
Multisolution of Complex Performability Models in
the OsMoSys/DrawNET Framework
Gribaudo Marco∗, Mazzocca Nicola†, Moscato Francesco‡, Vittorini Valeria†

∗Dipartimento di Informatica,
Universita’ di Torino, corso Svizzera 185, Torino, Italy,

Email:marcog@di.unito.it
†Dipartimento di Informatica e Sistemistica,

Universita’ degli Studi di Napoli ”Federico II”, Via Claudio 21, 80125 Napoli, Italy,
Email: {n.mazzocca,vittorin}@unina.it

‡Dipartimento di Ingegneria dell’Informazione,
Seconda Universita’ di Napoli, Via Roma 29, 81031 Aversa, Italy,

Email: francesco.moscato@unina2.it

Abstract— In the last years some infrastructures and frame-
works have been proposed to enable the compositional devel-
opment of multiformalism models. This effort requires proper
techniques and tools to guarantee generality and flexibility when
combining multiple solvers and results obtained from the analysis
of such models. The OsMoSys/DrawNET framework allows to
develop and analyze complex performability models which are
composed by several submodels expressed by means of different
formal languages. In this paper we describe the approach to mul-
tisolution of multiformalism models in the OsMoSys/DrawNET
framework and we introduce the mechanisms used to define the
performance indices and generate the required results.

A raid system is used to exemplify the solution process of a
performability model from its creation to the analysis and the
presentation of the results to the final user.

I. I NTRODUCTION

Modern industrial systems are built up of heterogeneous
components which interact to perform the required tasks under
real time and dependability or safety constraints. The increas-
ing complexity of such systems requires the availability of
proper methods and techniques for their specification and anal-
ysis. To cope with complexity, multiformalism approaches are
emerging that allow to combine multiple modeling methods
into an unified framework, in order to enable the compositional
development of models without imposing a-priori what types
of formalisms would be used by the designer (e.g. see [6], [7],
[21]). In multiformalism modeling each system component to
be represented may be expressed through the most suitable
formalism, and proper infrastructures should be availableto
support multiple interacting formalisms and solvers. One of
the challenge when exploiting multiformalism is to guarantee
the generality and the flexibility required to solve the resulting
models and to combine multiple solvers and results. In this
paper we address the problems that arise when handling the
indices defined by the user on a multiformalism model if a
very general approach to multisolution is adopted that doesnot
bring back the various formalisms to a common semantics or
interface. We introduce an original approach to multisolution
that has been implemented in the OsMoSys/DrawNET frame-

work. OsMoSys is the name of both a modeling methodology
and a software framework aimed at the integration and inter-
operability of different modeling and analysis techniquesand
tools [21], [12]. DrawNET is an autoconfiguring GUI for the
development of multiformalism models at the user’s level [11].
The basis for the tool configurability is a metaformalism
used to define the elements of any formalism a user may
want to use. DrawNET allows to implement all the features
of the OsMoSys modeling methodology and provides both
a graphical representation and an XML (eXtended Markup
Language) based description of the models. In the following
we refer to the framework resulting from the integration of
OsMoSys and DrawNET.

The paper is organized as follows. Section II provides a
discussion about the related work. A Redundant Array of Inex-
pensive Disks (RAID) system is proposed as a running exam-
ple in Section III. Section IV presents the OsMoSys/DrawNET
approach to multisolution: the concept of orchestration isin-
troduced and its application to the interaction of both modeling
techniques and analysis/simulation tools is described. The
mechanisms used to handle performance indices and results
in the multisolution environment are defined in Section V.
Finally Section VI contains some closing remarks.

II. RELATED WORK

A few years ago, multisolution tools were required to
provide several solution methods for solving models expressed
through a specification language. The research progress in the
field of system modeling and analysis led to the evolution
of multisolution approaches due first to the compositional
and hierarchical nature of complex models and then to the
multiformalism modeling approaches developed to cope with
the increasing complexity of systems.

The emerging research field of Computer Automated Mul-
tiparadigm Modeling (CAMPaM) [13] is trying to combine
together the notions ofmultiformalism modelingand meta-
modeling. These modeling methodologies allow to face some
of the modeling problems of complex, heterogeneous sytems

by coupling each modeling aspect with the best suitable
formalism. In addition, a way to achieve flexibility for a
modeling language to support many formalisms is to model
the language itself with some meta-modeling methodology.
Since these methodologies are emerging, it is necessary to
face with all problems related to multiformalism modeling,
in respect of the solution phase of this kind of models, by
allowing solution tools to interact in order to automatically
solve complex multiformalism models.

Consequently, a more general notion of multisolution is
emerged that is the possibility of using more interacting
solution techniques and tools to analyze models consistingof
heterogeneous submodels, i.e. models obtained by composing
parts that may be expressed through multiple interacting
formalisms.

Efforts made to integrate multiple formalisms and solution
methods within an unified framework have produced some
important results. SHARPE and SMART are software tools
that can be considered a first step towards the development of
multiformalism multisolution frameworks.

SMART [4], [5] integrates Stochastic Petri Nets, Discrete-
Time and Continuous-Time Markov Chains in a single mod-
eling study for reliability and timing analysis. Submodelsare
solved using different solution techniques, including numer-
ical methods and simulation, and they may exchange results
through fixed point iterations. SHARPE [16], [18] is a tool for
reliability and performability analysis. It allows to combine
different model types (e.g. Fault Tree, Generalized Stochastic
Petri Nets, Product Form Queuing Network, Markov Gener-
ative Process, etc.) and it provides flexible mechanisms for
combining results so that models can also be developed by
using hierarchical composition.

Möbius [6], [17] takes a more general approach than
SMART and SHARPE, providing an extensible infrastruc-
ture to support multiple interacting modeling formalisms
and solvers without presupposing what formalisms would be
considered and what methods would be used to combine
submodels. Nevertheless, formalisms have to be compatible
with the framework since the user’s models are translated
into equivalent models using Möbius framework components.
Models and solution techniques interact with one another
through an Abstract Functional Interface, allowing them to
interact with the framework components. Möbius is actually
oriented to the application of solution methods based on the
generation of (all or some of) the possible evolutions of the
model in its state space.

A completely different solution is implemented by the
DEDS and CADP toolboxes. They are ”toolbox” by the sense
of combining various tools and interfaces.

