
RATELESS CODES NETWORK CODING FOR SIMPLE AND EFFICIENT P2P VIDEO
STREAMING

Marco Grangetto, Rossano Gaeta, Matteo Sereno

Dipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, Torino - Italia

Email: grangetto{gaeta,sereno}@di.unito.it

ABSTRACT

The goal of this paper is the development of network coding
solutions able to improve the performance of video stream-
ing applications over peer-to-peer overlays. Recent advances
in P2P protocols have shown that rateless codes can be prof-
itably applied to P2P video streaming with several advantages
in terms of protocol efficiency and simplification, e.g. push
based video delivery, no need of packet reconciliation at the
decoder. In this paper existing and novel network coding tech-
niques based on rateless codes are presented and compared,
showing that rateless codes, besides simplifying the protocol
design, can significantly reduce the startup and playback de-
lays. The proposed protocol is evaluated on real topologies,
obtained crawling the widespread PPLive video streaming ap-
plication. The reported experimental results show that the
proposed protocol significantly reduces the startup and play-
back delay and allows one to increase the bitrate devoted to
the video stream.

1. INTRODUCTION AND MOTIVATIONS

A number of P2P streaming applications such as Coolstream-
ing, SopCast, PeerCast, PPLive, TUVplayer, just to mention
a few, are becoming increasingly popular and represent an in-
novative way to offer TV and video services over the Internet.
The design of efficient and ISP friendly P2P video stream-
ing solutions able to serve thousands or millions of users si-
multaneously is attracting a lot of research efforts and many
issues remain to be solved. In particular, widespread solu-
tions have been designed starting from the successful P2P file-
sharing experience. The video stream is divided into chunks
that are exchanged across the overlay with a pull based ap-
proach. The involved peers must signal updated information
about the chunks they own so as to allow each participant to
exploit parallel downloads. Delivery redundancy and recon-
ciliation at the receiver are the solutions adopted to make the
system robust to the overlay dynamics due to peers’ churning.

The network coding paradigm [1, 2], where nodes in the
network are allowed to combine information packets instead
to simply forward them, can be exploited to tackle some of

P2P video streaming open issues. As an example, in [3] ran-
dom network coding is used to design a push P2P streaming
algorithm without the need of explicit chunk requests. [4] rec-
ognizes that rateless codes [5] can be used as a very practical
and efficient form of network coding for P2P data distribution.
By means of rateless coding a set of k information packets can
be recovered from a random set of k(1+ε) coded packets with
ε approaching 0 for large values of k. Moreover, an arbitrar-
ily large number of coded packets can be generated on the fly
by the data source. In this work and in [4] a particular class
of rateless codes, known as LT codes [6], has been used. The
rateless coding principle can be used to eliminate the reconcil-
iation issue since nodes can download coded packets relent-
lessly up to the collection of k(1 + ε) packets, allowing the
LT decoding and the retrieval of the corresponding k video
chunks. Furthermore, using rateless codes makes the algo-
rithm robust to peer churning since any packet sent by any
node is equally important from the decoding point of view,
thus making it easier to find useful information in a random
overlay neighborhood. On the other hand, applying LT coding
on k video packets, introduces a decoding delay that can im-
pact on the real-time constraints of the video experience, e.g.
excessive startup and playback delays. In [4] every peer in the
overlay becomes a new source of LT coded packets as far as
it has decoded the original k video chunks. This approach in-
troduces a certain delay in data dissemination, which depends
on the code block size k. Nonetheless, LT coding behaves op-
timally only for large value of k. In [7] a distributed coding
technique is proposed by letting every node re-encode already
coded symbols; this solution amounts to cascade several LT
coding stages and is not very practical in terms of complexity
and rate overhead. Another distributed rateless code design is
presented in [8]; nevertheless, it is limited to the case of a sin-
gle network topology with a common relay node, that can be
generalized only assuming perfect knowledge of the overlay.

The major contributions of the present work are the pro-
posal of a novel push protocol for LT coded packets distribu-
tion for P2P streaming with limited startup and decoding de-
lays with respect to [4], and the analysis of the performance
on synthetic and real P2P streaming topologies. The proposed

protocol is based on LT encoding, coupled with an efficient
relaying policy able to guarantee that every node in the net-
work exploits an asymptotically optimal rateless code. More-
over, no prior knowledge of the network topology is assumed
for protocol operations, thus making the solution very simple
and quite general.

