
An Efficient Algorithm for the Transient Analysis of a Class of Deterministic
Stochastic Petri Nets

M. Gribaudo and M. Sereno
Dipartimento di Informatica, Università di Torino, Torino, Italia

Abstract

In this paper a new algorithm for the transient solution of
a sub-class of Deterministic Stochastic Petri Nets (DSPN) is
proposed. The technique can be applied to DSPNs compris-
ing only deterministic and immediate transitions and such
that in each tangible marking only one deterministic tran-
sition is enabled. The algorithm does not require any addi-
tional restriction on the deterministic transition delays that
can have any positive real value. Most of the optimized al-
gorithms presented in the literature are based on an effi-
cient solution of the equations governing the stochastic pro-
cess associated with the DSPN; the new algorithm we pro-
pose is based on an efficient combinatorial analysis of the
paths within the state space underlying the DSPN, instead.

1. Introduction

Stochastic Petri Nets (SPNs) represent a powerful for-
malism for modeling and evaluating systems exhibiting
concurrency, synchronization, and conflict. The ability to
model probabilistic behavior is essential in the field of per-
formance and reliability evaluation. This need leads to var-
ious different variants of the SPN formalism. Deterministic
and Stochastic Petri Nets (DSPNs) introduced in [1] are a
stochastic formalism which include both exponentially and
deterministic delays. Under the restriction that in any mark-
ing of a DSPN at most one deterministic transition is en-
abled, highly efficient numerical methods for steady state
analysis have been provided (see [8] and [5]). This restric-
tion has been removed in [10]. This paper proposes an effi-
cient numerical method for steady state analysis of DSPNs
with concurrent deterministic transitions.
Previous work on transient analysis of DSPNs was always
based on the restriction that deterministic transitions are not
concurrently enabled. In [2] it has been show that, with this
restriction, the stochastic process underlying a DSPN is a
Markov regenerative stochastic process. Based on this re-
sult, a numerical method for the transient analysis of such
DSPN is proposed. The technique is based on a numerical

inversion of Laplace-Stiltjes transforms.
Numerical methods based on the method of supplementary
variables have been presented in [6]. Supplementary vari-
able approach methods require the numerical solution of
systems of partial differential equations.
The paper [9] introduces an efficient method for transient
analysis od DSPNs without restrictions on the enabling of
deterministic transitions, i.e., the proposed technique allows
concurrent deterministic transitions. This paper introduces
a new algorithm for the transient solution of a sub-class of
DSPNs. The technique can be applied to DSPNs compris-
ing only deterministic and immediate transitions and such
that in each tangible marking only one deterministic transi-
tion is enabled (in the following we denote this sub-class of
DSPNs a D-DSPNs). Most of the transient algorithms pre-
sented in the literature are based on an efficient solution of
the equations governing the stochastic process associated
with the D-DSPN; instead, the new algorithm we propose
is based on an efficient combinatorial analysis of the paths
within the state space underlying the D-DSPN. The algo-
rithm we present in this paper does not require any addi-
tional restriction on the deterministic transition delays that
can have any positive real value.

For the transient solution of D-DSPNs we have differ-
ent possibilities. In particular, we can use the methods pro-
posed in [6] and implemented in TimeNet package [11].
With some additional restriction on the the deterministic
transition delays (i.e., all the transition delays have to be
equal) we can also use the results presented in [9] and im-
plemented in new version of the DSPNexpress package [8].
Solution algorithms for the class of D-DSPNs have also
been proposed in other works, for instance the paper [3]
proposed a technique that is able to derive the embedded
DTMC by determining a basic step of the transition delays.
By using a fine step, arbitrary delays can be approximated,
but this increases the state space of the DTMC.

The algorithm that we propose in this paper does not re-
quire any additional restriction on the deterministic transi-
tion delays that thus can have any positive real value. An-
other interesting point of our transient solution algorithm is
that it can be easily extended to be used in case of D-DSPN
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with infinite state space.
The balance of this paper is outlined as follows. Sec-

tion 2 describes the transient solution algorithm. Section 3
presents two examples of application of this algorithm for
the evaluation of interesting models. Finally, Section 4 pro-
vides some concluding remarks.