The DEDS toolbox [2] is oriented to the construction of
modular tools for functional and performance analysis of
Discrete Event Dynamic Systems. The main components of
the toolbox are a GUI and various analysis programs that
cooperate via a textual interface. The GUI allows to use and
combine different modeling formalisms (Queuing Networks,
Generalized Stochastic Petri Nets, Coloured Petri Nets) and it

transforms the user’s models into a (common) abstract Petri
Net notation. CADP [8] is a toolbox for protocol engineering.
It is more domain oriented and it allows to write protocol
specifications written by means of different languages (Lotos,
Labeled Transition Systems, SDL,µCRL, UML Real Time)
and provides several tools for simulation, verification by
equivalence/preorder checking, temporal logic model checking
and test generation.

Another example of toolbox is the MODEST modeling
tool for reliability and performance analysis of embedded
systems [3]. It implements a singleformalism multisolution
approach since MODEST is a process algebra used as an over-
arching notation for different model types (ordinary finite-state
automata, timed automata, discrete event stochastic processes,
Markov Decision Processes, etc.). The MODEST tool allows
different external tools to cooperate. The external tools are
integrated into the environment by developing proper adaptor
modules calledsatellite modules. In [9] the authors say to
have implemented a satellite module to translate MODEST
specifications into the Abstract Functional Interface of M¨obius
in order to incorporate MODEST as a new atomic model
specification formalism.

In this paper we propose an approach to multisolution based
on the concept of orchestration and on the development of a
set of XML-based languages. The proposed approach has been
integrated in OsMoSys and in the DrawNET tool. OsMoSys
consists of a modeling methodology to build multiformalism
models and an open architecture for the integration of solution
techniques and tools. The architecture of OsMoSys has some
points of contact with MODEST: tools are integrated into the
framework by means of proper wrappers calledAdaptersand a
core module is in charge of executing the steps needed to solve
and analyze the models. Nevertheless the OsMoSys approach
to multisolution is more general: it allows very different
solution techniques and tools to cooperate if the semantics
of the their integration has been defined. The core module is a
workflow engine [12] that takes as inputs a model description
and the user definition of the performability indices generated
by DrawNET, and executes the steps needed to produce the
results according to an algorithm that implements the integra-
tion semantics. This requires that proper mechanisms and tools
are defined and implemented to enable the communication
between the user level in which the indices are expressed and
the OsMoSys level in which the results must be evaluated.

III. A RAID C ASE STUDY

This Section introduces a running example that will be used
throughout the paper to describe the approach to multisolution
in the OsMoSys/DrawNET framework. At this aim we have
chosen a simplified Raid level 5 system. Raid Systems [14]
are high performance secondary storage systems which are
designed to be fault-tolerant by storing redundant data on
extra disks. The redundancy can be achieved by providing
an identical copy of each disk (mirroring) or by means of a
parity disk.

The simplified architecture we have adopted in this paper
uses parity and can tolerate one disk failure [10]. The system
may be in three different states:
a) Ok (the system is working), b)Degraded(the system is
working despite of one disk failure) and c)Dead (the system
is not working since two or three disk failures have occurred).
Two controllers are the core of the system: the disk array
controller which enqueues the service requests (read and write
operations) and redirects them to the disk array, and the
controller located on the physical disk array machine.

We want to build a performability model of this system
that allows to evaluate the mean response time of read and
write operations (RWMRT) while the system is in the state
Ok or Degraded. Thus qualitative and quantitative aspects of
the system must be considered. A multiformalism approach
to the modeling of this system allows to cope with this
requirement and also promotes a compositional approach by
using reusable submodels. In this case the RWMRT can be
evaluated by solving a model of the system consisting of
three queues, expressed by means of the Queuing Network
(QN) formalism and augmented by information obtained by
solving two Fault-Trees (FT) submodels and two Generalized
Stochastic Petri Nets (GSPN) submodels. FTs are used to
evaluate the probabilities of theDegradedand Dead states,
GSPNs are used to evaluate the service time of the disk array
controller.

In the following FTDEAD and FTDEGR denote the FT
models used to evaluate the reliability of the disk array inDead
or Degradedstate respectively. They require that the mean time
between failures (MTBF) of the disks is known.FTDEAD is
shown in Fig.1. The occurrence of the failure represented by

Disk1 Disk2 Disk3

TEdead

Or1

 2/3
G2of3

 3/3
G3of3

Fig. 1. FTDEAD Fault Tree model of the RAID system

the top event TEdeaddepends on the probability that at least
two over three disks fail. Thebasic events Disk1, Disk2 and
Disk3 are parametrized by using the MTBF of the disks. For
brevity’s sake we omit to describeFTDEGR.

Analogously,GSPNOK andGSPNDEGR denote the GSPN
models used to evaluate the service time of the controller (in
Ok or Degradedstate respectively) that in turn depends on the
algorithms used in read and write operations.

GSPNDEGR is shown in Fig.2. It describes the behavior of
the raid system while it is working in aDegradedstate (i.e.
with one disk failure). Write (read) operations are modelled on
the top and middle part (bottom) of the figure. Data are striped

Write

FullStripe

SmallStripe

W

FSWD1

FSWD2

FSWD3

FSW1

FSW2

FSW3

FSErrRecov

DskErr

OthDskErr

ReadOth

ReadOthDsk

R2

RE

R1

RNE

R_1

R_2

R_E

R_NE

PrecS1

PrecS2

Read

RD1

RD2

RD3

RD_1

RD_2

RD_3

PRead

PSync Pend

Start

write_rate=0.120000
read_rate=0.880000

fullstripe_rate=0.945000

smallstripe_rate=0.055000
errorOnDSK_rate=0.330000
errorOnOtherDsk_rate=0.670000

Sync

ReadErrRecov
Read_b

Read_a

ReadErr

ReadNoErr

ReadErr

TWOthErr TRecovSW2

TrecovSW1

Read2

Read1

TWerr

Wr3

Wr2

Wr1

FSWRecover

FSWXor

t33

tsw
isWrite

isSmallWrite

isFSWrite

isRead

read

ROth

sync4
tsync

tsync3

tsync2
wOth

tsync1
tfsw

Fig. 2. GSPNDEGR model of the RAID system

along the three disks of the array during a write operation [14].
Write operations may write a full stripe (top of Fig.2) or they
may be small stripe operations that only write a part of the
full stripe (middle of Fig.2).