2. PROPOSED STREAMING PROTOCOL

In order to apply LT coding the video stream is divided into
generations; the m-th generation is constituted by a sequence
of k packets xm

i , i = 0, . . . , k − 1, m ≥ 0, of constant size
L. In practical applications a generation corresponds to a
video stream access unit i.e., the group of pictures used to
encode the video frames. LT coding is performed within each
generation, yielding an arbitrarily large number of the coded
packets ym

j =
∑k−1

i=0 gm
i,jx

m
i , j ≥ 0. The packet degree d,

i.e. the number of information packets used to generated a
coded packet, must follow the so called Robust Soliton Dis-
tribution (RSD) τδ,c(d), d = 1, . . . , k, where c is a suitable
positive constant and δ is the allowed failure probability at
the decoder [6]. Using the RSD guarantees that any set of
(1+ ε)k coded packets can be used to retrieve the k xm

i using
a simple message passing decoder. At any receiving node the
coded packets ym

j are buffered, waiting for degree 1 packets.
As far as a degree 1 packet is observed, the corresponding
video packet is decoded and it is used to lower the degree of
all other coded packets, i.e. those already buffered and the
new incoming ones. Iterating this procedure allows one to
decode the k video packets with a limited overhead ε. It is
worth pointing out that the packet indexes used to generate a
coded packet, i.e. i : gm

i,j = 1, must be provided to decoder.
This is accomplished by using synchronized pseudo-random
generators for the degree and packets selection on both the
encoder and decoder side. To this end each peer is associated
to a unique random seed, e.g. obtained hashing its IP/port
or physical address, and every coded packets is identified by
a sequential counter allowing to generate the same pseudo-
random outcomes on the decoder side. As an example a 16
bit counter permits to signal the generating combinations of
65536 coded packets independently of the value of k and its
rate overhead is negligible for reasonable packet sizes, e.g.
hundreds of bytes. This approach is clearly more convenient
with respect to explicit signalling of the gm

i,j which would cost
k bits per packet.

The P2P network with N active peers can be modeled as
a finite graph T of size N , where a vertex represents a peer
and application-level connections between peers are modeled
as edges. The source node s ∈ T is the content producer
and aims at streaming the video to all the other peers in the
overlay. To this end it is assumed that there is a path in T
connecting s to any peer p ∈ T \ s. For the purpose of this
study we assume a static overlay topology; in particular, each
p ∈ T has a static list of the nodes connected to its outgoing

links.
The push protocol developed in [4] is used as the starting

point and is referred to in the following as store and encode
(SE). At startup s is the only data source and generates a num-
ber of coded packets y0

j saturating its upload capacity Bu. For
simplicity no packet scheduling policy is assumed and s sends
coded packets on all its outgoing edges in a round-robin fash-
ion. Every receiver p waits for coded symbols (store phase)
and executes progressive LT decoding. As soon as p is able
to decode the first packet generation x0

i , i = 0, . . . , k − 1, it
starts generating novel and independently coded symbol (en-
code phase) behaving as a new source node. This is achieved
by using its unique random generator. As a consequence, such
new packets are independent (with high probability) from all
other information being propagated in the overlay and can be
used by the nodes still waiting for the generation m = 0,
which can increase their download rate by exploiting the pres-
ence of multiple and independent sources on their incoming
edges. In order to make our simulations realistic every peer p
is characterized by a limited download capacity Bd and when
the aggregated upload rate from its sources is larger than Bd

the exceeding coded packets are dropped. In order to allow
real time video streaming a node that has decoded the m-th
generation act as a source for ∀xl

i, l ≤ m and starts storing
the generation m + 1. Periodic signalling of the generation
requested by a peer is assumed. The SE protocol can be inter-
preted as a form of network coding since every peer in the net-
work independently encode and propagate coded information.
Nevertheless, SE suffers from block decoding delay whereas
one would like to let every node propagate coded information
instantaneously.

