
Enhancing Web Services with Diagnostic Capabilities

Liliana Ardissono, Luca Console, Anna Goy, Giovanna Petrone, Claudia Picardi, Marino Segnan
Dipartimento di Informatica, Università di Torino

{liliana,lconsole,goy,giovanna,picardi,marino}@di.unito.it

Daniele Theseider Dupré
Dipartimento di Informatica, Università del Piemonte Orientale

dtd@mfn.unipmn.it

Abstract

Fault management in Web Services composed by indi-
vidual services from multiple suppliers currently relies on
a local analysis, that does not span across individual ser-
vices, thus limiting the effectiveness of recovery strategies.
We propose to address this limitation of current standards
for Web Service composition by employing Model-Based
Diagnosis to enhance fault analysis. We propose to add
Diagnostic Web Services to the set of Web Services provid-
ing the overall service, acting as supervisors of their execu-
tion, by identifying anomalies and explaining them in terms
of faults to be repaired. This approach poses the basis for
the development of specialized recovery and compensation
techniques aimed at addressing different problems, which
could not be otherwise discriminated.

1. Introduction

Service Oriented Architectures [13] and standard lan-
guages for the publication and invocation of Web Services,
such as WSDL [18], enable the exploitation of heteroge-
neous software by abstracting from the features of the de-
ployment environment of applications. On top of these ba-
sic communication languages, standard Web Service com-
position languages, such as WS-BPEL [10], are being de-
fined to support the development of complex applications
based on the orchestration of simpler ones. Moreover, in
the Semantic Web community (see, e.g., [7, 12]), languages
and frameworks are being defined to support a rich specifi-
cation of services and intelligent service cooperation (e.g.,
see [11]).

The growing worldwide acceptance of these standards
is an excellent start for a realistic integration of services in
the Web, as well as in Enterprise Application Integration,
which represent two mainstreams of software development

in the next future [1]. However, several issues have to be
addressed in order to enable the effective integration of non
trivial applications. In fact, rather straightforward solutions
are currently adopted to support the reliability of services.
The ability to detect and isolate faults during service execu-
tion would be very desirable in order to apply effective re-
covery actions, especially in case of complex services com-
posed of simpler ones whose implementation is not publicly
available.

In this paper we propose a framework for adding diag-
nostic capabilities to Web Services, using a model-based
perspective [5]. The ultimate goal is to design self-healing
services which guarantee autonomous diagnostic and recov-
ery capabilities. When defining a complex service, com-
posed of simpler ones, we propose to add to each service S
a local diagnoser which relates hypotheses about incorrect
outputs of S to a misbehavior of S itself, or to incorrect in-
puts from other services. A global diagnoser service is then
associated with the complex service. The global diagnoser
coordinates the local diagnosers, exchanging messages with
them, and it can in turn compute diagnoses at the level of
the global service. The structure of the resulting diagnos-
tic service is then analogous to the structure of the original
service.

For generality purposes, we aim at developing diagnostic
services that work as Web Services themselves, and can be
exploited within a specific complex service without requir-
ing changes to its internal implementation. To this purpose,
although we consider complex services based on the coop-
eration of multiple suppliers, we do not make assumptions
on how the cooperation is orchestrated. In other words, the
global diagnoser service does not need to know in advance
how the various service suppliers interact; moreover, it does
not rely on any information about the internal structure of
the sub-services.

In the paper we discuss a protocol for a global diagnoser
service, and we characterize the operations that local diag-

nosers must support in order to comply with such a proto-
col. The goal is the identification of the faulty service, not
debugging the service itself. In addition, the local diagnoser
may identify a part of the service which is claimed to be re-
sponsible for the fault. An early fault detection and a fault
identification which is as precise as possible are a necessary
precondition for a better recovery from faults.

We choose to adopt an approach based on the introduc-
tion of a global diagnoser service because this enables to
recursively partition Web Services into aggregations of sub-
services, hiding the details of the aggregation to higher-level
services. This is in accordance with the privacy principles
which allow to design services at enterprise level (based on
intra-company services) and then use such services in ex-
tranets (with other enterprises) and public internets. The
global diagnoser service only needs to share a protocol with
local diagnosers.

The rest of the paper is organized as follows. Section 2
sets the context of Web Service diagnosis; section 3 sum-
marizes the main concepts of Model-Based Diagnosis and
section 4 introduces the approach we propose for an archi-
tecture for Web Service diagnosis. Section 5 describes how
to model services for diagnosis while section 6 introduces
the protocol for the global diagnoser service, and character-
izes local diagnosers. Finally, section 7 overviews existing
research and future work on the topic.

2. Context

Legacy software has to be considered as a “black box”
because the complete specification of its behavior is rarely
provided. Moreover, when embedding legacy software in
complex systems, errors may occur because software is
used in ways, or run on inputs, not foreseen by its devel-
oper. The same considerations can be extended to Web
Service composition, where remote services are integrated
without knowing their implementation, but only relying on
their public interfaces and on a high-level description of
their behavior.

