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Abstract

It is well-known that stable models (as dI-domains, qualitative domains and coherence
spaces) are not fully abstract for the languagePCF. This fact is related to the existence of
stable parallel functions and of stable functions that are not monotone with respect to the
extensional order, which cannot be defined by programs ofPCF.

In this paper, a paradigmatic programming language namedStPCF is proposed, which
extends the languagePCF with two additional operators. The operational description of
the extended language is presented in an effective way, although the evaluation of one of
the new operators cannot be formalized in a PCF-like rewritesystem.

SinceStPCF can define all finite cliques of coherence spaces the above gapwith stable
models is filled, consequently stable models are fully abstract for the extended language.

1 Introduction

PCF is a paradigmatic example of a typed functional programminglanguage,
which arose from the language LCF introduced by Dana Scott asa “calculus or
algebra” for the purpose of studying logical properties of programs [1]. In time,
PCF has become the most popular language investigated in the field of seman-
tics of programming languages. In fact many kinds of mathematical structures have
been related to it (examples are in [2,3,4,5,6,7,8,9,10,11,12,13,14,15]).

Much investigation effort has been devoted to the full abstraction problem (a key
notion introduced by Robin Milner in [16]). Two programs areoperationally equiv-
alent whenever they are interchangeable “in all contexts” without affecting the ob-
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servable outcome of the computation (this equivalence is also called contextual or
observational). In contrast, according to a denotational semantics the meaning of a
program lies in its denotation; hence, two programs are denotationally equivalent
in a given model only when they have the same denotation in themodel itself. If
the denotational equivalence implies the operational one,then the model iscorrect.
If the reverse implication holds then the model iscomplete. If the equivalences
coincide then the model isfully abstract.

Independently, Gordon Plotkin [15] and Vladmir Sazonov [17] have shown that
the standard (with respect to the interpretation) Scott-continuous model [18] is not
fully abstract forPCF. In a nutshell, the mismatch may be explained by the fact
that there is a function calledparallel-or which is Scott-continuous but cannot be
defined (i.e. programmed) inPCF. In particular, Plotkin extendedPCF with a
parallel-if operator and shown that the Scott-continuous model is fullyabstract for
this extended language. Note that parallel-if and parallel-or are interdefinable [19].
The problem of finding fully abstract models of unextendedPCF has been resolved
in [2,10,16,12,13]. On the other hand, many models have beenproved to be fully
abstract with respect to languages derived fromPCF, as in [20,8,21,11,22,15].
Furthermore, the investigations onPCF have been fruitfully related to many other
studies, for instance to works on higher-type computability, on sequential functions
and degrees of parallelism [23,5,24,25,26,27,9,28,11,29,30,31,32].

The notions of stability and dI-domains have been defined by Gérard Berry in [33].
dI-domains are Scott-domains satisfying two additional axioms; stable functions
produce some amount of “output information” only when a minimum amount of
information is incoming. dI-domains and stable functions form a cartesian closed
category. The theory of stable functions has been rediscovered, independently, by
Jean-Yves Girard as a semantic counterpart of his theory of dilators [34] and he
used stability in order to provide a model for second order polymorphicλ-calculus
(the SystemF) [35]. Girard has also introduced qualitative domains [35]and co-
herence spaces [36], which are cartesian closed full subcategories of the category
of dI-domains. All these categories contain the objects andmorphisms in the range
of the standard interpretation ofPCF, and without ambiguity they will be called
“stable domains”. Like the standard Scott-continuous model, the standard stable
models are not fully abstract with respect toPCF, because there exist stable func-
tions with a finite domain of definition that cannot be programmed inPCF. In
particular, there exist stable functions which have some parallel flavour, like the
Gustave function(Gustave is Berry’s nickname), and there exist stable functions
that are not monotone with respect to the extensional order [33].

A natural question is, how to extendPCF in such a way that the stable models
are fully abstract for it? This question was already considered in many papers
[37,11,14]. In this paper the answer is given. The languageStPCF is obtained
by extendingPCF with two operators:gor andstrict?. Thegor operator corre-
sponds to a Gustave-likeor function, while thestrict? operator corresponds to
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a non extensional-monotone function. It is shown that the coherence space model
is fully abstract with respect toStPCF. In particular, each finite clique of a co-
herence space which is the interpretation of aPCF-type is the denotation of a
StPCF-program. The results holds for the other stable domains considered above.