During a full stripe write, the parity data are evaluated
(transitionFSWXor) and the whole stripe (with parity) is
written on the array. Since the array is inDegradedstate, one
of the write operation fails and the full stripe write ends.

To perform a small stripe write it is necessary to distinguish
if the damaged disk is the disk on which the small stripe has to
be written (transitionDskErr) or the other disks (transition
OthDskErr). Then read operations on the other disks are
performed in order to evaluate the parity and to write the new
stripe on the array. Full stripe writes have an higher rate then
small stripe writes due to the caching mechanism embedded
on the array. For the same reasons, only full stripe reads are
performed on the array (read) and, in theDegradedstate a
recover operation is ever needed to accomplish read tasks
(ReadErrRecov). The throughput of the transitionSync
represents the mean number of read and write operations
performed by the system working in theDegradedstate. For
brevity’s sake we omit to describeGSPNOK .

To evaluate the queuing effects on read and write operations
three simple QNs can be used.

QNCONTR is the QN that describes the behavior of the
disk array controller;QNOK and QNDEGR are the QNs that
describe the behavior of the controller located on the physical
disk array machine in theOk andDegradedstate respectively.

Of course theDead state does not need a queue to be
described since no activity is performed on the system when
it is unavailable.

Experimental data on read and write operation are used
to tune the queues. The request arrivals are supposed to be
distributed as a Poissonian process so that the three queues

may be approximated by M/M/1 queues.
To obtain the RWMRT of the system, the mean of the

distribution evaluated byQNCONTR is corrected by using the
probabilities of having a degraded or a full working system
from the results of the analysis ofFTDEGR andFTDEAD. The
resulting distributions model the request arrivals toQNDEGR

and QNOK whose service times are assigned by using the
inverse of the throughput of theSync transitions ofGSPNOK

andGSPNDEGR respectively.
Thus a complete performability model of the system con-

sists of a composition of different submodels. The semantics
of this composition requires exchanges of information (results)
between the submodels in order to obtain the automated
solution of the RAID model.

A more complex case study could require to model different
QN policies that are heavy to model by GSPN. In this case
the features of the OsMoSys/DrawNET framework would be
better exploited but a simple case study helps to illustratethe
steps needed when using the framework.

IV. T HE OSMOSYS/DRAWNET APPROACH TO

MULTISOLUTION

The RAID model discussed in Section III needs adequate
means to be effectively solved in an automated way, since
many steps have to be performed in the right order and a flow
of data must be controlled to obtain the required results. In
this Section we introduce the OsMoSys/DrawNET approach to
multisolution that is based on the concept oforchestration.

Orchestration is the arrangement and/or control of het-
erogeneous and autonomous entities that must cooperate to
achieve a common goal. In computer science orchestration
describes how applications and services can interact, including
the business logic and execution order of the interactions.This
allows to facilitate the construction of composite applications
and services from a number of distributed and autonomous
software components. A meaningful case of orchestration from
the IT field is given by Web Services composition [15] which
requires that proper workflow languages and execution engines
are defined and developed to describe and execute a process
flow between services, controlled by a single party.

The OsMoSys/DrawNET approach copes with multiso-
lution by orchestration of modeling techniques and analy-
sis/simulation tools. This is accomplished in two stages re-
spectively, described in the next two subsections.

A. Bridge Formalisms and Bridge Operators

The OsMoSys/DrawNET framework is based on meta-
modeling and object orientation concepts that allow com-
positionality and extendibility in the modeling process. The
underlying modeling methodology is introduced in [21]. It is
centered on the definitions ofMeta-Formalisms, Model Meta-
ClassesandModel Classes.

A Meta-Formalism is a language used to describe for-
malisms, in particular the Formalism Definition Language
(FDL) is the Meta-Formalism that defines the primitives used

to introduce different modeling formalisms (PNs, FTs, QNs,
etc.) in the framework. In more details FDL defines:

• E: the set of element typesby which the formalism
is composed. For example in the case of PNsE =
{place, transition, arc}.

• PFDL: the set of properties that can be associated to
the various elements. For exampletoken, weights and
priorities.

• A set of relations that couple elements, properties and
their types sets (i.eReal, String, Integer etc.).

A Model Meta-Class is a modeling formalism expressed
by means of the above mentioned primitives.

A Model Classmust be compliant with a Model Meta-Class
and describes a family of models having the same structure
expressed by means of the primitives of its Model Meta-Class.
A Model Class may have an interface consisting of a subsets
of its elements. A Model Class is not a concrete entity and it
must be instantiated to obtain a concrete model, called Model
Object.

Let us introduceBridge Formalisms. A Bridge Formalism
is defined by means of the FDL, too: it is a Model Meta-Class
whose aim is to allow the development of models composed
by heterogeneous submodels. Fig. 3 shows the final model of
the RAID example presented in Section III.

QN_CONTR

FT_DEGR

FT_DEAD

GSPN_DEGR

GSPN_OKGSPN-QN

GSPN-QNFT-QN

QN_OK

QN_DEGR

Fig. 3. The Raid Model

This model is built by defining a Bridge Formalism which
allows to compose FTs, GSPNs and QNs submodels. In the
figure the squares encapsulate the Model Classes, i.e. the
submodels. The RAID model consists of seven submodels
according to the description given in Section III; they describe
a generic behaviour and must be instantiated by assigning
values to the submodels parameters to obtain the model of
a real system to analyze.FTDEAD, FTDEGR, GSPNOK ,
GSPNDEGR, QNOK , QNDEGR, and QNCONTR are Model
Classes compliant with their own Meta-Classes (FT, GSPN
and QN).

The rhombuses in Fig. 3 represent Bridge Operators. They
implement the semantics of the connections between submod-
els. The arcs linking a Bridge Operator to a Model Class are
connected to proper elements of the Model Class that belong
to its interface. In Fig. 3 two types of operator are used: a
Bridge Operator between FT and QN submodels (FT −QN)
and a Bridge Operator between QN and GSPN submodels
(GSPN − QN).

The example shows that a composed multi-formalism model
has a graph based structure whose nodes are submodels. The
operators represent the semantics of the connections between

submodels. The setE of a Bridge Formalismcontains Bridge
Operators, arcs, submodels and references to the interface
elements of the Model Classes whose objects must be con-
nected. Consequently, a Bridge Formalism must be defined
according to: a) the combination of Model Meta-Classes the
user want to use in building a multi-formalism model; b) the
set of interface elements; c) the set of the available operators
allowing the interaction between models expressed by means
of the specified Model Meta-Classes.