In Web Service composition, WS-BPEL introduces fault
handlers to specify the activities to be performed when the
execution of a Web Service fails. Fault handlers are associ-
ated in ad hoc ways to fault types and are suitable to effi-
ciently manage local problems in the execution of activities,
such as the invocation of an unknown operation. However,
fault handlers do not offer actions aimed at understanding
the causes of an occurred problem. This may be a limita-
tion, especially in complex services, composed of several
Web Services, where problems might be caused by the in-
teraction between service suppliers and the absence of spe-
cialized diagnostic capabilities usually imposes the execu-
tion of coarse grained repair actions.

We claim that, in order to enhance the capabilities to rea-

son about faults, and the consequent flexibility in taking re-
covery and compensation actions, the basic techniques in-
troduced in process languages such as WS-BPEL should be
complemented with a deeper fault analysis. We propose to
distinguish local errors, which can be treated by means of
ad hoc fault handlers, from global failures of the overall
service, which require advanced reasoning techniques. Di-
agnosis techniques can be applied to the analysis of global
failures; starting from the observation of a problem in the
execution of a Web Service (e.g., the Web Service sends a
fault message to its own consumer), one or more possible
causes could be identified to apply a suitable recovery strat-
egy.

We show our viewpoint on an example adapted from
[17]. A bookshop offers a Web-based catalog whose user
interface is implemented as a Web Service (Catalog WS) in-
teracting with the main backoffice Web Service of the book-
shop (Bookshop WS). When a customer selects a book, the
Web Services exchange the following messages (see Fig.
1):

• The Catalog WS sends an order of a book to the Book-
shop WS (message 1).

• The Bookshop WS retrieves the ISBN number of the
book. Then it sends a request to the Publisher WS to
deliver the book to the customer (message 2).

• The Publisher WS retrieves book details from the
ISBN and notifies the Bookshop WS that the book is
available (3). Then, the Publisher WS asks the Shipper
WS to deliver the book to the customer and gets back
the delivery acknowledgment (messages 4 and 5). The
physical delivery of the book is not shown in the figure.

• The Bookshop WS sends the bill to the Catalog WS
(6).

• Finally, the customer pays through the Catalog WS
that notifies the Publisher WS (7).

Now, suppose the customer receives the wrong book.
The problem might be caused by errors occurring during
the execution of different Web Services and the identifica-
tion of the faulty one (which is not obvious, unless suitable
diagnostic reasoning is employed) is the key element for
the recovery of the overall service. Specifically, different
recovery actions could be performed during the service ex-
ecution, depending on the source of the error.

For instance, if the (human) shipper picked the wrong
book from the store (regardless of the book details), the
Publisher WS should request the shipper to deliver the cor-
rect book. Instead, if the Bookshop WS made the mistake
(e.g., by computing the wrong ISBN number), the prob-
lem might not be solved at all (in which case the customer
should be refunded) or another service might need to be

2

Catalog
WS

Bookshop
WS

Publisher
 WS

Shipper WS

1-sendOrder(bookInf, custInf) 2-sendQuery(ordId,isbn,custInf)

3-inStock(ordId,retrBookInf,cost)6-sendBill(ordId, bill, cost)

7-handleBill(ordId, money)
4-reqSendBook(ordId,
 retrBookInf,custInf)

5-sendNotify(ordId,
 sentBookInf,custInf)

Figure 1. Collaboration diagram for a book sales scenario.

contacted to retrieve the correct ISBN number and the Pub-
lisher WS should be contacted again as done in message 2.

3. Model-Based Diagnosis

Model-Based Reasoning (MBR) and, in particular,
Model-Based Diagnosis (MBD) [5], have originally been
proposed and used within the Artificial Intelligence com-
munity for reasoning on possibly faulty physical systems,
especially in technical domains (from electronic circuits to
cars and spacecrafts[3]), but they have also been applied in
other domains, such as software diagnosis; see, e.g., [6].

Most MBD approaches rely on a component-oriented
model of the system to be diagnosed. As noticed in [4], the
emergence of component-oriented software development is
therefore a good reason for evaluating the adoption of an
MBR approach for diagnosing faults in component-based
software systems. Before showing how MBR techniques
and tools are used within the framework we propose in this
paper for dealing with faults in Web Services, we sketch the
relevant ideas of component-based MBD. As regards mod-
els:

• The system to be diagnosed is modeled as a set of
components (e.g., for physical systems: AND gates,
but also hydraulic pipes or electric resistors) and inter-
connections between components. In several domains,
models of component types can be given and reused
for multiple component instances.

• The behavior of each component is modeled as a rela-
tion on component variables. Such a model is provided
for the correct and/or faulty behavior of the compo-
nent; in technical domains, in particular, the behavior
under alternative known fault modes can be provided.

• Variables typically range on discrete, finite domains,
which in case of physical systems may also correspond
to qualitative abstractions of continuous domains.

• Component variables include interface variables, that
are used to define component interconnections in the
system, by equating interface variables of different
components; e.g., an output variable of a component
with an input variable of another component. There-
fore a model for the overall system, as a relation on all
component variables, is at least implicitly given.

