
the conversational turns. This framework should get in in-
put the WSFL specification of the interaction flow and gen-
erate the skeleton of the module that handles such a flow.
We will use the IBM’s Web Services Description Language
for Java Toolkit (WSDL4J), which allows the creation, rep-
resentation, and manipulation of WSDL documents describ-
ing services [11, 9], to process the WSDL part of the descrip-
tion. Therefore the module will navigate the interaction flow
representing the conversation steps.

4.4 Application to typical WSDL service de-
scriptions

The proposed conversational model could be applied to
current Web Services with limited effort, if they already of-
fer a WSDL service specification. In particular, the service
descriptions could be extended to specify the conversation
flow, at a limited level of detail, by adding the WSFL-like
flow specification. Figure 8 shows a possible representation
of the hotel booking service, based on the typical WSDL
representation style, where the operations include multiple
input, output and fault messages. In particular, the Check-
Availability2 operation describes the set of messages to be
exchanged between the peers to check the room availabil-
ity: an input message specifying the CheckAvailableRooms
action; an output message confirming the availability of the
rooms (OK action); a fault message (KO action). Opera-
tion Booking2 includes other three similar messages. The
service specification is based on the same data types defined
in Figure 3.

Although the definition of the operations is very different

<portType name="HotelBookingPortType2">
<operation name="CheckAvailability2>
<input message="tns:CheckAvailableRooms"/>
<output message="tns:OK"/>
<fault message="tns:KO"/>

</operation>
<operation name="Booking2>
<input message="tns:BookRooms"/>
<output message="tns:OK"/>
<fault message="tns:KO"/>

</operation>
</portType>

Figure 8: Standard WSDL representation of the ho-

tel booking service.

from the one we proposed in Section 4.2, the WSFL-like rep-
resentation could be used to specify the correct sequence of
operations to be invoked also in this case. In particular, to
support the client in the selection of the first operation to be
performed, an initConversation WSDL operation should be
defined, which includes an input (init) message, an output
(OK) message, and a fault (KO) message. Moreover, the
WSFL activities should be defined, by mapping an activity
to each WSDL operation. For instance, a checkAvailRequest
activity could be mapped to the CheckAvailability2 opera-
tion; moreover, a bookRequest activity could be mapped to
the Booking2 operation, and so forth. Finally, the partial
order relations between the whole set of operations should
be defined: the initConversation activity must be performed
before checkAvailRequest, which in turn must be performed
before bookRequest. Given this specification, the service
provider could exploit the proposed framework to update
the management of the interaction flow and guide the con-
sumers in the correct service invocation.

5. DISCUSSION
The specification of the conversation flow is central for the

Web Services research area. As pointed out in the previous
sections, when a service provider publishes more than one
operation, the client has to guess the correct sequence to be
followed in the invocation of such operations. However, the
coordination between client and service provider may be a
problem even during the execution of a single operation, if
it includes more than one message, as request-response and
solicit-response operations do. More specifically, if more
than one (input, output or fault) message is present, the
correct interaction pattern cannot be determined from the
service specification itself. For instance, consider the Check-
Availability2 operation in Figure 8. The three messages in-
cluded in the operation form a subset of the conversation
flow: the first message should be performed before the other
two; moreover, the second and the third one are alternative
messages, that the server provider sends to the client, de-
pending on the result of the CheckAvailableRooms action.
Our proposal supports the specification of the interaction
flow at the granularity level of the individual messages (con-
versational turns). Thus, it solves the coordination problem
both at the level of the invocation of operations, and within
the operations themselves.

Other XML-based standards for the specification of the
conversation flow in e-business interactions with Web Ser-
vices have been recently proposed and are currently sub-

mitted as W3C standards. For instance, WSCL (Web Ser-
vices Conversation Language [22]) and WSCI (Web Services
Choreography Interface [4]) introduce an explicit representa-
tion of Web Services interaction processes, aimed at defining
the admissible sequences of messages to be exchanged by the
peers. To this purpose, WSCL exploits a sequence diagram
model, which the peers should interpret to handle the con-
versation, while WSCI introduces the notion of interaction
process, with the specification of timing constraints on the
service invocation. Moreover, cpXML (IBM’s Conversation
Support [12]) introduces an explicit notion of Conversational
Policy, as a a machine readable specification of a pattern of
message exchange in a conversation, which can be used to
make the interaction with complex Web Services easier from
the client application viewpoint.
Our model differs from the above mentioned ones because
they assume that each peer separately maintains its own
internal record of the conversation state, while we propose
that only the service provider maintains the state of the con-
versation and suggests the following step to the client appli-
cation. Moreover, our approach differs from both the WSCL
and WSCI ones in two aspects: first, they conform to WSDL
in the specification of request-response, solicit-response, etc.,
operations; thus, they do not support a fine-grained specifi-
cation of the conversational turns. Second, they specify the
conversations from the viewpoint of the service provider.
Thus the client has to interpret the specifications in the re-
verse perspective. For example, an input message for the
provider is an output one for the client.