Fig. 4 illustrates the connections between theFT − QN
operator and the queues modeling the behaviour of the con-
trollers. Notice that this composition is not a queuing network.
The connections with the FTs Model Classes are shadowed
and represented by the dashed square and the related arc.

The Bridge Operator is an element type belonging to the
set E of the Bridge Formalism. The FDL allows to associate
to each operator and to each arc a set of properties (belonging
to PFDL) which are the information needed to implement the
semantics of the interaction between the submodels. In Fig.4
the operatorFT−QN acts as a function which has three input
parameters, one of them fromQNCONTR (this information is
a property of the arc from the queue to the operator) and
two output parameters, one toQNOK and one toQNDEGR

(defined by the properties of the two output arcs). The output
parameters are calculated by the operator using the input from
QNCONTR and the probabilitiesa1 anda2 resulting from the
analysis ofFTDEAD andFTDEGR respectively.

in

out1

out2
QN_Contr a1

a2

QN_DEGR

QN_OK

FT models

Fig. 4. The QN-FT Bridge Operator of the RAID model

In the development stage of a system models, the Bridge
Formalisms are languages which define the interactions be-
tween the submodels, the routing of the information that must
be implemented and the operations that must be performed
in order to orchestrate different modeling formalism and
techniques. The graphical representation of a composed model
obtained by means of a Bridge Formalisms is compiled by the
DrawNET tool that generates a textual XML based definition
of the model, including the information provided by the Bridge
Operators and arcs. This textual definition of the model is used
in the solution stage.

B. Orchestration of solvers

The automated solution and analysis of a multiformalism
model is an hard task since it requires that a flow of data and
activities is controlled according to a well defined sequence of
steps. Let us consider the interactions between the GSPN and
QN Model Class in the RAID example on the right of Fig. 3.
The semantics of the connections require to:

1) solve theGSPNDEGR (GSPNOK) model;
2) retrieve the throughput of theSync transition;

3) calculate the inverse of this throughput;
4) instantiate theQNDEGR (QNOK) model by assigning

to the service time the resulting value.

The finite, ordered sequence of steps needed to analyze
the entire model can be considered an algorithm which is
expressed by means of a proper workflow language and whose
execution is a process namedsolution process. The processor
able to execute a solution process is a workflow engine. In
Fig. 5 the resulting architecture of the OsMoSys/DraNET
framework is sketched.

GUI

(Drawnet ++)

Workflow

Engine

Pre-Proc

Analysis/simulation

Tools

Instancer

Result

Manager

Post-Proc

Adapter

Fig. 5. Architecture of the OsMoSys/DrawNET framework

The Analysis/Simulation Tools are the solvers involved in
the solution processes. They can be processed on different
machines and their execution is requested by the workflow
engine. The Adapters integrate the solvers into the framework,
translating input and output formats to an intermediate (XML)
notation in order to allow the data exchange among different
solvers.

Pre-processors (Pre-Proc in Fig.5) are software tools used,
if it is necessary, to translate the OsMoSys model descriptions
to different formats. Post-Processors (post-Proc in Fig.5) are
similar to Pre-processors. The only difference is that theyare
used during the solution process if some transformation is
needed in order to compose and elaborate submodels to build
a new intermediate model. The Result Manager is a software
application in charge of processing intermediate results to
calculate the results requested by the user. It also allows,with
the aid of theInstancer, to instantiate a (sub)modelduring
the solution process if it is necessary (e.g. the QN submodels
have to be instantiated after that the values of the service rates
are available). The Result Manager will be briefly introduced
later, in Section V-B.

TheSolution Process Definition Language (SPDL)is an
XML-based workflow language developed to orchestrate the
solvers. It enables task-sharing for a distributed computing

A B C

a)

A

B

C

Par
Split

b)

Sync D
t1 t2 t1

t2(c2)

t3(c3)

t4(c4)

t5(c5)

t6

A

B

C

Choice

c)

t1
t2(c2)

t3(c3)

A

B

Merge

t1(c1)

t2(c2)

Ct3

d)

N out
of M Join

t1(c1)

t2(c2)
t3(c3)
t4(c4)

t5(c5)

A

e)

A B B

t2(c2)
t1(c1)

Loop

f)

Fig. 6. Solution Patterns

by a combination of analysis/simulation tools. Using SPDL,
a solution process is formally described that will take place
across a set of solvers in such a way that any cooperating
entity can perform one or more steps in the process the same
way.

SPDL allows to define an executable solution process by
enabling: a) the activation of a tool or solver, b) data routing
among applications during the solution process, and c) the
definition of complex execution patterns.

The first point is needed to perform the instantiation and the
execution of an application during the solution process. The
language allows to define the parameters needed to invoke
applications and the names and the paths of input/output files.

The second point is needed to provide the right input data
to each application before its execution.

The last point is needed since applications have to be or-
chestrated according to execution path involving the definition
of non-trivial data path. At the state, SPDL supports the
patterns reported in Fig. 6. They refers to the patterns defined
in [19], [20].

In the figure, circles representactivities to be executed,
(mostly activations of applications); edges, calledtransitions,
describe how activities are linked, defining the control flow
and the data flow path for the process. A predicate expression
namedcondition should be associated to a transition. It is
evaluated to state if a path can be activated or not. The
patterns supported by SPDL are (the letter refers to Fig. 6):

a) Sequence: Applications are activated in sequence. Output
data of an application should be the input data of the next
application that must be executed.
b) Parallel Split: Conditionsc2 and c3 evaluatetrue and the
applicationsA andB are executed in parallel.
b) Synchronization: TheSync operator activates the transition
t6 only after that all the incoming transitions have been
activated (not necessarily at the same moment). This pattern
is used to describe the synchronization (join) of two or more
execution paths.
c) Exclusive Choice: The operatorChoice activates transition
t2 or transitiont3.

c) Multiple Choice: The Choice operator can activate one
or more outgoing transitions, depending on the value of the
associated conditions.
d) Multiple Merge: The pattern merges many execution
paths without synchronizing. The transitiont1 and t2 are
not simultaneously activated.C is executed two times, one
for each activation of the incoming transition of theMerge
operator
d) Discriminator: The pattern merges many execution paths
without synchronization butC is executed only once.
e) N − out − of − M Join: The N − out − of − M Join
operator performs partial synchronization over incoming
transitions. The activityA is executed only once after that
the synchronization has occurred.
f) Arbitrary Cycles: This pattern is used to describe loops.
The sequence of activitiesA-B is repeated depending on the
value of the conditionsc1 andc2.