• The model of component behavior can be a static,
atemporal model that relates values that different vari-
ables take at the same time, but can also relate val-
ues at different times; a way to do this is constraining
changes of state variables, thus providing a dynamic
model; see [2] for a general discussion on temporal di-
agnosis.

The resulting overall model of the system is therefore able
to predict, or at least constrain, the effect of the incorrect
behavior of a component also on variables that are not di-
rectly related to the component. This is especially impor-
tant where there is, or there has to be, limited observability
on the system, either because there has to be a fixed set
of viable observation points (e.g., a fixed set of sensors),
or because we need to minimize at run time the amount of
information to be considered for discriminating among al-
ternative diagnoses.

Diagnostic reasoning should identify diagnoses, as as-
signments of behavior modes to components, for a given
set of observations (values for observable variables). A di-
agnostic engine should, in general, explore the space of
candidate diagnoses and perform discrimination among al-
ternative candidates, possibly suggesting additional pieces
of information to be acquired to this purpose. Discrimina-
tion should only be performed towards a given diagnostic
goal, e.g., selecting an appropriate repair action.

There are several formalizations of MBD; see [5]. In
consistency-based diagnosis [15], which will be used in this
paper, a diagnosis is an assignment of behavior modes to
components that is consistent with observations. For static

3

models this means that the candidate predicts, for observ-
able variables, a set of possible values which includes the
observed one.

Under worst-case complexity analysis, the problem of
finding all diagnoses, or even a single diagnosis, is in-
tractable. In practice, the actual occurrence of combina-
torial explosion heavily depends on the model and on the
availability of discriminating observations; it is definitely
more likely to occur for reasoning on dynamic models. It
can be avoided or mitigated in several ways. For exam-
ple, search could be limited to, or at least start with, single
faults, i.e., candidates that assign the correct behavior to all
but one component. Several optimizations are also possi-
ble to avoid redoing the same inferences for different mode
assignments or different sets of observations. For instance,
the model can be precompiled, or the results of reasoning
on the model can be compiled, e.g., into a decision tree.

4. Architecture

In order to enhance fault management in complex ser-
vices with the ability of reasoning on global failures of the
overall service, we propose to:

• Associate with each basic service a local diagnoser,
owning a description of how the service is supposed
to work (see section 5); the role of local diagnosers is
to provide the global diagnoser with the information
needed for identifying causes of a global failure.

• Provide a global diagnoser which is not tied to any
specific service, but is able to invoke local diagnosers
and relate the information they provide, in order to
reach a diagnosis for the overall complex service. In
case the supply chain has several levels, several global
diagnosers may form a hierarchy, where a higher level
global diagnoser sees the lower level ones as local di-
agnosers.

Each local diagnoser interacts with its own Web Service
and with the global diagnoser. The global diagnoser inter-
acts only with local diagnosers. More precisely, the interac-
tion follows this pattern:

• During service execution, each local diagnoser should
monitor the activities carried out by its Web Service,
logging the messages it exchanges with the other peers.
The diagnoser exploits an internal “observer” compo-
nent collecting the messages and locally saving them
for later inspection. Notice that when a Web Service
composes a set of sub-suppliers, the local diagnoser
role must be filled by the global diagnoser of the sub-
network of cooperating services. On the other hand,

an atomic Web Service can have a basic local diag-
noser, that does not need to exploit other lower-level
diagnosers in order to do its job.

Local diagnosers need to exploit a model of the Web
Service in their care, describing the activities carried
out by the Web Service, the messages it exchanges,
the information about dependencies between parame-
ters and alarm messages, as detailed in section 5.

• When a local diagnoser receives an alarm message (de-
noting a problem in the execution of the service it mon-
itors), it starts reasoning about the problem to identify
its possible causes, which may be internal to the Web
Service or external (erroneous inputs from other ser-
vices). The diagnoser can do this by analyzing the
messages it previously logged.

• The local diagnoser informs the global diagnoser about
the alarm it received and the hypotheses it made on the
causes of the error. The global diagnoser starts invok-
ing other local diagnosers (following a diagnostic rea-
soning pattern, detailed in section 6.2) and relating the
different answers, in order to reach one or more global
candidate diagnoses that are consistent with reasoning
performed by local diagnosers.

• The global diagnosis can be employed at the level of
the complex service for the selection of very specific
recovery and compensation strategies. If the complex
service is designed by specifying the choreography of
the invoked services in a process language such as WS-
BPEL, a different handler may be associated to each
type of problem (WS-BPEL fault). In this perspective,
the global diagnoser, with its higher capability of iden-
tifying faults, may be decisive in allowing the work-
flow engine of the complex Web Service to activate
the most suitable recovery actions.

From the communication point of view, the inclusion of
local and global diagnosers in the architecture of a complex
Web Service is relatively seamless because diagnosers can
be implemented as Web Services (local/global diagnoser
WS) interacting with the other peers via WSDL messages.
Specifically:

• Local diagnosers must offer a WSDL operation
(logMessage(String wsdlMsg)) for the reception
of the messages to be logged.

• Each Web Service must send copies of the inbound and
outbound messages to its local diagnoser. To this pur-
pose, each Web Service must be equipped with a “log-
ging service” proxy which intercepts WSDL messages
and sends a copy of each message to Local Diagnoser
WS through the “logMessage” port.

