chemistry of typestates

Silvia Crafa® Luca Padovani?

1Dipartimento di Matematica, Universita di Padova

°Dipartimento di Informatica, Universita di Torino

1/8

typestate-oriented programming (Aldrich et al. '09)

class File {
public final String fileName;

public method open() {

handle = fopen(fileName) ;

+

private FILEx handle; // meaningful if open
public method close() { ... }

public method read()

{ ...fread(handle)... } // valid if open

}

2/8

typestate-oriented programming

class File {

}

state ClosedFile of File {
public method open() {

}

state OpenFile of File {

}

public final String fileName;

}

handle = fopen(fileName) ;

private FILE*x handle;

public method close() { ... }

public method read()

{

...fread(handle). ..

}

(Aldrich et al. '09)

// explicit state

// explicit state

so—reardneiul—-fepen

'/ alid i

2/8

typestate-oriented programming (Aldrich et al. '09)

class File {
public final String fileName;
+

state ClosedFile of File {
public method open() {

handle = fopen(fileName) ;
P}

state OpenFile of File {
private FILE*x handle;
public method close() { ... }
public method read()
{ ...fread(handle)... }

}

// explicit state
[Closed >> Open]

// explicit state
// eyl if

[Open >> Closed]

'/ alid i

2/8

typestate-oriented programming (Aldrich et al. '09)

class File {
public final String fileName;

+

state ClosedFile of File { // explicit state
public method open() { [Closed >> Open]

this <- OpenFile { // explicit state change
handle = fopen(fileName) ;

Fr}

state OpenFile of File { // explicit state
private FILEx handle; so—reardneiul—-fepen
public method close() { ... } [Open >> Closed]
public method read()
{ ...fread(handle)... } At oo

}

2/8

the chemical metaphor (Berry & Boudol'92)

program behavior
= chemical reaction

A|B|C > D|E

)\

program state
= solution

3/8

the chemical metaphor (Berry & Boudol'92)

program behavior
= chemical reaction

program state
= solution

3/8

the chemical metaphor (Berry & Boudol'92)

program behavior
= chemical reaction

~AAIBIC > DJ|E-,

= —
program state A new program state
= solution

3/8

the file object revisited

def file =

in

] Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

the file object revisited

def file =
CLOSED | open(n,r) >

compound molecule
= state 4 operation

in

Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

the file object revisited

def file =
CLOSED | open(n,r) > let h = fopen(n) in
file.OPEN(h) | r.reply(file)

state change

in

Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

the file object revisited

def file =
CLOSED | open(n,r) > let h = fopen(n) in
file.OPEN(h) | r.reply(file)
or OPEN(h) | close(r) © fclose(h);

: file.CLOSED | r.reply(file)
scoping rules prevent
invalid field access

in

Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

the file object revisited

def file =
CLOSED | open(n,r) > let h = fopen(n) in

file.OPEN(h) | r.reply(file)
or OPEN(h) | close(r) © fclose(h);

file.CLOSED | r.reply(file)
or OPEN(h) | read(r) > let v = fread(h) in

file.OPEN(h) | r.reply(v,file)

in file.CLOSED
no state change

Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

the file object revisited

def file =
CLOSED | open(n,r) > let h = fopen(n) in
file.OPEN(h) | r.reply(file)
or OPEN(h) | close(r) © fclose(h);
file.CLOSED | r.reply(file)
or OPEN(h) | read(r) > let v = fread(h) in
file.OPEN(h) | r.reply(v,file)
file.open("a.txt") in
file.read in

in file.CLOSED | let file
let v, file
let file

file.close in ...

A Objective Join Calculus (Fournet, Laneve, Maranget, Rémy '03)

4/8

types

torosep = open(string, reply (fopey))

5/8

types

terosep = open(string, reply (fopey)) @1

behavioral disjunction

5/8

types

tCLOSED
tOPEN

open(string, reply (topey)) ® 1
close(reply (tergsep)) @ read(reply(int, topey))

5/8

types

terosep = open(string, reply (fopey)) @1
topey = close(reply(ferosep)) @ read(reply(int, topey))

file : (CLOSED X tCLOSED) D (OPEN(FILE*) & tOPEN)

behavioral conjunction

® type = set of valid message molecules targeted to object
® e.g. “reading from a closed file is forbidden”

5/8

types

terosep = open(string, reply (topey)) B 1
topey = close(reply(ferosep)) @ read(reply(int, topey))

file : (CLOSED ® tcrosen) @ (OPEN(FILE*) ® topgy)

® type = set of valid message molecules targeted to object
® e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5/8

the fork

def fork =

FREE | acquire(r) > fork.BUSY | r.reply(fork)
or BUSY | release > fork.FREE
in fork.FREE | Phil.new(fork) | Phil.new(fork)

6/8

the fork

def fork =

FREE | acquire(r) > fork.BUSY | r.reply(fork)
or BUSY | release > fork.FREE
in fork.FREE | Phil.new(fork) | Phil.new(fork)

@ the state of the fork cannot be tracked statically
© invocation to acquire blocks until the fork is released

6/8

the fork

def fork =

FREE | acquire(r) > fork.BUSY | r.reply(fork)
or BUSY | release > fork.FREE
in fork.FREE | Phil.new(fork) | Phil.new(fork)

@ the state of the fork cannot be tracked statically
© invocation to acquire blocks until the fork is released

fork : xacquire(reply(release)) ® (FREE & (BUSY ® release))

x =10t (tRL)---

6/8

on state (un)awareness and subtyping

def iter =
SOME(p) | next(r) >
r.reply(p->data, iter) |
if p->next != null then iter.SOME(p->next)
else iter.NONE

in ...

7/8

on state (un)awareness and subtyping

def iter =
SOME(p) | next(r) >
r.reply(p->data, iter) |
if p->next != null then iter.SOME(p->next)
else iter.NONE

or NONE | hasNext(r) > iter.NONE | r.no(iter)
or SOME(p) | hasNext(r) > iter.SOME(p) | r.yes(iter)
in ...

7/8

on state (un)awareness and subtyping

def iter =
SOME(p) | next(r) >
r.reply(p->data, iter) |
if p->next != null then iter.SOME(p->next)
else iter.NONE

or NONE | hasNext(r) > iter.NONE | r.no(iter)
or SOME(p) | hasNext(r) > iter.SOME(p) | r.yes(iter)
in ...

tNONE — hasNext (IlO (tNUNE)) @ 1

tsoue = hasNext (yes(tsoue)) @ next(reply(int, tynknown))

toknowy . = hasNext (no (tyone) @ yes (tsoue))

7/8

OJC for (concurrent) TSOP: wrap-up

state-dependent fields and operations

explicit state change

state unawareness 1: runtime synchronization (acquire)
state unawareness 2: runtime introspection (hasNext)
multidimensional states (not illustrated)
partial /concurrent state update (not illustrated)

0 | 1 | m(®) | t®s | t®s | =t

one type language for state, operations, protocols, sharing
state-dependent field/method types (hasNext)

type preservation = protocol compliance

8/8