In particular, the above question was approached by Trevor Jim and Albert Meyer
in [37]. They have shown some negative results. Let the contextual-preorder be
the usual operational preorder defined by comparing the behaviour of terms in all
contexts. On the other hand, let the applicative-preorder be defined by observing
only the behaviour of terms applied to sequences of terms. Itis well-known that
the previous preorder relations coincide forPCF. First of all, Jim and Meyer de-
fine in a denotational way thetrue-separatorfunction which is a stable function
that corresponds to a boolean version ofstrict?. Hence, they show that the true-
separator breaks down the coincidence between the applicative-preorder on terms
and the contextual-preorder. Finally, they show that with the class of “linear ground
operational rules” (definingPCF-like rewrite systems) the coincidence mentioned
before cannot be broken. Therefore, a fully abstract extension of PCF using only
operators having a “linear ground operational description” does not exist. Jim and
Meyer(((2))) state,

“However, one important result about cpos is not known for stable domains,
namely, full abstraction with respect to some extension of PCF analogous to the
parallel-or extension which Plotkin and Sazonov provided for the cpo model.
What might a symbolic-evaluator for an extended PCF look like if it was well
matched– fully abstract–with the stable model? We concludethat such an evalu-
ator will have to be unusual looking: it cannot be specified bythe kind of term-
rewriting based evaluation rules known for PCF and its extensions.

The significance of this negative result hinges heavily on how drastic we judge
it to go beyond the scope of PCF-like rules. It is of course possible that some
operational behavior that we declare to be non-PCF-like, inour technical sense,
will nevertheless offer a useful extension of PCF for which stable domains are
fully abstract. ..... (The general benefits of structured approaches to operational
semantics and connection to full abstraction are discussedin [38,22])”.

Their paper gives a sufficient motivation for the study of the effective operational
description, given in this paper, ofstrict?. Butstrict? is also a strongly stable
operator (in the sense of Antonio Bucciarelli and Thomas Ehrhard [25,39,40]) that
can be defined inPCF extended either with control operators [41,42] or with Long-
ley’sH operator [11]. Thus such extensions cannot be evaluated through aPCF-like
rewrite system. Informally, the languagePCF+H provides an answer to the ques-
tion of how far one can travel in languages endowed with control operators without
sacrificing the functional nature (i.e. extensionality) ofprograms. Presently no op-
erational semantics has been given forH in a direct way, albeitH can be defined

2 [37], page 664.
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in actual programming languages [43]. Hence, the given evaluation ofstrict? is
related to the interest for the operational description of theH operator.

In conclusion, its effective evaluation makesStPCF an interesting paradigmatic
purely functional typed programming language that can be used as a core for the
development of real functional languages. The equivalencebetweenStPCF pro-
grams can be tackled by the elegant mathematical tools provided by stable models.

1.1 Outline of the paper

After an informal presentation the languageStPCF is formalized in Section 2.
In Section 3 an effective operational semantics is given using a straightforward
inductive closure of schematic big-step operational rules. This section ends with
some discussions aboutStPCF, in particular on the question of relations between
strict? andPCF-like rewrite system. Section 4 contains some cumbersome tech-
nical details needed for the proof of Theorem 3.3. In Section5 the basic notions on
coherence spaces are stated. The interpretation ofStPCF on coherence spaces is
given and its adequacy and correctness are proved in Sections 6 and 7 respectively,
by quite standard proofs. Section 8 is devoted to the definability of finite cliques and
to the full-abstraction result. In this section many examples have been presented.
Conclusions, open questions and future works are presentedin Section 9.

2 Syntax ofStPCF

StPCF is an extension of aPCF-like language without explicit truth-values which
are coded on integers (zero means “true” while any other numeral stands for “false”).

Definition 2.1 (StPCF-Types) Let ι be the onlygroundtype.
TypesofStPCF are generated by the following grammar:

σ ::= ι | (σ τ)

whereσ, τ, ... are metavariables ranging over types ofStPCF.

As customary, associates to right. Henceσ1 σ2 σ3 is an abbreviation for
σ1  (σ2  σ3). Furthermore, it is easy to see that all typesτ have the shape
τ1 ... τn ι, for some typeτ1, ..., τn wheren ≥ 0.

Definition 2.2 (StPCF-Words) Let Var be a denumerable set of variables.
Words ofStPCF are produced by the following grammar:

M ::= x | (λxσ.N) | (PQ) | Yσ

| if | succ | pred | ñ | strict? | gor
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wherex ∈ Var andσ is a type, whileM, N, P, Q, ... are metavariables ranging over
the words ofStPCF andñ, m̃, ... are metavariables ranging over numerals, namely
the denumerable constants0̃, 1̃, 2̃, ......

As customary,MNP will be used as an abbreviation for (MN)P while λxσyτ.P is an
abbreviation for (λxσ.(λyτ.P)). The set offree variablesof a termM is denoted by
FV(M) and it is defined as forPCF extended with FV(gor) = FV(strict?) = ∅.
A term M is closedif and only if FV(M) = ∅, otherwiseM is said to beopen.
Words are considered up toα-equivalence (denoted≡ in the following), namely a
bound variable can be renamed provided no free variable is captured. Moreover, as
customary,M[N/x] denotes the capture-free substitution of all free occurrences ofx
in M by N.