A SPDL solution process starts by a declarative section.
The basic elements involved in a solution process that must
be declared by its SPDL definition are:
Participant, Application, Variable, Activity, Condition and
Transition.

A Participant is a physical node where Applications are
executed. Its definition provides the information needed to
schedule and invoke the execution of an application.

An Application represents a tool, solver or framework
component that can be invoked and executed on a Participant
involved in the solution process. Usually applications needs
parameters and input files in order to be executed. They must
also be defined asFormal parametersfor applications in the
SPDL declarative section. When an application is invoked
inside the solution process, each formal parameter must be
replaced by the related actual parameter.

Variables are used to store process data when needed. Usual
programming language types can be associated to variables:
integer, real, boolean, double and string.

Activities represent the basic units of work for a solution
process and they are represented by the nodes of its data
and control flow graph. They must beactivated in order to
accomplish their task.

Conditions are predicate evaluated over variables.
Transitions define how activities are linked together and

they are represented by the edges of the data and control flow
graph of the solution process. Each transition is linked to two
activities, calledfrom and to activity respectively.

The from activity is an outgoing edge, theto activity
is an incoming edge. Transitions may be associated to a
condition. A Transition is activated when itsfrom Activity
ends its execution and if the condition predicate defined on it
evaluates true. After the activation of a transition, itsto activity
becomes a candidate for a subsequent activation. Similar to
workflow languages, to allow the definition of the patterns
previously described, different kind of split and join operators
are defined on activities [1] (e.g., AND splits and AND
joins implementing parallel activation and synchronization of

activities respectively).
Few lines from the SPDL solution process of the RAID

example are listed in Fig. 7. This code belongs to the declara-
tive section of the SPDL program and refers to the analysis of
the GSPNDEGR model whose aim is to get the throughput
of the transitionSync. The first part of the listing reported
by the figure contains the declaration of the Participant on
which a solver able to analyze/simulate GSPN model can be
invoked. Notice that the location of the node must be specified.
The second part of the listing contains the declaration of the
Application that must be executed on the Participant. In this
case it is thenewSO tool of the GreatSPN package. The
definition of the application also specifies the path to be used
to invoke the application. The application needs to know the
model to analyze (the IN formal parameter) and the name
of a file (the INOUT formal parameter). The third part of
the listing is the declaration of an activity that requests the
execution ofnewSO. The definition of the activity specifies
the AND Join condition and the AND Split condition. More-
over, the actual parameters”Great/Raid5/GSPNDEGR”
and ”Great/Raid5/GSPNDEGR.net” are provided. They
are the path of the OsMoSys/DrawNET textual description
of the GSPNDEGR model and of the GreatSPN file of the
GSPN model respectively.

<
SolutionProcess
 name="Raid">

 <
ProcessHeader
 name="Raid"/>

 <Participants
 nameset
 ="
AllParticipants
 ">

 <Participant name="local" location="127.0.0.1"

applicationsref
 ="
applset
 on
localhost
 " />

 </Participants>

...

 <Application name="
 newso
 " path="./Great/
 newSO
 "

 performer="local">

 <
 FormalParameters
 >

 <
 FormalParameter
 name="
 modelname
 "
datatype
 ="var" type="IN" />

 <
 FormalParameter
 name="
 Gfile
"
datatype
 ="file" type="
 INOUT
 " />

 </
 FormalParameters
 >

 </Application>

 <Activity name="
 GspnDEGR
 "

 performer="local" type="normal">

 <
 JoinType
 type="AND" />

 <
 SplitType
 type="AND" />

 <
 ActivityApplication
 name="
 newso
 ">

 <
 ActualParameters
 >

 <
 ActualParameter
 name="
 modelname
 "
datatype
 ="var" type="IN"

 value="Great/
 Raid5
/
GSPN
 _
DEGR
 "/>

 <
 ActualParameter
 name="
 Gfile
"
datatype
 ="file" type="
 INOUT
 "

 value="Great/
 Raid5
/
GSPN
 _
DEGR.net
 " />

 </
 ActualParameters
 >

 </
 ActivityApplication
 >

 </Activity>

...

</
SolutionProcess
 name="Raid">

Fig. 7. SPDL example from the code of the RAID solution process

V. PERFORMANCE INDICES AND RESULTSHANDLING

The orchestration of solvers makes sense only if perfor-
mance indices are defined on the model that must be evaluated.
The compositional nature of the model and multiformalism
put the user requests for indices evaluation on a (logical) level
that can be far from the level of the analysis and simula-
tion tools used during the solution process. Major concerns

handling performance indices in multiformalism multisolution
environments are:

• how to specify the indices to be evaluated on the model
and how to translate them from the user level to the
solvers level;

• how to retrieve and combine the results obtained by the
execution of more analysis/simulation tools to produce
the answer to the user’s request;

• how to present the final results to the user.
In the case of the RAID example, the final user want to

know the mean response time of read and write operations
(RWMRT). This means that he/she wants to evaluate a measure
on the global model that requires to evaluate and combine
some partial results, as we have explained in the previous
Sections. The user could be able to write the SPDL solution
process of the model, but he/she could also be interested in us-
ing a ”black box” approach and developing the model by using
predefined Class Models, Bridge Formalisms and Operators.
He/she could be not aware of the different formalisms and
modeling techniques used to develop the submodels. In this
case the development of the SPDL program of the solution
process can be automated by means of predefined SPDL
skeletons and information gathered from the submodels, the
Bridge Formalism and the Bridge Operators, but it is necessary
that information about the performance indices are available
too, and that proper mechanisms are defined to answer the
above mentioned questions. The OsMoSys/DrawNET solution
to this problem is based on the concept ofquery and the
development of a set of languages oriented to indices and
results handling, as introduced in the following.

A. Queries and Results Definition

In order to solve a model, a query document is associated by
the DrawNET tool to the model textual description. Aquery
specifies the performance indices to be evaluated on the model.
The performance indices mentioned in the query must belong
to a predefined set of indices that are admissible for the Model
Meta-Class used to develop the model, i.e. the set depends
on the modeling language to which it is associated and on
the availability of proper solvers in the framework. The set
of admissible indices of a Model Meta-Class is defined by
means of the Results Definition Language (RDL). A RDL
document related to a given Model Meta-Class contains the
correspondences between the elements of the Meta-Class and
the indices that may be calculated.