In this paper the LT relay and encode (RE) protocol is
proposed. The idea is to let every node propagate the received
coded packets as soon as possible. A peer p waiting for the
m-th generation is allowed to relay the received ym

j on its
outgoing edges with the only constraint that every ym

j can be
forwarded only once (relay phase). In absence of loops this
simple rule guarantees that no duplicated packets will flow
across the overlay links and assures that every set of coded
data received by any p ∈ T carries optimal LT coded sym-
bols. It is worth pointing out that such constraint limits the
upload rate during the relay phase. As in the SE case when
p is able to decode generation m it switches to the encode
phase; thus it turns to be an independent source for packet
generations l ≤ m and can concurrently start relaying coded
packets of generation m+1. The relaying opportunity clearly
improves the performance from the point of view of the prop-
agation delay. The hypothesis on the absence of loops in the
overlay can be relaxed by adopting a technique able to detect
duplicated packets. Every peers stores the sources address
of the incoming packets and each sender is associated to a
ranking index; duplicated packets can be recognized by the
associated sequential counter. Every time an original packet
is received the sender ranking index is incremented; on the

contrary, every duplicated packet decrements the same index.
When the ranking index of a certain source is below a given
threshold, i.e. the sender is pushing a lot of useless packets,
such incoming link is pruned from the overlay.

3. EXPERIMENTAL RESULTS

The SE and RE protocols have been simulated by means of
an event driven simulator. The protocols have been tested on
both synthetic random graphs and real P2P streaming topolo-
gies. In the first case 30 instances of directed Erdős-Rényi
(ER) random graphs [9] with N = 104 nodes have been
considered; both the outgoing and incoming edges degree is
modeled with a Poisson distribution whose average has been
fixed to 20. The real topologies have been obtained from
the popular PPLive streaming application. An active crawler
able to gather topological information of PPLive channels
has been developed [10] allowing us to capture snapshots of
the overlay supporting a PPLive channel. The size of cap-
tured snapshots varies according to a daily behavior rang-
ing from 4000 to 8000 peers, with an average degree of 69.
All the results reported in the following are averaged on 30
graph instances with randomly selected sources. Peers’ up-
load and download capacities are subdivided into 3 classes:
Bu = Bd = 100 Mbps, Bu = Bd = 10 Mbps and ADSL
nodes with Bu = 512 kbps, Bd = 7 Mbps. Analyzing PPLive
snapshots one notices that high capacity nodes are character-
ized by a large number of outgoing links. Therefore, band-
width classes have been allocated depending on the number
of edges departing from a peer so as to achieve a realistic dis-
tribution; the first two symmetric classes cover less than 2%
and about 7% of peers respectively, whereas 91% of the nodes
are ADSL. The node s is always included in the highest ca-
pacity class, regardless of the number of outgoing links.

LT coding block size has been fixed to k = 1000 with L =
1000 bytes, as a compromise between complexity/delay and
coding overhead. Random packet combinations are generated
with two RSD settings, c = 0.05, δ = 0.0001 and c = δ =
0.01 yielding overheads ε = 0.38 and ε = 0.17, respectively.

For each node p that is reachable from the source s in h
hops the simulator estimates the time instant tmD(p, h) when
LT decoding of the m-th generation is fully accomplished. In
order to rank the protocol behavior as a function of the dis-
tance from the source the average decoding delay at distance
h can be computed as tmD(h) =

∑
p∈Th

tmD(p, h)/|Th|, where
Th is the subset of nodes in T h hops away from s. It is worth
pointing out that previous measurements for m = 0 repre-
sent the start-up delay. Finally, from inter-arrival times of the
packet generations one can estimate the maximum throughput
that can be offered to the video streaming application:

Rm(h) =
Lk

Tm
D (h)− Tm−1

D (h)

In Fig.1 Tm
d (h), m = 0, . . . , 9 for the ER graphs is re-

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

h

T
dm

(h
)

[s
]

SE, ε=0.17
RE, ε=0.17

Fig. 1. Tm
d (h) for ER random graph, ε = 0.17.

ported for both SE and RE protocols. The simulation results
show that using RE one can remarkably lower the startup de-
lay. As an example, for h = 2, RE and SE startup delays are
about 50 s and 400 s, respectively. Moreover, RE decoding
times do not increase much as a function of h. In Fig.2 the
value of Rm(h) averaged over 10 generations is shown for
ε = 0.38 and ε = 0.17. RE is able to supply about 300 kbps
to all peers in the overlay, whereas SE rate is limited to about
100 kbps. The rate gain of RE can be clearly exploited to
support higher quality video streaming. It can be noticed that
Rm(0) is very high for both protocols since it represents the
download rate experienced by nodes directly connected to s.