Our proposal builds on the conceptual model of speech
acts [7] for the specification of the dialog between the peers.
This model represents the peers’ dialog acts as actions per-
formed by an actor towards a recipient. Moreover, the model
clearly separates the conversational activity from the execu-
tion of the object level actions the partners “talk about”
during the interaction. The explicit representation of the
peers and of their conversational activity (send message ac-
tivities) supports a detailed and unambiguous specification
of the possible sequences of interaction turns, at the granu-
larity level of the individual messages to be exchanged.

The proposed WSFL-like specification of the conversation
flow supports the specification of services requiring complex
interactions between clients and suppliers. The hotel book-
ing example is a relatively simple case, selected to simplify
the presentation of the overall approach.

We thank Marino Segnan for his contributions to our
work. This research has been partially funded by Consiglio
Nazionale delle Ricerche within project CNRG0015C3.

6. REFERENCES
[1] Agentcities. Agentcities network services.

http://www.agentcities.net/, 2002.

[2] L. Ardissono, C. Barbero, A. Goy, and G. Petrone. An
agent architecture for personalized Web stores. In
Proc. 3rd Int. Conf. on Autonomous Agents (Agents
’99), 182–189, Seattle, WA, 1999.

[3] L. Ardissono, A. Goy, G. Petrone, and M. Segnan. A
software architecture for dynamically generated
adaptive Web stores. In Proc. 17th IJCAI, 1109–1114,
Seattle, WA, 2001.

[4] A. Arkin, S. Askary, et al. Web Service Choreography
Interface 1.0. http://ifr.sap.com/wsci/specification/
wsci-specp10.html.

[5] S. Carberry, J. Chu-Carroll, and S. Elzer.
Constructing and utilizing a model of user preferences
in collaborative consultation dialogues. Computational
Intelligence, 15(3):185–217, 1999.

[6] D. Chauhan. JAFMAS: A Java-based Agent
Framework for Multiagent Systems Development and
Implementation. PhD thesis, University of Cincinnati,
Stanford, CA, 1997.

[7] P.R. Cohen and H.J. Levesque. Rational interaction as
the basis for communication. In P.R. Cohen,
J. Morgan, and M.E. Pollack, eds., Intentions in
communication, 221–255. MIT Press, 1990.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann,
D. Roller, S. Thatte, and S. Weerawarana. Business
process execution language for web services, v. 1.0.
http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/.

[9] IBM developerWorks. Web Services Description
Language for Java Toolkit (WSDL4J). http://www-
124.ibm.com/developerworks/projects/wsdl4j/.

[10] FIPA. Foundation for Physical Intelligent Agents.
http://www.fipa.org/.

[11] Object Management Group. CORBA 2.4.2
specification. http://www.omg.org.

[12] J.E. Hanson, P. Nandi, and D. Levine.
Conversation-enabled web services for agents and
e-Business. In Proc. of the Int. Conf. on Internet
Computing (IC-02), 791–796, Las Vegas, 2002.

[13] IBM. Web Services Flow Language.
http://www-4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf.

[14] M. Klusch and K. Sycara. Brokering and
matchmaking for coordination of agent societies: A
survey. In A. Omicini, F. Zambonelli, M. Klusch, and
R. Tolksdorf, eds., Coordination of Internet Agents:
Models, Technologies, and Applications, chapter 8,
197–224. Springer-Verlag, 2001.

[15] S. McIlraith, T.C. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[16] C. Rich, D. McDonald, N. Lesh, and C. Sidner.
Collagen: Java middleware for collaborative agents.

[17] J.R. Searle. Indirect speech acts. In P. Cole and
J. Morgan, eds., Syntax and Semantics: Speech Acts,
vol. 3, 59–82. Academic Press, New York, 1975.

[18] DAML Services Coalition. DAML-S: Web Service
description for the Semantic Web. In Int. Semantic
Web Conference, Chia Laguna, Italy, 2002.

[19] A. Stein and E. Maier. Structuring collaborative
information-seeking dialogues. Knowledge-Based
Systems, 8(2-3):82–93, 1994.

[20] D. Steiner. An overview of FIPA 97.
http://www.cselt.it/fipa/#Papers, 1997.

[21] W3C. Simple Object Access Protocol (SOAP) v. 1.2.
http://www.w3.org/TR/2001/WD-soap12-20010709/.

[22] W3C. Web Services Conversation Language (WSCL).
http://www.w3.org/TR/wscl10, 2002.

[23] W3C. Web Services Definition Language.
http://www.w3.org/TR/wsdl, 2002.