In Fig. 8 two examples of RDL documents are shown. We
remember that the Model Meta-Class of the RAID model is
a Bridge Formalism (Bridge − FT − QN − GSPN in the
following) and that the Model Meta-Class ofGSPNDEGR

and GSPNOK is the GSPN formalism expressed by means
of the FDL primitives. The examples in Fig. 8 are related to
the GSPN and theBridge−FT−QN−GSPN Meta-Classes
respectively.

In this example, the RDL associated to the GSPN formalism
specifies some indices belonging to two classes: global indices
(i.e. they refer to the GSPN model) and indices that are

<
rdl
 main="
 GSPN
 ">

 <
elementType
 name="
 GSPN
 ">

 <
 resultType
 name="bounded"/>

 <
 resultType
 name="
 islive
"/>

 <
elementType
 name="Transition">

 <
 resultType
 name="throughput"/>

 <
 resultType
 name="
 covbytinv
 "/>

 </
elementType
 >

 <
elementType
 name="Place">

 <
 resultType
 name="mean"/>

 <
 resultType
 name="
 covbypinv
 "/>

 </
elementType
 >

 <
 resultType
 name="
 Tinv
"/>

 <
 resultType
 name="
 Pinv
"/>

 </
elementType
 >

</
rdl
>

<
rdl
 main="
 BridgeFT
 -
QN
-
GSPN
 ">

 <
elementType
 name="
 BridgeFT
 -
QN
-
GSPN
 ">

 <
 resultType
 name="
 meanTr
 "/>

 <
 aggregateType
 name="
 trOnPath
 " >

 <
 resultType
 name="
 meanValue
 "/>

 <
 propertyType
 name="
 inputPlace
 "

 default="" type="
 elementRef
 "/>

 <
 propertyType
 name="
 outputPlace
 "

 default="" type="
 elementRef
 "/>

 </
 aggregateType
 >

 </
 elementType
 >

 </
rdl
>

Fig. 8. RDL examples

associated to elements of the formalism (i.e. place, transition,
arc). The two global indices namedbounded and islive are
used if the boundness and liveness properties of a net must
be checked. The indices associated to transition elements
are namedthroughput and covbytinv, they are used if the
throughput and the presence of a transition in at least one T-
invariant must be evaluated. The indices associated to place
elements are namedmean and covbypinv, they are used if
the mean of the token distribution and the presence of a place
in at least one P-invariant must be evaluated.

The RDL associated to theBridge−FT −QN −GSPN
Bridge Formalism uses an Aggregate Element type to specify
the indextrMean. An Aggregate Elementis used to specify
properties related tosubsetof elements of a Model Meta-
Class. trMean in Fig. 8 is associated to the Aggregate
Element trOnPath and must be obtained evaluating inter-
mediate results (meanV alue) over the path containing the
elements namedinputP lace andoutputP lace (the operation
to perform on them is defined by the Bridge Operator).

A query associated to a (sub)model specifies what indices
must be evaluated on the (sub)model among the ones reported
in the RDL document of the (sub)model Meta-Class. The
query needed to request the value of the throughput of theSync
transitions of theGSPNDEGR andGSPNOK submodels is
shown in Fig.10. The query associated to the RAID model is
on the left of Fig.9. The queries are expressed by means of
the Model Query Language (MQL).

The simple query in Fig.10 is used to request the evaluation
of an intermediate result. The first line says that the query
is based on the GSPN.rdl document, the second line says
that the query is associated to the GSPN model named
GSPNDEGR (a model is an element according to the FDL),
the remaining lines say that the query asks for the evaluation
of the throughput of the transitionSync.

The query on the left of Fig.9 is used to request the
evaluation of the RWMRT both in theDegraded and Ok
cases. The requested measure corresponds to themeanTr
index associated to the Aggregate Element defined in the
Bridge − FT − QN − GSPN .rdl document. The query
specifies theinputP lace and outputP lace elements in the
two cases.

<
mql
 rdl
="
BridgeFT
 -
GSPN
 -
QN.rdl
 "

 main="RAID_MODEL">

 <element name="RAID_MODEL"

 type="$
 BridgeFT
 -
GSPN
 -
QN
">

 <aggregate name="
 trOnPathOK
 "

 type="
 trOnPath
 ">

 <result name="
 meanValue
 "/>

 <property name="
 inputNode
 "

 value="
 QN
_
CONTR
 "/>

 <property name="
 outputNode
 "

 value="
 bridgeGSPN
 _
QN1.QN_OK
 "/>

 </aggregate>

 <aggregate name="
 trOnPathDegradated
 "

 type="
 trOnPath
 ">

 <result name="
 meanValue
 "/>

 <property name="
 inputNode
 "

 value="
 QN
_
CONTR
 "/>

 <property name="
 outputNode
 "

 value="
 bridgeGSPN
 _
QN2.QN_DEGR
"/>

 </aggregate>

 </element>

</
mql
>

<
rsl
 rdl
="
bridgeFT
 -
GSPN
 -
QN.rdl
 ">

 <frame base="false" label="atomic">

 <element name="RAID_MODEL"

 type="
 BridgeFT
 -
GSPN
 -
QN
">

 <aggregate name="
 trOnPathOK
 "

 type="
 trOnPath
 ">

 <result format="single"

 name="
 meanValue
 ">

 <value
 val
="
5.44e
 -04"/>

 </result>

 </aggregate>

 <aggregate name="
 trOnPathDegraded
 "

 type="
 trOnPath
 ">

 <result format="single"

 name="
 meanValue
 ">

 <value
 val
="
6.64e
 -04"/>

 </result>

 </aggregate>

 </element>

 </frame>

</
rsl
>

Fig. 9. Query and results document

<
mql
 rdldef
="
GSPN.rdl
 ">

 <element name="
 GSPN
 _
DEGR
 " type="$
 GSPN
 ">

 <element name="Sync" type="Transition">

 <result name="Throughput">

 </element>

</element>

Fig. 10. L1 Query for the Sync throughput

Having introduced the RDL and MQL languages, we give
an original definition of solver and multisolution.
A solver is a functionSol : MQL → RSL that associates a
solutionrsl ∈ RSL to a querymql ∈ MQL.
The solution process of a model is asinglesolution process
if a single solverSol exists that is able to computersl =
Sol(mdl) in a single pass, wheremdl is the textual definition
of the model generated by DrawNET and expressed by means
of the Modeling Definition Language (MDL). The solution
process of a model is amultisolution process if rsl =
Sol(mdl) is computed by means ofK singlesolution steps.