2. The Transient Solution Algorithm

The D-DSPNs are DSPNs comprising only deterministic
and immediate transitions. We can handle all the features al-
lowed by the class of DSPNs (see [8] and [5] for details). We
also impose the classical restriction that is used for many
the solution algorithms for DSPNs, that is, in each tangi-
ble marking only one deterministic transition is enabled.

In this section we provide a description of the new tran-
sient solution algorithm. In particular,

� in Section 2.1 we present some basic definitions that
will be used to describe the technique;

� in Section 2.2 we provide a detailed description of the
proposed technique;

� in Section 2.3 we illustrate the new transient solution
algorithm with a help of a simple D-DSPN;

� in Section 2.4 we present a pseudo-code description of
our new technique and then we discuss some imple-
mentation issues.

2.1. Embedded Markov Chain

In order to describe the solution algorithm, we first ob-
serve that the stochastic process underlying the D-DSPN
model is similar to an embedded Markov process, with a
deterministic, state dependent sojourn time, and time de-
pendent state jump probability. Since only deterministic
timed transition are involved, the sojourn time in a state
can be easily determined. In the following we denote by
� ��� the deterministic transition enabled in marking ��.
Note that for some marking �� �� �� , we may have that
� ��� � � ���, since it can happen that both markings�� and
�� enable the same deterministic transition.

Let us denote by � the tangible state space of the D-
DSPN. When timed transition � ��� fires, the next marking
can either be tangible or vanishing. Due to the path of im-
mediate transitions that may follow the firing of a determin-
istic one, different tangible marking can be reached from a
single tangible marking. This stochastic process can be de-
scribed by a matrix� and a vector �. Matrix� is the state
transition probability matrix of the stochastic process. The
size of this matrix is equal to the size of the tangible state
space of the D-DSPN. Each element �� � represents the state
transition probability from state �� to state �� when tran-
sition � ��� fires (obviously

�
� �� � � �).

The vector � accounts the sojourn time of the stochastic
process, i.e., �� is the firing time of transition � ���.

The key point of the technique is that, since only deter-
ministic transitions are involved, it is possible to determine
the exact time at which the enabled transition will fire. In
particular, we denote by �� the sequence of time instants
where at least a transition will fire. We assume that:

�� � �� and �� � ������� � �� (1)

In Section 2.2 we will see how to compute the sequence
��� � � �� �� � � �. In each state that has a probability greater
than zero, a timed transition is enabled (since we consider
only tangible states). Thus it may happen that more than a
single deterministic transition fire exactly at the same time
instant ��. We will see how to consider this possibility.

Let ���� be the probability vector at time � , i.e.,
the component ����� represents the probability of
being in marking �� at time � . Since only deter-
ministic and immediate transitions are involved, the
probability distribution does not change between
two consecutive firing instants �� and ����. That is:

���� � ��� ��� ��� � � � ���� ������
The probability distribution at time ����, will be com-
puted by summing to ����� two terms, ������ and
��

����, that is:

������� � ����� ���
������������ (2)

In Section 2.2 we provide a method for computing these
probability increments ������ and ������. We must
separate the additive part from the subtractive part because
only the incoming probability into a state enables its asso-
ciated transition.

2.2. The solution algorithm

Let ����� (with �� � �) be the initial state probabil-
ity distribution (which can be easily derived from the ini-
tial marking of the model).
To compute the transient distribution it is sufficient to com-
pute the values �� ,������������ for every � 	 �.
Let us denote by

���� � ��� � ������ 	 �� (3)

the set of markings that have a non-zero probability in the
initial state, and by

�
��� �

�
�� ��� � ����

�
� (4)

the set of different delays of the deterministic transi-
tion that can be enabled in the possible initial mark-
ings. Since there can be deterministic transitions hav-
ing the same delay, it may happen that 	����	 	 	����	.
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In the following first compute ��, ������, and ������
for every � 
 	����	 and then for � 	 	����	. In other
words, we first describe the computation of the ��,
��

����, and ������ starting from the initial mark-
ing, and later on we extend the procedure for the compu-
tation of these values for any marking that can be reached
from the initial marking.