Theλ-abstraction is the only binder as customary inλ-calculi,Yσ is the recursion
operator of type (σ  σ)  σ for each typeσ, numerals represent natural num-
bers having typeι, while succ and pred are successor and predecessor operators
having typeι  ι (for us pred 0̃ will be undefined). Moreover,if is a condi-
tional operator having typeι  ι  ι  ι; it checks if the first argument is zero
or not, in order to choose how to forward the evaluation. In order to fill the gap
betweenPCF functions and stable morphisms, the operatorsgor andstrict? are
introduced. They have respectively typeι ι ι ι and (ι ι) ι.

The operatorgor corresponds essentially to a parallel Gustave-like “logical or”.
This kind of function was introduced independently by Kleene(((3))), by Berry [4,33]
and by Coppo, Dezani-Ciancaglini, Ronchi Della Rocca [44].Let R ≡ gor P0 P1 P2

be a “well-typed” term and leteval be the evaluation procedure. In an informal way,
the evaluation ofR can be described as follows:

- if eval(P0) = 0̃ and eval(P1) = ñ , 0̃ then eval(R) = 0̃,
- if eval(P1) = 0̃ and eval(P2) = ñ , 0̃ then eval(R) = 1̃,
- if eval(P2) = 0̃ and eval(P0) = ñ , 0̃ then eval(R) = 2̃,
- undefined otherwise.

The evaluation ofstrict? is subtler. This kind of operator was first considered by
Berry in [33], and its use is crucial in the paper of Jim and Meyer [37] (in fact, their
“true-separator” corresponds straightforwardly to a boolean version ofstrict?).
Let strict?M be a “well-typed” term, let↑ and↓ denote respectively “divergence”
and “convergence” of the evaluation (being a partial function) and letΩι denote a
divergent term of typeι. In an informal way, a nonconstructive description of the
evaluation ofstrict?M is

- if eval(M0̃) ↓ and eval(MΩι) ↑ then eval(strict?M) = 0̃,
- if eval(M0̃) ↓ and eval(MΩι) ↓ then eval(strict?M) = 1̃,
- undefined otherwise.

3 See [3,25] for references.
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B[x : σ] ⊢ x : σ B ⊢ ñ : ι B ⊢ Yσ : (σ σ) σ

B ⊢ P : σ τ B ⊢ Q : σ

B ⊢ PQ : τ

B[x : σ] ⊢ N : τ

B ⊢ λxσ.N : σ τ

B ⊢ succ : ι ι B ⊢ pred : ι ι B ⊢ if : ι ι ι ι

B ⊢ gor : ι ι ι ι B ⊢ strict? : (ι ι) ι

Figure 1. Typing Rules

Note that the expected type forstrict? implies thatι ι is the type forM; thus, if
the evaluation ofM0̃ converges (to a numeral) thenstrict? tells us whetherM uses
0̃ or not. Note that an operatorconst? corresponding toλfιι.if (strict?f) 1̃ 0̃
could be used in place ofstrict?. Clearlyλxι.9̃ is (extensionally) more defined
thanλxι.if x 9̃ 9̃. Thusstrict? andconst? are not monotone with respect to the
extensional order, in factstrict?(λxι.9̃) ≡ 1̃ while strict?(λxι.if x 9̃ 9̃) ≡ 0̃. On
the other hand,const?(λxι.9̃) ≡ 0̃ while const?(λxι.if x 9̃ 9̃) ≡ 1̃.

Definition 2.3 (StPCF-Terms andStPCF-Programs)
A basisB is a partial function from Var to types ofStPCF with a finite domain of
definition. If B is a basis then B[x : σ] denotes the basis such that

B[x : σ](y) =



σ if y ≡ x,

B(y) otherwise.

Moreover, the basis B such that dom(B) = {x1, ..., xn} (n ∈ N) and B(xi) = σi, for
1 ≤ i ≤ n can be denoted byx1 : σ1, ....., xn : σn without repetition of variables.
A wordM of StPCF is a (well-typed)termwhen it is the subject of atyping judg-
ment (often simplytyping) of the shape B⊢ M : σ which is the conclusion of a
derivation built by the rules of Figure 1. Aprogramis a closed well-typed term.

As usual, we writeB ⊢ M : σ when the typing is a conclusion of a derivation built
using the rules of Figure 1, while we writeB 0 M : σ when such derivation does
not exist. If the basis of a typing is empty then we simply write⊢ M : σ.