In general, the following four cases can occur:

• Flat Model - Explicit Query (FMEQ) : The model does
not contain submodels (it is aflat model), it is expressed
by means of a single formalism (that is not a bridge
formalism) and its related queryQ requires only the direct
evaluation of performance indices explicitly specified by
the query. The queryQ is said to be anexplicit query.

• Composed Model - Explicit Query (CMEQ): A Bridge
Formalism is used to describe the model that consists of
more submodels and the queryQ is an explicit query.

• Flat Model - Implicit Query (FMIQ) : The model is
a flat model but the queryQ must be translated inton
different queries according to the following translation
function: QT (mql) = {mqli}(i = 1, .., n). The query
Q is said to be animplicit query . This case occurs if
the user is not aware of the solution process required
to solve the model and/or the intermediate results that

are necessary to evaluate the specified indices do not
explicitly refer to elements of the Model Meta-Class
used to develop the model (e.g. the case of Aggregate
Elements).

• Composed Model - Implicit Query (CMIQ) : A Bridge
Formalism is used to describe the model that consists of
more submodels and the queryQ is an implicit query.
The query on the left of Fig.9 is a CMIQ.

DrawNET

Models/Formalisms
Repository

Result

Manager

Analysis/simulation

Tools

Pre/Post Processors
Data Base

SPDLWriter

Pre/Post Processors

Instancer

MDL

Adapters

MDL

MDLMDLMDL

Tool Format
Tool Format

Tool Format
Tool Format

Tool FormatResults
(Tool Format)

MQL

MDL/FDL

Results Definition
Repository

RDL

MQLMQLMQL

MQLMQLRSL

RSL

Fig. 11. OMF data flow

In order to clarify the interactions among the models the
languages and the associated tools mentioned above, in Fig.11
the general data flow in the OsMoSys/DrawNET framework is
depicted. DrawNET accesses a models/formalisms data base
to retrieve data (in MDL and FDL languages) needed to
build a model. The model, expressed in MDL is submitted
to the instancer in order to build model objects. The instancer
receives the model and retrieves the definition of the model
classes needed to instantiate the model. The model is then sent
to Pre-Post processors and it is manipulated according to the
solution process, before being dispatched (in submodels, each
solvable by one solver) to the Adapters. The Adapters convert
the submodels into the native solver formats and pass them
to the solvers. On the other side, queries (in MQL) generated
by DrawNET or included in the solution process written by
the SPDLWriter (a Graphical User Interface used to define
solution processes) are analyzed and transformed by the Result
Manager, which in turn queries adapters and retrieves results
in the RSL format. In order to validate queries and results
format, a repository (Result Definition Repository) is used
which contains the definitions of possible results available for a
certain formalism (in RDL). Finally the Result Manager sends

the requested results to DrawNET for the presentation.

B. Retrieving Results

The introduction of the RDL and MQL languages proposes
a solution to the problem of specifying the indices to be
evaluated on the model and translating them from the user
level to the solvers level. Here we briefly describe how the
query are processed and results are collected.

The explicit queries can be processed by enacting the
solution process without generating intermediate queries. An
implicit query requires thatn intermediate queries are gener-
ated to enact the solution process.

The Result Manager (Fig. 5) is the software module in
charge of automate the processing of the queries and collect
the results produced by the execution of the solution process.
From the point of view of the solution process and of the
workflow engine, the Result Manager is an Application.

At the state of our research a first prototype implementation
of the Result Manager is available. Its architecture consists of
two layers (L1 andL2).

L2 layer receives the queryQ associated to the user’s model
and builds the final results according toQ, if that be the
case on the basis of the intermediate results provided by the
L1. L2 also performs, if needed, the translation functionQT .
We remember that information about how to combine the
intermediate results are provided by the Bridge Operator and
that they are codified in the solution process.

L1 layer receives the queries to be processed fromL2
and collects the intermediate results needed to instantiate the
submodels. At the end of the solution process it collects
results from the solvers outputs passing them to theL2 layer
in the DrawNET format for results, in order to allow their
presentation to the user.

Notice that in simple cases (e.g. the FMEQ) theL1 layer is
not involved in the solution process.

Now, we briefly show some experimental results obtained by
solving the RAID model. The testbed architecture consists of
an Hewlett-Packard SMART Array with two disk array local
controllers. The array was equipped with three SCSI disks and
a single local controller. A Linux node was equipped with the
interface controller to the SMART Array box. Caching mech-
anisms on the local controller and on the interface controller
were disabled. The stripe length was setted to 8 kbytes and
all measures refers to 2GByte sequential read/write operations.
Tab. I resumes some results related to the submodels and to the
whole model. Times are expressed in milliseconds (msec). The
first column contains the name of the index to be evaluated, the
second column contains the value obtained by executing the
solution process (if any); the third column contains the value
measured on the real system and the last column contains the
percentage variation between the values of the two previous
columns.

The Read (Write) OP./Disk indices represent the time
needed to write a whole stripe on each disk during Read
(Write) operations. These values were measured off-line on
a single disk disk in order to provide parameters to instantiate

TABLE I

SOME EXPERIMENTAL RESULTS

Perf. Index Model Value measured Variation
on real system

Read Op./disk - 0.827 -
Write Op./disk - 0.891 -
1/Sync Degrad 0.520 0.503 3.4%
1/Sync Ok 0.449 0.440 2.0%
tronPathDegraded 0.664 0.639 3.9%
tronPathOK 0.544 0.532 2.3%
% ok 99.997% - -
tr Average 0.544 - -

the RAID model. The 1/Sync Degrad (Ok) parameter repre-
sents the inverse of theSync parameter in theGSPNDEGR

(GSPNOK) model. The parametertronPathDegraded(Ok)
represents the mean response of 8 Kbytes read and write
operations when the system is in the Degraded (Ok) state.
% Ok is the probability of having the system in the Ok state
(it is calculated from the solution of the FT models of the
system). Finallytr Average is the mean value of the previous
two tr values. On the right of Fig. 9 the document containing
the answer to the query reported on the left is shown. It
is generated by theL2 layer of the Result Manager in the
XML format that is read by the DrawNET tool. The document
mirrors the query and contains the values of themeanV alue
measures required on the Aggregate ElementstrOnPathOK
and trOnPathDegradated.