4

• The global diagnoser must offer a WSDL operation
(activate(Collection hypotheses)) to be used
by local diagnosers to trigger the global diagnostic
process (explained in Sect. 6).

• Local diagnosers must offer a WSDL operation
(extend(Collection hypotheses)) to be used by
the global diagnoser in order to invoke them (also de-
scribed in Sect. 6).

The proposed approach is modular and supports a seam-
less introduction of advanced fault reasoning in the man-
agement of complex Web Services. The key point is that
specialized reasoning techniques can be exploited by local
diagnosers without imposing the same techniques on any of
the involved Web Services. Although we require that Web
Services notify local diagnosers about (normal and fault)
messages they receive from or send to other services, this
feature can be added to the invoked services without chang-
ing their internal structure. Moreover, if one of the involved
services does not have a local diagnoser, or the model of the
service exploited by the local diagnoser is very rough, the
global diagnoser can still perform its job but the results may
be less precise (e.g., it may not be possible to rule out the
non-diagnosed service as the cause for the error).

5. Models for the Diagnosis of Web Services

We assume that each Web Service is modeled as a set of
inter-related activities which show how the outputs of the
service depend on its inputs. The model of the simplest
Web Services consists of a single activity; the model of a
complex one specifies a partially ordered set of activities
which includes internal operations carried out by the service
and invocations of other suppliers (if any).

The model of a Web Service enables diagnostic reason-
ing to correlate input and output parameters and to know
whether an activity carries out some computation that may
fail, producing as a consequence an erroneous output. In
particular, we are interested in distinguishing three cases:

1. when an output parameter coincides with an input pa-
rameter, we say that the activity forwards (FW for
short) the input to the output;

2. when an output parameter is created during an activity,
we say the activity is the source (SRC) for it;

3. when an output parameter is computed by the activity
from one or more inputs, we say that it is the result of
an elaboration (EL).

We represent this with a block diagram. Figure 2 shows,
as an example, the block diagram for an internal activity of
the Bookshop WS performed upon reception of message 1.

custInf

ordId

isbn

FW

EL
SRC

custInf

bookInf

Figure 2. Dependencies for an activity.

The diagram states that the value of custInf is forwarded by
this activity, while the value of ordId is provided by it, and
the value of isbn is computed starting from bookInf.

Intuitively, an activity can introduce errors in parameters
it computes (EL blocks) or it is source of (SRC blocks),
while in the case of forwarded (FW blocks) parameters, it
simply propagates errors that are someone else’s responsi-
bility.1

Symptom information is provided by the presence of
alarms, which triggers the diagnostic process; by the ab-
sence of other alarms; or by additional test conditions on
logged messages introduced for discrimination.

The goal of diagnosis is to find activities that can be re-
sponsible for the alarm, performing discrimination to the
purpose of selecting the appropriate recovery action. In
defining the search space for diagnoses, there are some is-
sues to take into account. First, EL and SRC blocks play
a critical role, as the computation of the values could be
faulty. Second, FW blocks can be ignored under the as-
sumption that they do not modify the correctness of para-
meters. Third, alarm points are very important to assess the
correctness of portions of service execution and focus the
search on limited areas of the computation.

The model for the Web Services is derived from the ac-
tivity representation described earlier, as follows.2 Each ac-
tivity corresponds to a component with interface variables.
For each input (resp., output) variable v of an activity a, a
variable a.vin (resp., a.vout) is introduced in the model, with
a binary domain:

• The ok value for a.vin represents the fact that in a given
execution of the service, v has the expected value;

• The ab (abnormal) value means that v has a different
value from the expected one.

This distinction does not mean that, for all variables men-
tioned in the activity representation, it must be possible to
know whether they have the expected value or not; even for
models of physical systems, not all variables in the model
are observable.

Each activity has an ok mode and a fail mode. For each
activity a, the behavior mode is represented by an additional
variable a.m.

1We assume that the transmission of messages is not error prone, and
thus the relation between input and output parameters, in this case, can be
seen as an identity relation.

2We limit the discussion to the case of acyclic dependencies.

5

a.m a.in1 a.in2 a.out

ok ok ok ok
ok ab ok *
ok ok ab *
ok ab ab *
fail * * *

Table 1. Model for an EL block with 2 inputs,
ok mode.

A basic model for EL dependencies of components (and
SRC dependencies, which can be seen as ELs with no in-
puts) states that (i) in the ok mode, if one of the inputs is
incorrect, then the output may be incorrect, while if the in-
puts are all correct then also the output is correct; (ii) in
the fail mode, the output may be incorrect regardless of the
inputs’ status, i.e., all combinations are possible.

Table 1 shows the model for the case of an EL depen-
dency with two inputs (“∗” means “any value”), depending
on the behavior mode of its activity a. This model is a gen-
eral one and includes the following possibilities:

• In the ok mode, an incorrect input gives rise to a cor-
rect output, i.e., the error does not propagate through
an activity. This might be possible depending on the
specific elaboration abstracted in the EL dependency.3

• Multiple incorrect inputs to an ok activity, or an incor-
rect input in the fail mode, may give rise to the correct
output, a phenomenon known as fault masking.