Definition 2.4 (Bσ-Contexts)
Letσ be a type and[σ] be a new symbol, called theσ-hole. IfP is aStPCF-word
then C[σ],D[σ], ... will be used in the following as metavariables, ranging over
words produced by the following grammar:

C[σ] ::= P | [σ] | (λxτ.C[σ]) | (C[σ]D[σ])
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P[Q/x]M1...Mm ⇓e ñ
(head)

(λxσ.P)QM1...Mm ⇓e ñ

P(YσP)M1...Mm ⇓e ñ
(Y)

YσPM1...Mm ⇓e ñ

M0 ⇓e 0̃ M1 ⇓e ñ
(0if )

if M0 M1 M2 ⇓e ñ

M0 ⇓e k̃ + 1 M2 ⇓e ñ
(1if )

if M0 M1 M2 ⇓e ñ

M ⇓e ñ + 1
(pred )

pred M ⇓e ñ

M ⇓e ñ
(succ )

succ M ⇓e ñ + 1

(num)
ñ ⇓e ñ

P0 ⇓e 0̃ P1 ⇓e k̃ + 1
(0gor)

gor P0 P1 P2 ⇓e 0̃

P1 ⇓e 0̃ P2 ⇓e k̃ + 1
(1gor)

gor P0 P1 P2 ⇓e 1̃

P2 ⇓e 0̃ P0 ⇓e k̃ + 1
(2gor)

gor P0 P1 P2 ⇓e 2̃

Figure 2. Operational Evaluation, Part I

If B ⊢ M : σ for some basis B, then C[M] denotes the word obtained by replacing
all occurrences of holes in C[σ] by M. A word C[σ] is called Bσ-context, if there is
a basis B′ such that B′ ⊢ C[M] : ι whenever B⊢ M : σ holds.

It is useful to name some terms. In particular,Ωσ will denote the term defined by
inductionσ as follows:

Ωι ≡ Yι(λxι.x) , Ωµτ ≡ λx
µ.Ωτ .

By usingΩσ, it is possible to define termsYk
σ (k ∈ N) in the following way:

Y0
σ ≡ Ω(σσ)σ , Yk+1

σ ≡ λx
σσ.x(Yk

σ x) .

3 Structured Operational Semantics

The operational evaluation ofStPCF will be given in an effective way, by a struc-
tured operational semantics [45,46].

Definition 3.1 Let⇓e be theevaluation relationassociating a program M to a nu-
meralñ whenever a judgment of the shape

M ⇓e ñ

can be proved by rules of the formal system defined in Figures 2(((4))) and 3.
If there is a numeral̃n such thatM ⇓e ñ then we writeM ⇓e, otherwise we writeM ⇑e.

4 Figure 2 is sufficient for the evaluation ofStPCF-programs without occurrences of
strict?. The operational behavior ofstrict?M is a little more complex than the other op-
erators. A constructive operational description forstrict? is given by rules in Figure 3.
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(λ?num)
strict? (λxι.ñ) ⇓e 1̃

(λ?x)
strict? (λxι.x) ⇓e 0̃

strict? (P[Q/x]M1...Mm) ⇓e ñ
(?head)

strict?((λxσ.P)QM1...Mm) ⇓e ñ

strict? (λxι.P[Q/z]M1...Mm) ⇓e ñ
(λ?head)

strict? (λxι.(λzσ.P)QM1...Mm) ⇓e ñ

strict? (P(YσP)M1...Mm) ⇓e ñ
(?Y)

strict? (YσPM1...Mm) ⇓e ñ

strict? (λxι.P(YσP)M1...Mm) ⇓e ñ
(λ?Y)

strict? (λxι.(YσP)M1...Mm) ⇓e ñ

M[0̃/x] ⇓e m̃ + 1 strict? (λxι.M) ⇓e ñ
(λ?pred )

strict? (λxι.pred M) ⇓e ñ

(((†††)))

(?succ )
strict?succ ⇓e 0̃

strict? (λxι.(M 0̃)) ⇓e ñ
(λ??)

strict? (λxι.strict?M) ⇓e ñ

strict? (λxι.M) ⇓e ñ
(λ?succ )

strict? (λxι.succ M) ⇓e ñ

M0 ⇓e 0̃ M1 ⇓e ñ
(?0if )

strict? (if M0 M1) ⇓e 1̃

M0 ⇓e k̃ + 1
(?1if )

strict? (if M0 M1) ⇓e 0̃

M0[0̃/x] ⇓e 0̃ strict? (λxι.M0) ⇓e ñ0 strict? (λxι.M1) ⇓e ñ1
(λ?0if )

strict? (λxι.if M0 M1 M2) ⇓e ñ0 or ñ1 (((‡‡‡)))

M0[0̃/x] ⇓e k̃ + 1 strict? (λxι.M0) ⇓e ñ0 strict? (λxι.M2) ⇓e ñ2
(λ?1if )

strict? (λxι.if M0 M1 M2) ⇓e ñ0 or ñ2 (((‡‡‡)))

P0 ⇓e 0̃ P1 ⇓e k̃ + 1
(?0gor)

strict? (gor P0 P1) ⇓e 1̃

P0 ⇓e k̃ + 1
(?2gor)

strict? (gor P0 P1) ⇓e 0̃

P0[0̃/x] ⇓e 0̃ strict? (λxι.P0) ⇓e ñ0

P1[0̃/x] ⇓e k̃ + 1 strict? (λxι.P1) ⇓e ñ1
(λ?0gor)

strict? (λxι.gor P0 P1 P2 ) ⇓e ñ0 or ñ1 (((‡‡‡)))