Computation of ��, ��
���� and ��

���� for
� 
 	����	.
We order the set �

���, in this manner for any
� � �� � � � � 	����	 we have that 


���
� � 


���
��� (with



���
� � 


���
��� � �

���). We can derive that

�� � 

���
� � �� � �� � � � � 	����	� (5)

This simply means that all the deterministic transitions that
are enabled in the initial markings will fire after their firing
time.

Let us address the computation of ������ and
��

���� for � 
 	����	. We can set ������ �
��

���� � �, since at time �� � � we know the ini-
tial distribution and ������ and ������ have no mean-
ings.
Let denote by

�� � ��� ��� � ����� and �� � ����

� � �� � � � � 	����	� (6)

the set of all the possible initial markings whose associated
deterministic transitions have the same firing time (this is
required because as stated before, there may be more than
one deterministic transition with the same firing time). We
define a diagonal matrix of size equal to 	�	, ���� such that
�
���
� � � � if �� � ��, ����� � � � otherwise. We can derive

that

��
���� � ������

��� (7)
��

���� � ��
����� � ������

���
�� (8)

��
���� represents the probability that flows out of the

states due to the transition firings at time �� (that is the
probability leaving the states �� � ��), and������ rep-
resents the probability that enters the new states reached af-
ter the firing of the various transitions that fires at time ��.
This quantity is simply what leaves the states������ dis-
tributed according to matrix �. This expression takes into
account both the cases when there is more than one mark-
ing whose associated transitions fires at time ��, (in this
case the number of non-zero elements of������ is greater
than one) and when there are some conflict in the vanish-
ing marking reached after the firing of the transition (in this
case, the number of non-zero elements of the row of� cor-
responding to the state that is left are greater than one).

Determining ��,������ and������ for � 	 	����	.
Now let us consider what happens at firing time ��. The pro-
cess jumps from one of the initial states (in particular from
one of the states �� such that �� � ��) to some new tangi-
ble state �� . The set of markings that are reached at time
�� can be determined as:

���� � ��� � ���� ��� 	 ��� (9)

This set is important because it accounts for the determin-
istic transitions � ��� � �� � ���� that becomes enabled
at time ��. This mean that transition � ��� will fire at time
�� � �� (�� is the delay of the only deterministic transi-
tion enabled in marking ��). With these consideration we
can determine

�
��� � ��� ��� � ������ (10)

that is���� is the the ordered set of delays of the transitions
that may be enabled at time ��. Let be � � 	����	, we first

assume that �� � �� � 

���
� , that is the transition with the

earliest firing time, will fire after the latest firing of the tran-
sition enabled in the initial marking. Later on we will show
how to manage the case where �� � �� � 


���
� .

From these considerations we can the compute

���� � �� � 

���
� � �� � �� � � � � 	����	� (11)

After the computation of the firing instants ���� we can
compute the new probability increments������ �� and
��

���� ��. We first define

���� �
�
�� ��� � ����� and �� � 


���
�

�
�

for � � �� � � � � 	����	� (12)

that is the set of states whose associated timed transition
fires at time ����, and a diagonal matrix ������ such that
�
�����
� � � � if�� � ���� and �

�����
� � � � otherwise. We

can derive that

��
������ �������������

��
���� �� ������� ��� �������������� (13)

In the general case, only the probability that enters the state
at time �� will move out of the state at time ���� due to
the firing of the deterministic transition. This happens be-
cause a deterministic transitions � ��� becomes enabled as
soon as some probability enters marking ��, and fires ex-
actly after ��. This means that at every time � , the proba-
bility ����� of a marking�� considers together many tran-
sitions with different clocks. Instead ��� considers only
the one that where enabled at time �� and have the same
clock. This results in removing all the probability that en-
abled it, and distributing it among its possible destination.
��

���� takes into account the probability that entered a
state at a given time instant.
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Tangible Vanishing
�� ���� �� ����
�� ���� �� ����
�� ���� �	 ����
�
 ��
� �� ���� �	�
�� ��
� �	�

Table 1. List of all the reachable marking for
the D-DSPN of Figure 1

If �� � �� � 

���
� (that is, some of the newly enabled tran-

sition fires earlier than the one enabled in the initial mark-
ing), we simply order the terms ��, ��

��
� and ����
�
such that �� 
 ������
 � �. It may happen that �� � ����
for some index 
, which violates the constraints of Equa-
tion (1), i.e, all the time instants �� are different. In this case
we will simply merge the jumps; that is, if �� � ����, we
set:

��
��
� � ��

��
� �����
 � ��

��
��
� � ��

��
� �����
 � ��� (14)

and we then drop the terms ����,����
��� and����
�
��.

2.3. A Simple Example

Consider the D-DSPN depicted in Figure 1. This net rep-
resents a system that can perform three different activities.
Activity one (deterministic transition ��) cannot fail. Activ-
ity two (deterministic transition ��) can either succeed (im-
mediate transition ��), or fail (immediate transition ��), in
the latter case it must be repeated until it succeeds. Activ-
ity three (deterministic transition ��) can also either suc-
ceed (immediate transition �	) or fail (immediate transition
�
), but in contrast with activity two, it can be repeated only
once. This is ensured by place �	 that becomes marked and
hence transitions �
 and �	 are not enabled (inhibitor arcs
from place �	 to transition �
 and transition �	).

The D-DSPN has 	 possible markings: 
 vanishing and
� tangible. In Table 1 we provide all the reachable mark-
ings, while Figure 2 shows the reachability graph (Figure
2(a) presents the complete reachability graph while Figure
2(b) depicts only the tangible reachability graph).
We have that:

� � �����������
����

� �

�
�����

� ��� ��� ��� �
� � � � �

��	� � ���� � �
��
 � � � ���
� � � � �

�
�����

� � ���	� �� �� �� �
�

and � ��� � ��� �
��� � ��� �

��� � ��� �
��� � ��� and

� ��� � ��� Note that � ��� � � ���.
Since the initial marking is a vanishing marking (since
three immediate transitions are enabled), we have that

����� � ��� ���� ��
� ���� ���
and by Equation (3) we can write

���� � ���������� �
that is, we have three possible different tangible
markings that have a non-zero probability in the
initial state. The set ���� can be defined by us-
ing Equation (4), and in particular we have that

�
��� � ��� 
� �

since �� � ��.
The first firing time instants that can be defined by us-
ing Equation (5) are:

�� � �� �� � 
�
By using Equation (6) we can derive the two sets of mark-
ings whose associated deterministic transitions have the fir-
ing time equal to �� and to ��. In particular we have that
�� � ���� and �� � �������.
By using Equations (7) we can derive the probability incre-
ments/decrements at times �� and ��:

��
���� � ������ �� ����� �� �


��
���� � ��� �� ���� �� �


��
���� � ���
� �� �� �� ���


��
���� � ��� ���� �� ���� �
�

At time ��, by using Equation (9) we can derive the set
���� � ������� �

i.e., we have two states that can be reached at time �� and
by Equation (10) we derive that

�
��� � ��� 
����

Equation (11) allows us to compute the firing time instants
after ��, in particular, since 	����	 � 
, we have that

���� � �
 � �� � �
���
� � � � � � � and

�� � �� � �
���
� � � � ��	 � ��	�

The sets of markings ���� (for � � �� 
) can be defined
by using Equation (12): �� � ���� and �� � ����, and
their probability increments/decrements:

��
���� � �������� �� ����
�� �� ��

��
���� � ��� �� ����� �� ��

��
��
� � ��� ���
�� ����� ������ ��

��
��
� � ������ �� �� �� ���

Since �� � �� we can merge the corresponding probabil-
ity increments/decrements (see Equations (14)) and then we
obtain the update values for����
� and����
�:

��
��
� � �������� �� ����
�� �� ��
�

��
��
� � ��� ���� ����� ���� ���

We can repeat the same reasoning for �� � 
, and in partic-
ular we obtain:
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Figure 1. A D-DSPN model to illustrate the transient solution algorithm
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Figure 2. Reachability graph (a) and tangible reachability graph (b) of the D-DSPN of Figure 1