Such general models are necessary to provide complete cov-
erage of fault., but specific knowledge about some activity
may allow to restrict them, e.g. by stating that if the activ-
ity is in fail mode then the output must be incorrect. Part
of this generality is not needed to diagnose a single execu-
tion of the Web Service, but could be useful to put together
diagnostic information from several runs, where a faulty be-
havior manifests itself only in some run.

Alarms are modeled as additional activity variables, tied
to the rest of the activity model by an explicitly stated rela-
tion. As an example, table 2 shows the model for an alarm
point al inside activity a, that compares two of the activity’s
variables (x and y) and signals an error if they are different.
The model for additional test conditions is analogous.

a.x a.y a.al

ok ok ok
ab ok ab
ok ab ab
ab ab *

Table 2. Model for an alarm or test.

3For instance, knowing that a specific EL instance corresponds to an
injective function would eliminate this possibility.

x
y1

a

Mi

y2

a: (y1,y2)=EL(x)

Figure 3. A simple model Mi

Again, this is a general model that takes into account
the possibility that a.x and a.y could be both incorrect, but
consistently with respect to each other (for example because
they are both derived from the same incorrect source).

6. The Diagnostic Protocol

We first give an informal description of the interaction
between local diagnosers and the global diagnoser service
D (Sect. 6.1). Then we formalize a protocol for D (Sect.
6.2). As to local diagnosers, we characterize their opera-
tions, without providing specific algorithms (Sect. 6.3).

6.1. Interaction Among Diagnosers

The global diagnoser D does not initially have any infor-
mation on the individual Web Services. Its main job is to
put together information coming from local diagnosers and
to select which local diagnosers can provide useful infor-
mation.

When an alarm is raised in a Web Service Wi, the local
diagnoser Ai receives it. Ai must explain it, and provide
D with its hypotheses, invoking the activate operation.
Each explanation may ascribe the malfunction to failed in-
ternal activities and/or abnormal inputs. It may also be en-
dowed with predictions of additional output values, which
can be exploited by D in order to validate or reject the hy-
pothesis. For example, let us consider the simple service
whose model is depicted in Fig. 3. Suppose that the alarm
states that a.y2 = ab: then the two possible explanations
are that either a.m = fail (and then the correctness of a.x is
irrelevant) or a.x = ab (and then the behavior mode of a is
irrelevant). None of the two hypotheses, however, enables
us to make any prediction over a.y1, which may be either
ok or ab in both cases.

When D receives a local explanation from a local diag-
noser Ai, it can proceed as follows:4

• If a Web Service Wj has been blamed of incorrect out-
puts, then D can ask its local diagnoser Aj to explain
them. Aj can either reject the blame, explain it with an
internal failure or blame it on another service that may
have sent the wrong input.

4We assume that each interaction among Web Services is identified by a
conversation id which is mentioned in each information exchange between
local diagnosers and D, in order to identify a diagnostic session.

6

• If a fault hypothesis by Ai has provided additional pre-
dictions on output values sent to a Web Service Wk,
then D can ask Ak to validate the hypothesis by check-
ing whether the predicted symptoms have occurred, or
by making further predictions.

Hypotheses are maintained and processed by diagnosers
as partial assignments to interface variables and behavior
modes of the involved local models. Unassigned variables
represent parts of the overall model that have not yet been
explored, and possibly do not need to be explored, thus lim-
iting invocations to local diagnosers. For example the two
hypotheses mentioned above for the model in Fig. 3 may be
represented by the following two assignments:

a.m a.x a.y1 a.y2

fail * * ab
* ab * ab

The presence, in both cases, of a ∗ for a.y1 means that
it is not possible to validate or reject these hypotheses by
asking the service that receives that value in input.

The global diagnoser sends hypotheses to local diag-
noser for explanation and/or validation by invoking the
extend operation. As we will see in detail in Sect. 6.3,
local diagnosers explain blames and validate symptoms by
providing extensions to partial assignments that assign val-
ues to relevant unassigned variables.

6.2. A Protocol for the Global Diagnoser D

While performing diagnosis, D keeps track of the
progress by means of a list H of current partial assignments.
Values are only assigned by local diagnosers, thus D be-
comes aware of the existence of a variable x only when a
local diagnoser assigns a value to it. We will denote with
α(x) the value of variable x in assignment α. We will write
α(x) = ∗ to denote that α does not assign any value to x.

For each assignment α ∈ H and for every interface vari-
able x such that α(x) �= ∗ we assume that the identities of
the sender SND(x) and the receiver RCV(x) of the mes-
sages where x is specified are known to D: one is the web
service Wi whose local diagnoser Ai first assigned a value
to x, the identity of the other is provided by Ai itself, that
retrieves it from logged messages. Notice that the receiver
and sender of a message only need to be known at run-time.
Moreover, D associates with each α ∈ H a list Lα of local
diagnosers that should extend α.

Given a partial assignment α ∈ H we denote by α(Mi)
its restriction to interface variables and behavior modes of
Mi, and by α(Mi) its restriction to interface variables and
behavior modes not in Mi.