P1[0̃/x] ⇓e 0̃ strict? (λxι.P1) ⇓e ñ1

P2[0̃/x] ⇓e k̃ + 1 strict? (λxι.P2) ⇓e ñ2
(λ?1gor)

strict? (λxι.gor P0 P1 P2 ) ⇓e ñ1 or ñ2 (((‡‡‡)))

P2[0̃/x] ⇓e 0̃ strict? (λxι.P2) ⇓e ñ2

P0[0̃/x] ⇓e k̃ + 1 strict? (λxι.P0) ⇓e ñ0
(λ?2gor)

strict? (λxι.gor P0 P1 P2 ) ⇓e ñ0 or ñ2 (((‡‡‡)))

††† Note that pred 0̃ ⇑e, hencestrict?pred ⇑e (without further rules).

‡‡‡ Note that̃n0 or ñ1 is an abbreviation for the numeralsk̃ such thatif ñ0 0̃ ñ1 ⇓e k̃.

Figure 3. Operational Evaluation, Part II



The relation⇓e implements acall-by-nameparameter passing policy, since the ar-
guments of abstractions are substituted without being evaluated. It does not imple-
ment alazy(or weak) evaluation strategy, since reductions underλ-abstractions are
taken into account (for example in the (λ?head) rule).

Since terms are only of interest as they are part of programs,we can regard terms
with the same type as operationally equivalent if they can befreely substituted for
each other in a program without affecting the behavior of the program itself.

Definition 3.2 (Operational Equivalence) Suppose B⊢ M : σ, B ⊢ N : σ.

(i) M /σ N whenever C[M] ⇓e ñ for some numeral̃n implies that C[N] ⇓e ñ, for all
Bσ-contexts C[σ] such that FV(C[M]) = FV(C[N]) = ∅.

(ii) M ≈σ N if and only ifM /σ N andN /σ M.

It is easy to check that≈σ is a congruence relation, i.e. an equivalence relation
closed under contexts. Sometimes≈σ is called observational or contextual equiva-
lence.

Theorem 3.3 and Theorem 3.4 formalize our intuition on the operational behaviour
of strict? and of the termsΩσ andYk

σ defined at the end of the Section 2. They will
be useful in order to decrease the complexity of the proof of Lemma 7.3.

Theorem 3.3 Let ⊢ M : ι ι.

(i) strict?M ⇓e 0̃ if and only if M0̃ ⇓e and MΩι ⇑e.
(ii) strict?M ⇓e 1̃ if and only if M0̃ ⇓e and MΩι ⇓e.

Proof. The proof follows by Lemmas 4.1, 4.2 and 4.3 (Section 4). �

Theorem 3.4 LetM0, ..., Mm be a sequence of terms (m≥ 0).

(i) If ΩσM0...Mm is a program thenΩσM0...Mm ⇑e.
(ii) LetYσM0...Mm be a program.
YσM0...Mm ⇓e ñ if and only if Yk

σM0...Mm ⇓e ñ , for some k∈ N.

Proof. (i) The proof can be done by induction onm.
(ii) Both implications can be proved by induction on derivations proving the hy-

pothesis.
�

3.1 Some Remarks

In the literaturePCF is often presented with booleans and some operator on them.
Only integers have been used here, since the differences between the two formaliza-
tions are irrelevant for our purposes. Thus, without loss ofgenerality, some notions
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formalized by Jim and Meyer(((5))) will be adapted to this setting in a natural way, in
order to explicitly relate this paper to their one.

An extension ofPCF is conservative(((5))) when it contains all programs ofPCF and
moreover, ifM is one of such programs then the outcomes of the evaluation ofM in
bothPCF and its extension coincide (either diverging or convergingon the same
numeral̃n). StPCF is clearly conservative!
Stable models will be introduced in Section 5. A stable modelispreorder-adequate(((5)))

for an extension ofPCF whenever a termM is “less or equal (in the model)” of a
termN thenM is “operationally (contextually) less or equal” ofN.
In [37] a family of small-step operational rules for conservative extensions ofPCF
is studied, as a kind of “rewriting system” [47]. Jim and Meyer remark that almost
all the reduction rules considered in literature for extensions ofPCF (as in case
of the join operator [20], the parallel-or and the existential operators [15,17]) are
instances of an abstract shape of rule. Alinear groundδ-rule(((5))) is a rewrite rule of
the shape

δm0...mn→ P

whereδ is a constant of the language,mi is either a numeral or a variablexi andP
is a term wherem0, ..., mn can occur. The variables must be pairwise distinct, hence
linear groundδ-rules are “driven” by the simple observation of some numerals.
If s is a substitution then the terms(δm0...mn) can be reduced tos(P) by the corre-
spondingδ-rule.

Example 3.5 (((6))) Let por be aδ-constant with typeι  ι  ι. Its operational
behaviour may be formalized with the following linear ground δ-rules:

por 0̃ x → 0̃ por x 0̃ → 0̃ por ñ + 1 m̃ + 1 → 1̃

Clearlypor corresponds to a parallel-or operator.