���� � ���������� �
and

�
��� � ��� 
� 
��� �

We can determine the firing time instants ��, ��, and �

(note that in the previous step we merge two firing time in-
stants). In particular, if we apply Equation (11) (with some
re-ordering of the terms ����) we obtain that

�� � � �this is due to a re-order of the terms�

�� � ��� �this is a time instant computed at the previous step�
�� � 


�
 � 
���

We can derive the sets �����, and �
. Note that we do not
derive the set �� because it has been derived at the previ-
ous step (at the previous label, before the re-labeling, this
set has been denoted as ��). In particular we have that:
�� � ����, �� � ����, and �
 � ����. The corre-

sponding probability increments/decrements are:

��
���� � �����	���� �� ������
�� �� ��

��
���� � ��� �� ����
�� �� ��

��
���� � ���
� �� �� �� ��

��
���� � ��� �� �� �� ��
�

��
���� � ��� ���	�
�� ����	�� �������� ��

��
���� � �������� �� �� �� ���

We can summarize the solution up to time � 
 �� � �:

��� � �

��������
������	

� � � 	 � � � � 	 � � � � 	 � �

� ���� ��	�	� ��	�
�	�
��� ��� � �
��� ���� ������ ��������
��� ��� � �
� � ��� ���
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Figure 3 presents a graphical representation of the solu-
tion process. The arrows in this figure show how the prob-
ability flow among the states. The circle at time �� � 

shows how the probabilities coming from different states
are merged together. In the example, the value ������ is ob-
tained by adding the terms ��� � � � ��� � ��� in the matrix
multiplication, and ������ when merging �� with ��.

2.4. The algorithm

The technique proposed in Section 2.2 can be efficiently
implemented by using a structure similar to a standard dis-
crete event simulation program. Each firing time instant
�� can be considered as a discrete event of a simulation.
Since the analysis of each �� produces new �� with � 	 �,
that may require the rearrangement of the previous �� with
�� 	 �� , this can be considered as the scheduling of new
events. However, with respect to a standard discrete event
simulator, in the implementation of our technique, events
can only be reordered and not removed.
The state of the system is composed by the three vectors:
the probability distribution�����, and the probability incre-
ments/decrements ������� and �������. Another dif-
ference with respect to a standard simulator is that this
scheduler must join events if the new �� is equal to some
�� � �� for some � 	 �, and the old event must be up-
date to consider also the new contribution. The state of the
algorithm is a probability distribution vector. In this man-
ner the scheduler does not consider a single path of the state
space at a time as in the case of classical discrete event sim-
ulator, but it is exploring all the possible paths of in paral-
lel.

Assume that we need to compute the transient solution
up to time ����. All the events that occur after this time
threshold can be discarded and we do not insert them into
the event list. Table 2 presents a description of the basic
steps of our transient solution algorithm.

We used an object-oriented like syntax to define the pro-
cedure. The constructor orderedDoubleLinkedList creates a
double linked list, ordered according the time parameter � .
The elements of the double linked list are composed by two
parameters:��� and���. Method get finds the element
at time � if present, or return null otherwise. Method newN-
ode creates a new node for the list, and method insert, in-
sert it into the list, by preserving the order with respect to � .
The procedure insertIntoEventList first checks if the event
that it is going to schedule happens before the end of the
transient computation, and than it verifies if there is other
event occurring at the same time instance. If there is no
other event with the same time instance the procedure in-
sertIntoEventList creates a new event and schedule it at that
time. On the other hand if there is another event with the

same time instance the procedure does not insert the new
event but it simply updates the event already scheduled.

In the procedure generateNewEvents that generates the
new events due to the transitions enabled in the states that
have a probability greater than zero in �, ���� is a square
matrix with the element ��� � � and all the other elements
equal to �. This matrix is used to derive a vector that as its
�-th component equal to ��, and all other components equal
to zero. The procedure generateNewEvents implicitly gen-
erates the sets ����,����, and ��.