Local extend operations work on partial assignments
restricted to the local model they are invoked on. extend
will be precisely characterized in the following section; for

now it suffices to know that, for each α(Mi) it receives in
input, it returns a set of extensions Ext(α(Mi)) which re-
late values assigned in α(Mi) to values of other interface
variables of Mi or to behavior modes of activities in Mi;
if the set of extensions is empty the assignment is consid-
ered to be rejected, because (as we will see in the next sec-
tion) this means that the assignment is inconsistent with Mi

and/or observations performed by its local diagnoser. The
diagnostic process is started by a local diagnoser which is
awakened by an alarm, and calls extend on itself to ex-
plain it. The result is provided to D as the initial value for
H . D then executes a loop with the following steps.
Step 1: select the next request to a local diagnoser Ai. D
finds a local diagnoser Ai that belongs to Lα for some α ∈
H; if there is none, exits the loop. From the point of view
of correctness, how the choice is performed is ininfluent. In
Sect. 7 we will discuss policies.
Step 2: invoke extend on Ai. If Ai has never been in-
voked before in this diagnostic process, then the input to
extend is {α(Mi) | α ∈ H} (that is, the restrictions to
Mi of the whole set H). Otherwise the input is the set of
assignments {α(Mi) | α ∈ H and Ai ∈ Lα} (that is, the
restrictions to Mi of those assignments that have changed
from the last invocation).
Step 3: update H and the Lα lists. D receives the output
of extend from Ai. For each α(Mi) in input, extend
has returned a set Ext(α(Mi)) of extensions. Then α is
replaced in H by the set of assignments

{β | β = α(Mi) ∪ γ and γ ∈ Ext(α(Mi))}.
This implies that rejected assignments, having no exten-
sions, are removed from H . For each assignment β =
α(Mi) ∪ γ added in this way Lβ is built as follows:

• For each j �= i, if Aj ∈ Lα then Aj ∈ Lβ ;

• If there is an interface variable x such that RCV(x) =
Ai, α(x) = ∗ and β(x) = ab then SND(x) ∈ Lβ .
Intuitively, if Ai has blamed Wj for an abnormal value
on its inputs, then Aj is asked to give an explanation.

• If there is an interface variable y such that SND(y) =
Ai, α(y) = ∗ and β(y) �= ∗ then RCV(y) ∈ Lβ .
Intuitively, if Ai has predicted a symptom for an output
sent to Wj , then Aj is asked to validate it.

Notice that the diagnostic process terminates: new re-
quests for extend are generated only if assignments are
properly extended, but assignments cannot be extended in-
definitely.

At the end of the diagnostic process we can extract min-
imal consistency- based diagnoses from H as follows. We
associate a diagnosis ∆(α) to every α ∈ H:

∆(α) = {x | x is an internal activity and α(x) = failed}

7

6.3. A Characterization of Local Diagnosers

As described in the previous sections, the input to
extend is a set of partial assignments of ok/ab values to
interface variables in Mi and of ok/fail modes to internal
activities. A local diagnoser Ai regards α as an assignment
to all of its variables and behavior modes, although internal
variables are all unassigned.

The output of extend is a set of extensions Ext(α) for
every assignment α received in input. Given an extended
assignment β computed internally, extend only returns its
restriction pub(β) to public variables, which, as explained
before, we assume to be interface and behavior mode vari-
ables.

Notice that information on the behaviour mode of local
activities can be better regarded as private; in this case lo-
cal diagnosers may not want to share it with D. From the
description of D’s protocol it appears that D only needs this
information to send it back to Ai in order to identify a di-
agnostic hypothesis. Thus D can receive a coded version of
assignments that hides behaviour modes, but that the proper
local diagnoser is able to decode.

Each local diagnoser should extend partial assignments
so that unassigned variables are only those that do not pro-
vide relevant information with respect to the current diag-
nostic process. The notion of admissibility of an assignment
captures this idea: an assignment is admissible in a given
model if it does not allow to infer anything more than the
model alone on unassigned variables.

Definition 1 Let us denote by DOM(α) the set of all vari-
ables x in a given model such that α(x) �= ∗, and by
DOM(α) the set of unassigned variables. We say that an as-
signment α is admissible in Mi if (i) it is consistent with Mi

and (ii) the restriction of Mi ∪ α to variables in DOM(α)
is equivalent to the restriction of Mi alone to DOM(α):
(Mi ∪ α) |DOM(α)≡ Mi |DOM(α).

Requirement (i) (consistency) is actually implied by
requirement (ii) for all but total assignments, for which
DOM(α) is empty.

As an example, let us consider again the simple model
Mi in Fig. 3, where we assume that activity a is modeled
with a single EL block, whose model we provided in Sect.
5. Let us consider the following partial assignments:

a.m a.x a.y1 a.y2

α1 ∗ ∗ ∗ ab
α2 ok ok ∗ ab
α3 fail ∗ ∗ ab

Assignment α1 is consistent with Mi but it is not admis-
sible: in fact, Mi is consistent with a.m, a.x and a.y1 being
all ok, while Mi ∪ α it is not, since when both a.m and a.x
are ok also a.y1 and a.y2 must be ok. For the same reason,

assignment α2 is both inconsistent ad unadmissible wrt Mi.
On the contrary, α3 is admissible: in fact, it is consistent
with all values of a.x and a.y1.