A PCF-like rewrite system(((5))) is a languageL together with a setΘ of linear ground
δ-rules on the constants ofL. The crucial statement(((5))) of Jim and Meyer is:

“every stable model (interpreted in standard way) that is preorder-adequate for a
conservative extensionL of PCF obtained by aPCF-like rewrite system is not
fully abstract forL”.

Actually, the proof of the previous statement is developed by reasoning on the true-
separator function (corresponding to a boolean version ofstrict?) which is not
extensionally-monotone. They show thatPCF-like rewrite systems can only de-
scribe extensionally-monotone operators. Hence, they conclude that aPCF-like
rewrite system cannot describe the operational behaviour of languages analogous
toStPCF.

5 [37] Definitions 2.4, 2.8 (page 667), Definition 4.1 (page 672), Theorem 5.5 (page 676).
6 Other examples can be found in [37], in particular the rewrite rules for (a full version of)
PCF are presented in Figure 2 (page 678).
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It is an easy exercise to give an operational description of theStPCF by a small-
step operational rules less restrictive than the linear ground operational rules. A
careful treatment of contextual closures for the reductionrules must be given.

In the literature, many extensions ofPCF in which strict? can be defined have
been proposed; in particularSPCF [8], PCF extended with the Longley’sH operator
[11] (denoted asPCF+H in the follows) andµPCF [42,21]. All these languages
are related to the study of concrete data structures [5,48],strongly stable functions
[6] and sequentially realizable functionals [11]. It is possible to write a program
simulatingstrict? in the languageSPCF by using thecatch operator. First of
all, a variant ofcatch is presented informally. Without loss of generality, assume

B[x1 : ι, ..., xk : ι] ⊢ M : ι

B ⊢ catch x1...xk in M : ι

be the typing rule ofcatch and note that FV(catch x1...xk in M) = FV(M) −
{x1...xk}, i.e. catch is a binder. The evaluation ofcatch x1...xk in M asks the
evaluation ofM, if the computation ofM asks the evaluation of the variablexi then
the computation ofcatch x1...xk in M terminates, returning̃i − 1. Otherwise, if
the computation ofM terminates on a numeralñ without using any of thexi, then
catch x1...xk in M returnsñ + k.
Note that the evaluation ofcatch xι in (if x Ωι Ωι) returns0̃, while the evalu-
ation of catch xι in Ωι diverges. Butstrict?(λxι.if x Ωι Ωι) diverges and it is
easy to understand thatcatch cannot be defined bystrict?. On the other hand,
if (((if (M0̃)(catch x in Mx)(catch x in Mx))))0̃1̃ is a term with the same behaviour
of strict?(M).

Moreover,StPCF can be studied from a true functional programming point of
view. In this perspective to comparestrict? with the Longley’sHoperator [11] ap-
pears to be interesting. Reasonably the “computational cost” of strict? is lower
than that ofH (see [49]), butstrict? is again sufficient in order to express many
meaningful applications that cannot be expressed inPCF. Longley noted that in
PCF+H interesting applications like themodulus[43] can be programmed, as an
example a similar application will be implemented here.
Let F be a term of type (ι  ι)  ι andg a term of typeι  ι such thatFg ⇓e.
Informally, in the course of the evaluation ofFg, the termF can learn informations
aboutg by applying it to various arguments. When the computation ofFg finishes
(i.e. a result is returned),F has learnt finite informations aboutg. Such finite infor-
mation can be expressed by a termg′ corresponding to the minimumrestrictionof
g such thatFg′ ⇓e.
If Fg ⇓e thenT0 ≡ λF

(ιι)ιgιι.if strict?(λyι.F(λzι.if y g(z) Ωι)) 1̃ 0̃ re-
turns 0̃ in caseF is constant and returns̃1 otherwise. Let� be defined as in Page
25. If Fg ⇓e thenT1 ≡ λF

(ιι)ιgιιxι.strict?(λyι.F(λzι.g(if (x � z)(if yzΩι)z)))
returns1̃ when eitherg is constant or the behaviour ofg onx is not observed from
F, otherwisẽ0 is returned. Thus

λF(ιι)ιgιιxι.if (T0 F g) Ωι (if (T1 F g x) g(x) g(Ωι))
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is an implementation of the restriction inStPCF. Note that the restriction respect
the stable order (not the extensional one), in the sense thatif g is a constant function
then its restriction isg itself. Clearly the above term is not equivalent to aPCF one.

4 Technical characterizations ofstrict?

The following three lemmas give some technical characterizations of the opera-
tional behaviour ofstrict?. They are useful in order to prove Theorem 3.3.

Lemma 4.1 If z : ι ⊢ M : ι and M[0̃/z] ⇓e ñ then strict?(λzι.M) ⇓e k̃ where
k̃ ∈ {0̃, 1̃}; moreover, if M[Ωι/z] ⇓e ñ

′ then k̃ ≡ 1̃ and ñ′ ≡ ñ.