The complexity of the proposed technique is under study.
We only have some initial considerations on this issue. In
particular we can say that the computational complexity is
mainly dominated by three parameters: the first paramenter
is ���
. The impact of ���
 on the complexity of solution
is quite trivial: it forces a limit on the number of time in-
stances that must be considered. Another parameter that in-
fluences the computational complexity is the length of the
event list. This length depends on ���
 and on the relations
among the deterministic transition delays. The last parame-
ter that influences the computational complexity is the num-
ber of new events generated when a given event is sched-
uled. The procedure generateNewEvents generates a new
event for each non-zero entry on a specific row of matrix�.
In principle we can generate a number of new events equal
to the state space size, in practice most of the row of ma-
trix � have very few non-zero entries.

3. Numerical Experiments

In this section we present some numerical experiments
to compare the performance of the proposed transient so-
lution algorithm with other methods that allow to solve the
class of D-DSPN models.

Example 1 We consider a pharmaceutical manufacturing
system. In this field, common policies in manufacturing
lines are generally determined by specific rules (for instance
rules determined by the Food and Drug Administration [7]).
For example, there can be some faults in the equipment
that compromise the sterilization process and in these cases
the product contained in a buffer is no longer “safe” and
all the content of the buffer should be discarded. A sim-
ple D-DSPN model of a pharmaceutical production line
is depicted in Figure 4 where we consider a machine that
produces nUnits of product (firing of deterministic transi-
tion Start). All these product units have to pass a quality
test that allows to recognize the corrupted units (immedi-
ate transitions nerr and err). There can be two different
types of faults: a soft fault (immediate transition softerr)
and a more serious error in the sterilization process (imme-
diate transition hderr). The former corresponds to a recov-
erable fault and in this case the corrupted unit of product can
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Figure 3. Graphical representation of the solution process (up to the time instant ��)

be “repaired” by means of a recovery phase (timed transi-
tion SEmng). In case of error in the sterilization process
all the nUnits of product produced during the cycle are no
longer safe, all the content of the buffer (places P2 and P3)
should be discarded, and the machine requires a “restora-
tion” phase (deterministic transition HEmng). The duration
of this restoration phase depends on the number of consec-
utive errors in the sterilization process (number of tokens in
place MxHE). The machine ends its cyclic activities when
it accumulates at least NCyc units of product in the place
Acc. When this event occurs transition tEnd may fire.

To evaluate the performance of the proposed transient al-
gorithm we compute the completion time distribution of a
machine-phase, this is represented by the probability that
place End is marked. Table 3 contains the the delays of the
deterministic transitions, and weights and priorities for the
immediate transitions.

For our experiments we set nParts equal to ��, and ME
equal to �, that is, the maximum number of consecutive ster-

Transition label Weight/Delay Priority
nerr 49 2
err 1 2
softerr 9 3
hderr 1 3
endC 1 1
tEnd 1 5
limHE 1 10
Start 1
SEmng 10
HEmng ����
 
�MxHE��

Table 3. Delays of the deterministic transi-
tions, and weights and priorities for the im-
mediate transitions
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procedure solveDDSPN(�, �, ��, �max)
initEventList()
� � �
	��� � 	�
generateNewEvents(� ,�� ,�, �)
while (eventList.notEmpty() AND � 
 �max)do

E = eventList.getFirstEvent()
� � E.�
	��� � 	���� E.���� E.���

generateNewEvents(� , E.���,�, �)
eventList.removeEvent(E)

end while
end procedure solveDDSPN

procedure initEventList()
eventList = new orderedDoubleLinkedList(� ,���,���)

end procedure initEventList

procedure generateNewEvents(� ,�,� , �)
for each � such that 	� � � do
�
� � ��

���

�
� � ��

insertIntoEventList(� � ��, �
�, ��)

end for
end procedure generateNewEvents

procedure insertIntoEventList(� ,���,���)
if (� � ����) then

if (E = eventList.get(� )) �� null then
E = eventList.newNode()
E.� � �

E.��� � ���

E.��� � ���

eventList.insert(E)
else

E.��� = E.��� ����

E.��� = E.��� ����

end if
end if

end procedure insertIntoEventList

Table 2. Basic steps of the transient solution algorithm

ilization errors that increases the duration of “restoration
phase” is equal to � after this value the time required by
this phase does not increase any longer. For NCyc we use
the following values: ���, ���, ���, ���, ����, and �����.
All the experiments were performed on a Pentium IV (2.4
Ghz) and a 1.5 Gbytes of memory.

