
chemistry of typestates

Silvia Crafa1 Luca Padovani2

1Dipartimento di Matematica, Università di Padova

2Dipartimento di Informatica, Università di Torino

1 / 8

typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // explicit state

public method open() –

[Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName);

˝

˝

˝

state OpenFile of File – // explicit state

private FILE* handle; // meaningful if open

public method close() – ... ˝

[Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // valid if open

˝

2 / 8

typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // explicit state

public method open() –

[Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName);

˝ ˝

˝

state OpenFile of File – // explicit state

private FILE* handle; // meaningful if open

public method close() – ... ˝

[Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // valid if open

˝

2 / 8

typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // explicit state

public method open() – [Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName);

˝ ˝

˝

state OpenFile of File – // explicit state

private FILE* handle; // meaningful if open

public method close() – ... ˝ [Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // valid if open

˝

2 / 8

typestate-oriented programming (Aldrich et al. ’09)

class File –

public final String fileName;

˝

state ClosedFile of File – // explicit state

public method open() – [Closed ¿¿ Open]

this ¡- OpenFile – // explicit state change

handle = fopen(fileName);

˝ ˝ ˝

state OpenFile of File – // explicit state

private FILE* handle; // meaningful if open

public method close() – ... ˝ [Open ¿¿ Closed]

public method read()

– ...fread(handle)... ˝ // valid if open

˝

2 / 8

the chemical metaphor (Berry & Boudol’92)

C2 B A2

A | B | C . D | E

program behavior

= chemical reaction

program state

= solution

3 / 8

the chemical metaphor (Berry & Boudol’92)

C2 B A2 A B C A C

A | B | C . D | E

program behavior

= chemical reaction

program state

= solution

3 / 8

the chemical metaphor (Berry & Boudol’92)

 →
C2 B A2 A B C A C D E A C

A | B | C . D | E

program behavior

= chemical reaction

program state

= solution

new program state

3 / 8

the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in

file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

the file object revisited

def file =

CLOSED — open(n,r) .

let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in

file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

compound molecule

= state + operation

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in

file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

state change

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in

file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

scoping rules prevent

invalid field access

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in file.CLOSED

— let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

no state change

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

the file object revisited

def file =

CLOSED — open(n,r) . let h = fopen(n) in

file.OPEN(h) — r.reply(file)

or OPEN(h) — close(r) . fclose(h);

file.CLOSED — r.reply(file)

or OPEN(h) — read(r) . let v = fread(h) in

file.OPEN(h) — r.reply(v,file)

in file.CLOSED — let file = file.open(”a.txt”) in

let v, file = file.read in

let file = file.close in ...

� Objective Join Calculus (Fournet, Laneve, Maranget, Rémy ’03)

4 / 8

types

tCLOSED = open(string, reply(tOPEN))

⊕ 1
tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5 / 8

types

tCLOSED = open(string, reply(tOPEN))⊕ 1

tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

behavioral disjunction

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5 / 8

types

tCLOSED = open(string, reply(tOPEN))⊕ 1
tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5 / 8

types

tCLOSED = open(string, reply(tOPEN))⊕ 1
tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

behavioral conjunction

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5 / 8

types

tCLOSED = open(string, reply(tOPEN))⊕ 1
tOPEN = close(reply(tCLOSED))⊕ read(reply(int, tOPEN))

file : (CLOSED⊗ tCLOSED)⊕ (OPEN(FILE∗)⊗ tOPEN)

• type = set of valid message molecules targeted to object

• e.g. “reading from a closed file is forbidden”

Theorem (type preservation)

Messages targeted to file are always described by its type

Corollary (protocol compliance)

A well-typed program will not try to read from a closed file

5 / 8

the fork

def fork =

FREE — acquire(r) . fork.BUSY — r.reply(fork)

or BUSY — release . fork.FREE

in fork.FREE — Phil.new(fork) — Phil.new(fork)

− the state of the fork cannot be tracked statically

+ invocation to acquire blocks until the fork is released

fork : ∗acquire(reply(release))⊗ (FREE⊕ (BUSY⊗ release))

6 / 8

the fork

def fork =

FREE — acquire(r) . fork.BUSY — r.reply(fork)

or BUSY — release . fork.FREE

in fork.FREE — Phil.new(fork) — Phil.new(fork)

− the state of the fork cannot be tracked statically

+ invocation to acquire blocks until the fork is released

fork : ∗acquire(reply(release))⊗ (FREE⊕ (BUSY⊗ release))

6 / 8

the fork

def fork =

FREE — acquire(r) . fork.BUSY — r.reply(fork)

or BUSY — release . fork.FREE

in fork.FREE — Phil.new(fork) — Phil.new(fork)

− the state of the fork cannot be tracked statically

+ invocation to acquire blocks until the fork is released

fork : ∗acquire(reply(release))⊗ (FREE⊕ (BUSY⊗ release))

∗t = 1⊕ t ⊕ (t ⊗ t) · · ·

6 / 8

on state (un)awareness and subtyping

def iter =

SOME(p) — next(r) .

r.reply(p-¿data, iter) —

if p-¿next != null then iter.SOME(p-¿next)

else iter.NONE

or NONE — hasNext(r) . iter.NONE — r.no(iter)

or SOME(p) — hasNext(r) . iter.SOME(p) — r.yes(iter)

in ...

tNONE = hasNext(no(tNONE))⊕ 1
tSOME = hasNext(yes(tSOME))⊕ next(reply(int, tUNKNOWN))

tUNKNOWN = hasNext(no(tNONE)⊕ yes(tSOME))

7 / 8

on state (un)awareness and subtyping

def iter =

SOME(p) — next(r) .

r.reply(p-¿data, iter) —

if p-¿next != null then iter.SOME(p-¿next)

else iter.NONE

or NONE — hasNext(r) . iter.NONE — r.no(iter)

or SOME(p) — hasNext(r) . iter.SOME(p) — r.yes(iter)

in ...

tNONE = hasNext(no(tNONE))⊕ 1
tSOME = hasNext(yes(tSOME))⊕ next(reply(int, tUNKNOWN))

tUNKNOWN = hasNext(no(tNONE)⊕ yes(tSOME))

7 / 8

on state (un)awareness and subtyping

def iter =

SOME(p) — next(r) .

r.reply(p-¿data, iter) —

if p-¿next != null then iter.SOME(p-¿next)

else iter.NONE

or NONE — hasNext(r) . iter.NONE — r.no(iter)

or SOME(p) — hasNext(r) . iter.SOME(p) — r.yes(iter)

in ...

tNONE = hasNext(no(tNONE))⊕ 1
tSOME = hasNext(yes(tSOME))⊕ next(reply(int, tUNKNOWN))

tUNKNOWN = hasNext(no(tNONE)⊕ yes(tSOME))

7 / 8

OJC for (concurrent) TSOP: wrap-up

+ state-dependent fields and operations

+ explicit state change

+ state unawareness 1: runtime synchronization (acquire)

+ state unawareness 2: runtime introspection (hasNext)

+ multidimensional states (not illustrated)

+ partial/concurrent state update (not illustrated)

0 | 1 | m(t̃) | t ⊕ s | t ⊗ s | ∗t

+ one type language for state, operations, protocols, sharing

+ state-dependent field/method types (hasNext)

+ type preservation = protocol compliance

8 / 8