VI. CONCLUSIONS

In this paper we have presented a new approach and a
software architecture to deal with multisolution when ana-
lyzing multiformalism complex models. It is based on the
orchestration of heterogeneous solvers by means of proper
languages and middleware. A workflow language, the SPDL,
is used to write complex solution processes. Furthermore a lan-
guage enabling the construction and the processing of queries
on the user’s models is used to retrieve performance indices
to be evaluated on a model by multiple interacting analysis
techniques and tools. The software architecture enabling the
orchestration consists of two main components: a workflow
engine and a results manager. The workflow engine executes
the steps needed to perform the actions required to produce
the results, the results manager is in charge of processing
the user’s query and collecting the intermediate results in
order to compose the answer. The resulting architecture is
complex, but it is very flexible since it enables interoperability
among very different solution methods and solvers. Moreover,
it provides an effective modeling and analysis framework both
to a modeler who is familiar with many different kinds of
models and a modeler who wants to use existing building
blocks to build models without knowing the details of the
modeling formalisms. The first can easily choose the models
that best suit a particular system and the kind of indices that
are needed at each stage of the design, the second can use
predefined procedures to analyze the final model.

REFERENCES

[1] R. Allen. Workflow: An Introduction. Extracted from the Work-
flow Handbook 2001, Workflow Management Coalition, Available at:
http://www.wfmc.org/standards/docs.htm

[2] F. Bause,P. Buchholz, P. Kemper.A Toolbox for Functional and Quanti-
tative Analysis of DEDS. In: Pujanger R., Savino N.N., Serra B. (eds):
Quantitative Evaluation of Computing and Communication Systems,
LNCS 1469, Springer-Verlag, pp.356359, 1998.

[3] H. Bohnenkamp, H. Hermanns1, J.P. Katoen and R. Klaren.The Modest
Modeling Tool and Its Implementation. In: Computer Performance: Mod-
elling Techniques and Tools -Tools for Evaluation of Stochastic Models,
LNCS 2794, Springer-Verlag, pp. 116-133, 2003.

[4] G. Ciardo and A.S. Miner.SMART: Simulation and Markovian Analyzer
for Reliability and Timing. In: Tools Descriptions from the 9th Inter-
national Conference on Modelling Techniques and Tools for Computer
Performance Evaluation and the 7th International Workshopon Petri Nets
and Performance Models, Saint Malo, France, pages 41-43. June 1997.

[5] G. Ciardo, R.L. Jones, A.S. Miner, and R. Siminiceanu.SMART: Stochas-
tic Model Analyzer for Reliability and Timing. In: Tools of Aachen
2001 International Multiconference on Measurement, Modelling and
Evaluation of Computer-Communication Systems, pp. 29-34,Aachen,
Germany, Sept. 2001.

[6] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi,J.M. Doyle,
W.H. Sanders, P.G. Webster.The Möbius Framework and its Implementa-
tion. IEEE Transactions on Software Engineering, 28(10):956969, 2002.

[7] J. de Lara, H. Vangheluwe, M. Alfonseca.Meta-Modelling and Graph
Grammars for Multi-Paradigm Modelling inAToM3. In: Software and
System Modeling (SoSyM) Journal (Springer), Special Section on Graph
Transformations and Visual Modeling Techniques.

[8] H. Garavel, F. Lang, and R. Mateescu.An overview of CADP 2001. In:
Proc. of Tools Day, August 24, Brno, Czech Republic, 2002.

[9] H. Garavel, F. Lang, and R. Mateescu.An overview of CADP 2001.
EASST Newsletter, 4:13-24, 2002.

[10] G. Gibson, W. Courtright II, M. Holland and J. ZelenkaRAIDframe:
Rapid prototyping for disk arrays. Computer Science Technical Report
CMU-CS-95-2000, Carnegie Mellon University, 1955

[11] M. Gribaudo, A. Valente.Framework for Graph-based Formalisms. In:
Proceeding of the first International Conference on Software Engineer-
ing Applied to Networking and Parallel Distributed Computing 2000
(SNPD’00), Reims, France, pp. 233-236, 2000.

[12] F. Moscato, N. Mazzocca, V. Vittorini.Workflow Principles Applied to
Multi-Solution Analysis of Dependable Distributed Systems. In: Proc. of
the 12th Euromicro Conf. on Parallel, Distributed and Network-based
Processing, February 11-13, 2004, A Coruna, Spain. pp. 134-141.

[13] P.J. Mosterman, H. Vangheluwe.Special Issue on Computer Automated
Multi-Paradigm Modeling In: ACM Transaction on Modeling and
Computer Simulation, Vol. 12, No.4, October 2002.

[14] D.A. Patterson,G.A. Gibson and R. Katz.A Case for Redundant
Arrays of Inexpensive Disks (RAID). In: Proc. of the ACM SIGMOD
International Conference on Data Management, Chicago, IL., June 1-
3,1988, pp.109-116

[15] C. Peltz. Web Services Orchestration and Choreography. IEEE
Computer, Vol.36, n.10, 2003, pp. 46-52.

[16] R.A. Sahner and K.S. Trivedi and A. Puliafito.Performance and
Reliability Analysis of Computer Systems; An Example-based Approach
Using the SHARPE Software Package. Kluwer Academic Publisher, 1996.

[17] W.H. Sanders, T. Courtney, D. Deavours, D. Daly, S. Derisavi, and
V. Lam. Multiformalism and Multisolution-method Modeling Frame-
works: The Möbius Approach. In: Proc. of the Symposium on Perfor-
mance Evaluation - Stories and Perspectives. Vienna, Austria, December
5-6, 2003, pp. 241-256.

[18] K.S. Trivedi. SHARPE 2002: Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator. DSN 2002, pp. 544

[19] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(3),
pages 5-51, July 2003

[20] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Advanced Workflow Patterns. In Proc. of 7th International
Conference on Cooperative Information Systems , vol 1901 ofLecture
Notes in Computer Science, pages 18-29. Springer-Verlag, Berlin, 2000.

[21] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis. OsMoSys:
a new approach to multi-formalism modeling of systems. Journal of
Software and System Modeling, 3(1):68-81, March 2004.

