
Advanced Fault Analysis in Web Service Composition

L. Ardissono, L. Console, A. Goy, G.
Petrone, C. Picardi, M. Segnan

Dipartimento di Informatica
Università di Torino

Torino, Italy

authorFamilyName@di.unito.it

D. Theseider Dupré
Dipartimento di Informatica

Università del Piemonte Orientale
Alessandria, Italy

dtd@mfn.unipmn.it

ABSTRACT
Currently, fault management in Web Services orchestratingmulti-
ple suppliers relies on a local analysis, that does not span across in-
dividual services, thus limiting the effectiveness of recovery strate-
gies. We propose to address this limitation by employing Model-
Based Diagnosis to enhance fault analysis. In our approach,a Di-
agnostic Web Service is added to the set of Web Services providing
the overall service, and acts as a supervisor of their execution, by
identifying anomalies and explaining them in terms of faults to be
repaired.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Languages, Standardization

Keywords
Web Service composition, fault management, diagnosis

1. INTRODUCTION
The emerging standards for Web Service composition, such as

BPEL4WS [1], are key elements for the integration of heteroge-
neous software in open environments. However, they offer limited
support to the development of robust services based on complex
workflows. For instance, fault handlers are introduced to specify
the actions to be taken when a service execution fails, but they are
defined inad hocways, similar to the exception handling tech-
niques exploited in programming languages. Moreover, the han-
dlers try to recover from the effects of a problem, but they donot
attempt to identify its real causes and to address them before other
service executions fail in a similar way.

We aim at extending Web Service composition with support for
the specification, management, monitoring and recovery of com-
plex workflows including the execution of internal activities and
the invocation of external services. As a first step in this direction,

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

we propose to integrate in a Web Service composition framework a
diagnostic Web Service which identifies the causes of the problems
occurring during the execution of a complex service and therefore
supports a fine grained selection of the recovery strategy tobe ap-
plied. The diagnostic Web Service relies on Model-Based Diagno-
sis [3] to identify the possible causes of problems.

2. A FRAMEWORK SUPPORTING
ADVANCED FAULT MANAGEMENT

2.1 The Diagnoser Role
The occurrence of a failure in the execution of a Web Service

triggers the generation of a fault to be locally handled, or of a
fault message directed to the service consumer. The simplest fail-
ures, associated to local execution problems, are usually solved in a
straightforward way; in contrast, subtler types of failures can only
be recognized at later stages of the service execution, whena direct
treatment of the problem is not possible. In order to enhancefault
management in complex services, we propose to add adiagnoser
Web Service that receives information about the execution of all the
orchestrated services, as well as from the Web Service integrator,
carrying out a global analysis of their activities. The diagnoser has
the following responsibilities:� During service execution, it monitors the activities carried

out by the Web Services, logging the messages they exchange.� When the diagnoser receives a fault message denoting the
presence of a failure to be handled at the global level, it rea-
sons about the problem to identify its causes. This can be
done by exploiting logged messages, which help to track the
propagation of data and errors between Web Services. The
faults to be handled at the global level can be recognized by
the diagnoser if the set of fault messages that can circulateis
suitably partitioned in local and global ones. We callalarm
messagesthe second type of messages.� Finally, the diagnoser informs the Web Service integrator
about the final diagnosis, so that a suitable recovery strategy
can be applied.

The diagnoser (Diagnoser WS) interacts with the other Web Ser-
vices via WSDL [4] messages. Specifically:� The Diagnoser WS must offer a WSDL operation

(logMessage(String wsdlMsg)) for the reception of
the normal and fault messages to be logged. The Web Ser-
vice exploits an internal “observer” component collectingthe
messages for later inspection. Moreover, it exploits a diag-
nostic engine supporting reasoning about faults.

Diagnoser WS

Observer

Web Service 3

Web Service 4
Web Service 2

Web Service 1

diagnostic
 engine workflow

Figure 1: Architecture of a complex service exploiting an ob-
server for advanced fault management� The Web Service integrator and the individual Web Services

must send copies of the outbound messages to the Diagnoser
WS. To this purpose, each Web Service must be equipped
with a “logging service” which intercepts the outbound WSDL
messages and sends a copy of each message to the Diagnoser
WS through the “logMessage” port.

Figure 1 depicts the architecture of a complex service exploiting a
Diagnoser WS for advanced fault management; “logging services”
are depicted as black rectangles; ordinary messages are represented
as thick plain arrows and log messages are shown as dashed arrows.

