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typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // explicit state

public method open() –

[Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName);

˝

˝

˝

state OpenFile of File – // explicit state

private FILE* handle; // meaningful if open

public method close() – ... ˝

[Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // valid if open

˝
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the chemical metaphor (Berry & Boudol’92)

C2 B A2

A | B | C . D | E

program behavior

= chemical reaction

program state

= solution
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 →
C2 B A2 A B C A C D E A C

A | B | C . D | E

program behavior

= chemical reaction

program state

= solution

new program state
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the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in

file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)
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4 / 8



the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)
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types

tCLOSED = open(string, reply(tOPEN))

⊕ 1
tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file
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the fork

def fork =

FREE — acquire(r) . fork.BUSY — r.reply(fork)

or BUSY — release . fork.FREE

in fork.FREE — Phil.new(fork) — Phil.new(fork)

− the state of the fork cannot be tracked statically

+ invocation to acquire blocks until the fork is released

fork : ∗acquire(reply(release))⊗ (FREE⊕ (BUSY⊗ release))
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∗t = 1⊕ t ⊕ (t ⊗ t) · · ·
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on state (un)awareness and subtyping

def iter =

SOME(p) — next(r) .

r.reply(p-¿data, iter) —

if p-¿next != null then iter.SOME(p-¿next)

else iter.NONE

or NONE — hasNext(r) . iter.NONE — r.no(iter)

or SOME(p) — hasNext(r) . iter.SOME(p) — r.yes(iter)

in ...

tNONE = hasNext(no(tNONE))⊕ 1
tSOME = hasNext(yes(tSOME))⊕ next(reply(int, tUNKNOWN))

tUNKNOWN = hasNext(no(tNONE)⊕ yes(tSOME))
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OJC for (concurrent) TSOP: wrap-up

+ state-dependent fields and operations

+ explicit state change

+ state unawareness 1: runtime synchronization (acquire)

+ state unawareness 2: runtime introspection (hasNext)

+ multidimensional states (not illustrated)

+ partial/concurrent state update (not illustrated)

0 | 1 | m(t̃) | t ⊕ s | t ⊗ s | ∗t

+ one type language for state, operations, protocols, sharing

+ state-dependent field/method types (hasNext)

+ type preservation = protocol compliance
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