Given an input set S of partial assignments, for each α ∈
S, extend computes a (possibly empty) set of extensions
Ext(α), defined as follows:

Definition 2 Let Ai be a local diagnoser with model Mi,
and let α be a partial assignment received by Ai as input to
an extend operation. Let moreover ω denote the assign-
ment corresponding to internal observations (if any). The
set Ext(α) computed by extend is the set of assignments:

{pub(γ) | γ is a minimal admissible extension of α ∪ ω}
In the above example, if we compute the extensions of

assignment α1, we have Ext(α1) = {γ1, γ2} where:

a.m a.x a.y1 a.y2

γ1 fail ∗ ∗ ab
γ2 ∗ ab ∗ ab

In this case, all possible extensions of γ1 and γ2 are ad-
missible in the model. However, this is not true in general:
an admissible assignment may have extensions that are in-
consistent in the model. For example, the empty assignment
is always admissible in any model, but obviously some of
its extensions will not.

Notice that extend performs both a consistency-based
explanation and a consistency-based prediction. Given an
input assignment α, an observations assignment ω and a
minimal admissible extension γ of α ∪ ω, we have that:

• newly-assigned values in γ to input variables or behav-
ior modes can be seen as explanations of observations
or output values assigned in α;

• newly-assigned values in γ to output variables can be
seen as additional symptoms predicted by the above
mentioned explanations.

Minimal admissible extensions capture the idea that a lo-
cal diagnoser Ai should relate abnormality of one of the
interface variables of Wi to other abnormalities (internal
faults of Wi, or abnormalities of other interface variables),
compromising as little as possible on the internal structure
and model of Wi.

7. Conclusions

In this paper we proposed a partially distributed model-
based approach to diagnosis of complex Web Services. Web
Services are modeled in a component-oriented fashion, in
the style of model-based diagnosis [5]; internal service ac-
tivities correspond to components, in the sense of small-
est diagnosable units. For individual activities we adopted

8

grey box models: we do not model the internal behavior
of an activity, but only the correlation between inputs and
outputs. From this information we can infer how the cor-
rect/incorrect status of input parameters and of the activity
itself affects the correct/incorrect status of output parame-
ters. In this sense our models are close to those in [16],
where, however, the focus is not on the diagnosis of com-
posed Web Services, with its specific requirements on dis-
tribution of knowledge and reasoning. Their approach is
purely distributed; in the context of WSs, we motivated the
adoption of a global diagnostic service for the composed
service, which allows to reduce the communication flow be-
tween services. Moreover, [16] makes some restrictive as-
sumptions on models. Another advantage of our approach
is that it makes selected predictions for discriminating can-
didates, but, by exploiting partial assignments, it avoids in-
vestigating those parts of the model that are not involved by
blames or predicted symptoms.

A decentralized approach to diagnosis has been proposed
in [14]. The application (telecommunication networks) is
significantly different from ours, posing a very different
problem. In our case, an alarm may be raised in a point
that is far away from the failure source. In their case, a fail-
ure causes a chain of alarms, the first of which points to the
failure source. However, due to the distributed nature of the
network, the order in which alarms are received is not the
same in which they are raised, thus the problem of finding
the failure source.

A similar approach has been proposed for component-
based software in [4], where chains of software exceptions
are considered instead of alarms. Although the field of ap-
plication is close to Web Services, the analyzed problem
remains different from the one tackled in this paper. More-
over, software components are modeled in black-box fash-
ion, considering only their alarm-raising capability and not
the correlations between input and output parameters.

In [9] Web Services are modeled in DAML-S, a Seman-
tic Web ontology with a situation calculus semantics; the
model is translated to Petri Nets for simulation and veri-
fication. Due to the different goals, their models provide
a different abstraction of the Web Services with respect to
the models proposed in this paper, with different implica-
tions from the computational point of view: for example,
our models do not require reasoning on state changes. In
principle, simulation/verification and diagnosis of systems
(including software systems) could be based on a unified
modeling approach.

Before such a goal can be pursued for Web Services,
some computational issues related to the diagnosis ap-
proach presented in this paper should be further analyzed.
First of all, we did not specify which strategy D exploits
in order to schedule extend invocations on local diag-
nosers. Such a strategy would strongly depend on whether

D knows in advance something about the interaction be-
tween the composed WSs. In fact, as we noticed in Sect. 2,
the diagnostic framework we define does not make any as-
sumption on how the services coordinate (so that, initially,
the global diagnostic service has no information on how the
services are composed). Several approaches to coordination
have been proposed in the Web Service community; e.g.,
cooperation based on a workflow orchestrated by a service,
or based on intelligent invocation strategies relying on rich
Semantic Web descriptions of service specifications. The
availability of information about the network of coopera-
tion between services or about semantic specifications of
services could be used to focus the diagnostic process, and
to define scheduling policies for the invocations to local di-
agnosers.