2.2 Model-Based Diagnosis of Web Services
Model-Based Reasoning and, in particular, Model-Based Diag-

nosis (MBD), have been proposed in the Artificial Intelligence com-
munity for reasoning on possibly faulty physical systems, but they
have also been applied in other domains, such as software diagno-
sis. Most MBD approaches rely on a component-oriented modelof
the system to be diagnosed. Component-based MBD assumes that:� The system is modeled as a set of components.� The behavior of each component is modeled as a relation on

component variables. The model is provided for the correct
and/or faulty behavior of the component; in some domains,
the behavior under alternativefault modesis provided.� Component variables includeinterface variablesused to de-
fine interconnections in the system by equating interface vari-
ables of different components; e.g., an output variable of a
component with an input variable of another component.

The system model is able to predict, or at least constrain, the effect
of the incorrect behavior of a component also on variables that are
not directly related to the component.

Diagnostic reasoningshould identify diagnoses, asassignments
of behavior modesto components, for a given set of observations
(values for observable variables). Adiagnostic engineexplores
the space of behavior mode assignments, finding those that explain
an initial set of observations, and performs discrimination among
alternative candidates, possibly suggesting additional pieces of in-
formation to be acquired to this purpose.

There are several formalizations of MBD; see [3]. Here, we use
consistency-based diagnosis: a diagnosisis anassignment of be-
havior modesto components that isconsistent with observations.

In order to apply the MBD paradigm to a complex Web Service,
we base the inferences of the diagnoser on a modelM of the service
which is derived from the workflow specification as follows:� The workflow is represented as a set ofactivities (which may

correspond to sending a WSDL message to a WS) withinput
andoutput variables. Moreover, dependencies between in-
put and output variables are specified to model the data flow,
in order to distinguish whether an output variable is acopy

of an input variable or it iscreatedby an activitya, or it is
computedby a depending on some of its input variables.� A diagnostic model is derived, with a binary variable for each
input/output variablev of activities, representing whether, in
a given execution of the service,v has the expected value
or not. The model then relates incorrectness of an output
variable to errors in input values or faults in the activities.� The fault messages denoting problems which would benefit
of diagnostic reasoning are tagged asalarmsand related to
the model: a typical triggering alarm is a mismatch between
service variables, and the model can relate the alarm to the
(in)correctness of such variables. Moreover,test conditions
on the parameters of (a subset of) the messages exchanged by
the Web Services are defined in order to enable the diagnoser
to acquire further evidence to confirm or disconfirm hypothe-
ses. During diagnosis, the diagnoser will not go through the
whole bunch of logged messages, but it will look at the out-
come of test conditions to perform the diagnostic inferences.

The approach was successfully tested on the model of a Web-based
catalog service, supporting customers in the purchase of books.
The model was run in the SALVO [2] Model-Based Reasoning tool.

3. CONCLUSIONS
We proposed a framework supporting the exploitation of Model-

Based Diagnosis to enhance fault analysis in complex Web Services
exploiting multiple suppliers. In our approach, a Diagnoser Web
Service is added to the set of composed Web Services and acts as
a supervisor of the execution of the underlying workflow, by iden-
tifying anomalies in the execution of the composed Web Services,
and by explaining such anomalies in terms of faults to be repaired.

The notification about (normal and faulty) messages sent to other
Web Services can be added to the invoked Web Services without
changing their internal structure. Thus, it represents a reasonable
price to pay in order to enhance the robustness of services, at least
in Enterprise Application Integration, where the pool of exploited
services is well determined and fixed.

Recent developments of our work focus on the design of a frame-
work where the diagnostic task is carried out in a distributed way
within a service. When defining a complex service, we proposeto
add to each serviceS a local diagnoser which relates hypotheses
about incorrect outputs ofS to a misbehavior ofS itself, or to in-
correct inputs from other services. A global diagnostic service is
then associated with the complex service. It coordinates the local
diagnosers, exchanging messages with them and, without relying
on any information about the internal structure of the sub-services,
it can in turn compute diagnoses at the level of the global service.

4. REFERENCES
[1] T. Andrews, et al. Business Process Execution Language for

Web Services version 1.1.
http://www-106.ibm.com/developerworks/webservices/library
/ws-bpel/, 2003.

[2] R. Bray, A. Buffo, F. Cascio, L. Console, C. Picardi,
M. Segnan, and D. Theseider Dupré. SALVO : Model-based
systems - applications in automotive industry.Intelligenza
Artificiale, 1(3):13–20, 2004.

[3] L. Console and O. Dressler. Model-based diagnosis in thereal
world: lessons learned and challenges remaining. InProc.
16th IJCAI, pages 1393–1400, Stockholm, 1999.

[4] W3C. Web Services Definition Language.
http://www.w3.org/TR/wsdl, 2002.