Proof. The proof is given by induction on the derivation provingM[0̃/z] ⇓e ñ.

• If the derivation ends with
((P[Q/x])M1...Mm)[0̃/z] ⇓e ñ

(head)
((λxσ.P)QM1...Mm)[0̃/z] ⇓e ñ

thenstrict?(λzι.P[Q/x]M1...Mm) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction.
Thusstrict?(λzι.((λxσ.P)QM1...Mm)) ⇓e k̃, by rule (λ?head).
If ((λxσ.P)QM1...Mm)[Ωι/z] ⇓e ñ

′ then the last applied rule must be (head), so
((P[Q/x])M1...Mm)[Ωι/z] ⇓e ñ

′ too. Hencẽk ≡ 1̃ andñ′ ≡ ñ by induction.
• If (Y) is the last applied rule then the proof is similar to that of the previous case,

where rules (λ?Y) and (Y) are used in place of (λ?head) and (head).

• If the derivation ends with
M0[0̃/z] ⇓e 0̃ M1[0̃/z] ⇓e ñ

(0if )
(if M0 M1 M2)[0̃/z] ⇓e ñ

then by induction

strict?(λzι.M0) ⇓e k̃0 andstrict?(λzι.M1) ⇓e k̃1 wherek̃0, k̃1 ∈ {0̃, 1̃}.
Thusstrict?(λzι.if M0 M1 M2) ⇓e k̃ wherek̃ ∈ {0̃, 1̃} by rule (λ?0if ).
If (if M0 M1 M2)[Ωι/z] ⇓e ñ

′ then the last applied rule must be either (0if ) or
(1if ), soM0[Ωι/z] ⇓e. HenceM0[Ωι/z] ⇓e 0̃ andk̃0 ≡ 1̃ by induction.
Thus the last applied rule must be (0if ) andM1[Ωι/z] ⇓e ñ

′. Thereforẽn′ ≡ ñ
andk̃1 ≡ 1̃ by induction. Butif 1̃ 0̃ 1̃ ⇓e 1̃ impliesk̃ ≡ 1̃.

• If (1if ) is the last applied rule then the proof is similar to the previous case.

• If the derivation ends with
M[0̃/z] ⇓e ñ + 1

(pred )
pred M[0̃/z] ⇓e ñ

then strict?(λzι.M) ⇓e k̃

wherek̃ ∈ {0̃, 1̃}, by induction; sostrict?(λzι.pred M) ⇓e k̃ by rule (λ?pred ).
If pred M[Ωι/z] ⇓e ñ

′ thenM[Ωι/z] ⇓e ñ
′ + 1, since the last applied rule must be

(pred ). The proof follows by induction.
• If (succ ) is the last applied rule then the proof is similar to that of the previous

case, by rule (λ?succ ).
• Let (num) be the last applied rule; sinceM[0̃/z] is a numeral then eitherM ≡ z

or M ≡ m̃, for some numerals̃m. In the first casez[0̃/z] ⇓e andz[Ωι/z] ⇑e, but
strict?(λzι.z) ⇓e 0̃ by rule (λ?x). In the other casẽm[0̃/z] ⇓e m̃ andm̃[Ωι/z] ⇓e m̃,
butstrict?(λzι.m̃) ⇓e 1̃ by rule (λ?num).
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• If (0gor), (1gor) or (2gor) is the last applied rule then the proof is similar to
that of (0if ), where (λ?0gor), (λ?1gor) and (λ?2gor) are used respectively in
place of (λ?0if ).

• If (λ?num) is the last applied rule then two are three cases:M ≡ strict? (λxι.z)
andM ≡ strict? (λxι.ñ). The proofs are:

(λ?num)
strict? (λzι.z) ⇓e 0̃

(λ?head)
strict? (λzι.(λxι.z)0̃) ⇓e 0̃

(λ??)
strict? (λzι.strict?(λxι.z)) ⇓e 0̃

(λ?num)
strict? (λzι.0̃) ⇓e 1̃

(λ?head)
strict? (λzι.(λxι.x)0̃) ⇓e 1̃

(λ??)
strict? (λzι.strict?(λxι.x)) ⇓e 1̃

• If (λ?x) is the last applied rule then the proof is similar to the previous one.

• If the derivation ends with
(strict? ((P[Q/x])M1...Mm))[0̃/z] ⇓e ñ (m≥ 0)

(?head)
(strict?((λxσ.P)QM1...Mm))[0̃/z] ⇓e ñ

thenstrict?(λzι.strict? (P[Q/x]M1...Mm)) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction.
But the last rule of the derivation provingstrict?(λzι.strict? (P[Q/x]M1...Mm)) ⇓e

k̃must be (λ??), thereforestrict?(λzι.P[Q/x]M1...Mm0̃) ⇓e k̃.
Thusstrict?(λzι.(λxσ.P)QM1...Mm0̃) ⇓e k̃ by rule (λ?head) and, by rule (λ??),
strict?(λzι.strict?((λxσ.P)QM1...Mm)) ⇓e k̃.
If (strict?((λxσ.P)QM1...Mm))[Ωι/z] ⇓e ñ

′ then the last applied rule must be
(?head), so (strict?((P[Q/x])M1...Mm))[Ωι/z] ⇓e ñ

′ too. Sok̃ ≡ 1̃ and ñ′ ≡ ñ
by induction.