Table 4 summarizes the comparison between the tran-
sient algorithm proposed in this paper and the one used by
the package TimeNET. In all the experiments the measure
(probability that place End is marked) is computed up to a
time � � 
���.

As can be observed by the results presented in Table
4 the transient solution algorithm presented in this paper
is much faster that the one implemented in TimeNET. We
have to point out that this kind of comparison is not too fair.
The transient solution method implemented in TimeNET is
much more general that the one that we present in this pa-
per because it can be used for DSPNs with exponential, de-
terministic (or generally distributed) transitions. Neverthe-
less, to the best of our knowledge, we compare our proposal
with the only package that implements a transient solution
method that is able to manage this sub-class of DSPNs.

NCyc State Space New algorithm TimeNET
Size (sec) (sec)

100 471 0.10 343.8
300 1411 0.29 432.9
500 2351 0.51 574.3
700 3291 0.66 754.3

1000 4701 0.95 1032.7
10000 47001 9.56 16752.6

Table 4. Comparison time between the new
transient algorithm and that one used the
package TimeNET

Example 2 We also perform another set of experiments by
using the D-DSPN model of Figure 5. This is a D-DSPN
presented in [4]. The model allows to compute the com-
pletion time distribution of finite TCP connections. In the
present paper we do provide a detailed explanation of the
model of Figure 5, interested readers can found all the de-
tails in [4].

The DSPN model presented in [4] belongs to the same
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Figure 4. A D-DSPN that models a pharmaceutical manufacturing system

class of model that can be managed by our new tran-
sient algorithm, i.e., it has only deterministic and immedi-
ate transitions. The deterministic transitions represent the
different timings that a TCP source has to manage: the
Round Trip Time (RTT), the initial the Retransmission
Time Out (I RTO), and the estimated Retransmission Time
Out (E RTO). The TCP model requires the following input
parameters: RTT, I RTO, number of packets that the TCP
source has to transmit (NPackets), and packet loss prob-
ability (Ploss). All the details concerning this TCP model
can be found in the paper [4], in the present paper we use
this model (with different values for NPackets) to compare
the performance of the our new transient algorithm with the
transient solution method implemented in TimeNET.

All the experiments have been performed by using the
following set of parameters: ��� � ���
	��� (delay
of transitions RTT and Td Time), the delay of transition
To Time is defined by the following equation by using a
marking dependent firing time for transition TO TIME de-
fined in the following manner:

f.time TO TIME�

��
�
���������� ������
��� if ���� ���� � �

���������� ������
��� ��� if ���� ���� � �,

where ���� �

 � ��� while ���� � ���.
Table 5 summarizes the comparisons between the tran-

sient algorithm implemented by TimeNET package and the
one we propose in this paper.

4. Conclusions and Further Developments

In this paper we presented a new algorithm for the tran-
sient solution of a sub-class of DSPNs comprising only de-

NPackets State Space New algorithm TimeNET
Size (sec) (sec)

8 158 0.01 2.53
10 229 0.01 2.66
30 1799 0.08 5.84
50 5052 0.25 29.66
80 14375 0.83 239.87

100 23372 1.28 812.14
120 34479 1.91 2460.40
150 53125 2.93 8388.66

Table 5. TCP model presented in [4]: Com-
parison time between the new transient al-
gorithm and that one used the package
TimeNET

terministic and immediate transitions and such that in each
tangible marking only one deterministic transition is en-
abled. Although a formal derivation of the computational
complexity of such algorithm is under investigation, the
proposed method is in general, three order of magnitude
faster that the transient solution algorithms that can com-
pute the transient solution for D-DSPNs.
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