Fig.3 and Fig.4 show the same kind of experimental re-
sults for the real PPLive snapshots. The collected PPLive
snapshots are far less homogeneous than ER random graphs.
In particular, 95% of the nodes is within 3 hops from s, form-
ing a highly connected and clustered subgraph, whereas the
remaining 5% is represented by weakly connected nodes.
This observation explains why the RE performance is very
similar to the one reported for ER up to h = 3 while RE
and SE are not very effective for h > 3. Nevertheless, it is
worth noticing that these latter nodes represent a very limited
percentage of the overlay. For h = 2, RE startup delay turns
out to be about 30 s, whereas SE is approximatively 3 times
slower. According to Fig.4 RE almost doubles the supported
video rate with respect to SE. Finally, comparing the achieved
rate for the two values of LT coding redundancy, it turns out
that in the presented scenario protocol optimization yields
larger improvement than code optimization.

4. CONCLUSIONS AND FUTURE WORK

In this paper a simple and efficient algorithm for P2P video
streaming based on rateless coding has been proposed. Ev-
ery peer in the overlay relays and, as soon as possible, gen-
erates new and independent coded packets according to the

1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

h

R
m

(h
)

[k
bp

s]

SE, ε=0.38
SE, ε=0.17
RE, ε=0.38
RE, ε=0.17

Fig. 2. Rm(h) for ER random graph.

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

h

T
dm

(h
)

[s
]

SE, ε=0.17
RE, ε=0.17

Fig. 3. Tm
d (h) for PPLive overlay, ε = 0.17.

network coding principle. As a consequence, the reception
phase is very simple and amounts to retrieve a sufficiently
large set of coded information without the need of explicit re-
quests and reconciliation. The proposed RE protocol aims at
reducing the side effect introduced by rateless coding, namely
the startup and decoding delays caused by block coding. The
proposed solution improves on previous results in the field,
exhibiting limited delays and supporting higher bitrates. Fu-
ture works include the design of optimal scheduling policies
for the relay phase, the analysis of the protocol behavior in
presence of peer churning and the deployment of a complete
streaming application.

5. REFERENCES

[1] R. Koetter and Medard M., “An algebraic approach to
network coding,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 5, pp. 728–795, Oct. 2003.

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

h

R
m

(h
)

[k
bp

s]

SE, ε=0.38
SE, ε=0.17
RE, ε=0.38
RE, ε=0.17

Fig. 4. Rm(h) for PPLive overlay.

[2] C. Gkantsidis and P. Rodriguez, “Network coding for
large scale content distribution,” in IEEE INFOCOM
2005, Mar. 2005.

[3] M. Wang and Li Baochun, “R2: Random push with
random network coding in live peer-to-peer streaming,”
IEEE Journal on Selected Areas in Communications,
vol. 25, no. 9, pp. 1655–1666, Dec. 2007.

[4] Wu Chuan and Li Baochun, “rStream: resilient and op-
timal peer-to-peer streaming with rateless codes,” IEEE
Transactions on Parallel and Distributed Systems, vol.
19, no. 1, pp. 77–92, Jan. 2008.

[5] M. Mitzenmacher, “Digital Fountains: A Survey and
Look Forward,” in IEEE Information Theory Workshop,
October 2004, pp. 271–276.

[6] M. Luby, “LT codes,” in IEEE Symposium on Foun-
dations of Computer Science, November 2002, pp. 271–
280.

[7] R. Gummadi and R.S. Sreenivas, “Relaying a fountain
code across multiple nodes,” in IEEE Information The-
ory Workshop, 2008, May 2008, pp. 149 – 153.

[8] S. Puducheri, J. Kliewer, and T.E. Fuja, “The design and
performance of distributed LT codes,” IEEE Transac-
tions on Information Theory, vol. 53, no. 10, pp. 3740–
3754, Oct. 2007.

[9] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Ran-
dom graphs with arbitrary degree distributions and their
applications,” Physical Review E, vol. 64.

[10] S. Spoto, R. Gaeta, M. Grangetto, and Sereno M.,
“Analysis of PPLive through active and passive mea-
surements,” in International Workshop on Hot Topics
in Peer-to-Peer Systems, 2009.