As to local diagnosers, we proposed a characterization of
their operations (which, like most diagnostic tasks, can be
computationally expensive in the worst case) without a spe-
cific algorithm. A thorough analyisis of scalability issues
(also regarding the task of the global diagnoser) is out of the
scope of this paper, but for local diagnosis precompilation
and approximation techniques can be used to achieve diag-
nostic results efficiently for at least some classes of mod-
els: in particular, using templates and their default models
should allow to use precompiled results.

Our goals have some relation with existing work about
program specification and verification and for the design
and development of reliable and robust Object Oriented
software [8] (e.g., Design by Contract™). In fact, the WS
models we introduce specify input/output relations between
the parameters of the WS operations to be invoked. How-
ever, our approach is currently aimed at being integrated
with existing standards for the development of complex
Web Services, instead of representing a specific design and
development programming environment, such as Eiffel. Of
course, a long-term approach for the development of self-
healing Web Services should benefit from the adoption of
design guidelines, and this is in fact among the goals of the
WS-Diamond project [19] starting in late 2005.

There are moreover specific differences with respect to
the Design by Contract™approach.

• First of all, our approach supports the dynamic integra-
tion of Web Services in open environments: the global
diagnoser works, in general, without prior knowledge
of the choreography according to which the individual
Web Services are invoked by the complex service. It
should also be noted that, in such an open environment,
the invoked Web Services may not respect their own
specification, but this can only be discovered at ser-
vice invocation time. Moreover, additional problems
may arise (e.g., transmission errors) with the invoca-
tion of remote services, even in case their software is
correct.

9

• Second, the application of diagnostic algorithms sup-
ports the identification of non trivial errors, caused by
the propagation of wrong inputs which satisfy the in-
put conditions of Web Services and thus are discovered
late in the execution of the complex service. Consider,
for example, a wrong, but well formed ISBN number
in the bookshop example. Moreover, diagnostic rea-
soning is able to put together information from dif-
ferent observations in order to discriminate alternative
causes of a single error. This is especially true in the
cases where the choreography of the complex service
is known a priori (e.g., in Enterprise Application Inte-
gration). In fact, the designer of the complex service
can specify test conditions supporting diagnostic rea-
soning aimed at identifying the best explanations for
the wrong behavior.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices - Concepts, architectures and applications. Springer,
2004.

[2] V. Brusoni, L. Console, P. Terenziani, and D. Theseider
Dupré. A spectrum of definitions for temporal model-based
diagnosis. Artificial Intelligence, 102(1):39–79, 1998.

[3] L. Console and O. Dressler. Model-based diagnosis in the
real world: lessons learned and challenges remaining. In
Proc. 16th IJCAI, pages 1393–1400, Stockholm, 1999.

[4] I. Grosclaude. Model-based monitoring of component-based
software systems. In Proc. 15th Int. Work. on Principles of
Diagnosis, pages 155–160, 2004.

[5] W. Hamscher, L. Console, and J. de Kleer, editors. Readings
in Model-Based Diagnosis. Morgan Kaufmann, 1992.

[6] C. Mateis, M. Stumptner, D. Wieland, and F. Wotawa.
Model-based debugging of Java programs. In Proc. 4th Int.
Workshop on Automatic Debugging (AADEBUG-00), Mu-
nich, 2000.

[7] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services.
IEEE Intelligent Systems, 16(2):46–53, 2001.

[8] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, 1997.

[9] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proc. 11th Int.
World Wide Web Conference (WWW-11), 2002.

[10] OASIS. OASIS Web Services Business
Process Execution Language. http://www.oasis-
open.org/committees/documents.php?wg abbrev=wsbpel,
2005.

[11] OWL Services Coalition. OWL-S: Semantic Markup for
Web Services. http://www.daml.org/services/owl-s/1.1B/owl-
s/owl-s.html, 2004.

[12] M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan.
Toward a Semantic Web e-commerce. In Proc. of 6th Int.
Conf. on Business Information Systems (BIS’2003), Col-
orado Springs, Colorado, 2003.

[13] M. Papazoglou and D. Georgakopoulos, editors. Service-
Oriented Computing, volume 46. Communications of the
ACM, 2003.

[14] Y. Pencolé and M. Cordier. A formal framework for the
decentralised diagnosis of large scale discrete event systems
and its application to telecommunication networks. Artificial
Intelligence, 164(1-2), 2005.

[15] R. Reiter. A theory of diagnosis from first principles. Artifi-
cial Intelligence, 32(1):57–96, 1987.

[16] N. Roos, A. ten Teije, and C. Witteveen. A protocol for
multi-agent diagnosis with spatially distributed knowledge.
In 2nd Int. Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-2003), Melbourne, Australia,
July 2003.

[17] W. van der Aalst and K. van Hee. Workflow Management -
Models, Methods, and Systems. The MIT Press, 2002.

[18] W3C. Web Services Definition Language Version 2.0.
http://www.w3.org/TR/wsdl20/, 2004.

[19] WS-Diamond. Web Service Diagnosability, Monitoring &
Diagnosis. http://wsdiamond.di.unito.it, 2005.

10