• If the derivation ends with
(strict? (λxι.(P[Q/y])M1...Mm))[0̃/z] ⇓e ñ (m≥ 0)

(λ?head)
(strict? (λxι.(λyσ.P)QM1...Mm))[0̃/z] ⇓e ñ

thenstrict?(λzι.strict? (λxι.(P[Q/y])M1...Mm)) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induc-
tion. The last applied rule provingstrict?(λzι.strict? (λxι.(P[Q/y])M1...Mm)) ⇓e

k̃ must be (λ??), sostrict?(λzι.(((λxι.(P[Q/y])M1...Mm)))0̃) ⇓e k̃ where the last ap-
plied rule must be (λ?head), thusstrict?(λzι.((((P[Q/y])M1...Mm)))[0̃/x]) ⇓e k̃. Now
strict?(λzι.((((λyσ.P)QM1...Mm)))[0̃/x]) ⇓e k̃ andstrict?(λzι.(((λxι.(λyσ.P)QM1...Mm)))0̃) ⇓e k̃,
by rule (λ?head). So strict?(λzι.strict?(((λxι.(λyσ.P)QM1...Mm)))) ⇓e k̃ by rule
(λ??). Moreover, ifstrict?(((λxι.(λyσ.P)QM1...Mm)))[Ωι/z] ⇓e ñ

′ then the last ap-
plied rule must be (λ?head), sostrict?(λxι.(P[Q/y])M1...Mm))[Ωι/z] ⇓e ñ

′ too.
Hencẽk ≡ 1̃ andñ′ ≡ ñ by induction.

• Cases (?Y) and (λ?Y) are respectively similar to (?head) and (λ?head).

• If the derivation ends with
M[0̃/x, 0̃/z] ⇓e ñ + 1 (strict? (λxι.M))[0̃/z] ⇓e ñ

(λ?pred )
(strict? (λxι.pred M))[0̃/z] ⇓e ñ

thenstrict? (λzι.strict? (λxι.M)) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction. But the
last rule of the derivation must be (λ??), sostrict? (λzι.(λxι.M)0̃) ⇓e k̃, where
the last rule of the derivation must be (λ?head), sostrict? (λzι.M[0̃/x]) ⇓e k̃. But
by hypothesisM[0̃/x, 0̃/z] ⇓e ñ + 1, sostrict? (λzι.pred M[0̃/x]) ⇓e k̃ by rule
(λ?pred ). Thusstrict? (λzι.(λxι.pred M)0̃) ⇓e k̃ by rule (λ?head). The proof
follows by rule (λ??).
If (strict? (λxι.pred M))[Ωι/z] ⇓e ñ

′ then the proof is immediate by induction.
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• Let (?succ ) be the last applied rule. Clearlystrict?succ [Ωι/z] ⇓e, so

(λ?num)
strict? (λzι.0̃) ⇓e 1̃

(λ?succ )
strict? (λzι.succ 0̃) ⇓e 1̃

(λ??)
strict? (λzι.strict?succ ) ⇓e 1̃

• If (λ?succ ) is the last applied rule then the proof is easier than that for (λ?pred ).

• If the derivation ends with
(strict? (λxι.(M 0̃)))[0̃/z] ⇓e ñ

(λ??)
(strict? (λxι.strict?M))[0̃/z] ⇓e ñ

thenstrict? (λzι.strict? (λxι.(M 0̃))) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction. But
the last rule of the derivation must be (λ??), hencestrict? (λzι.(λxι.(M 0̃))0̃) ⇓e k̃

where the last rule must be (λ?head), thusstrict? (λzι.(M0̃)[0̃/x] ) ⇓e k̃. Then
strict? (λzι.strict?(M[0̃/x])) ⇓e k̃ by rule (λ??), sostrict? (λzι.(λxι.strict?M)0̃) ⇓e

k̃ by rule (λ?head). Sostrict? (λzι.strict?(λxι.strict?M)) ⇓e k̃ by rule (λ??).
If (strict? (λxι.strict?M))[Ωι/z] ⇓e ñ

′ then the last applied rule must be (λ??),
therefore (strict? (λxι.(M 0̃)))[Ωι/z] ⇓e ñ

′ too. Hencẽk ≡ 1̃ and ñ′ ≡ ñ by
induction, so the proof is immediate.

• If (?0if ) is the last applied rule then the proof is easier than that for (?1if ).

• If the derivation ends with
M0[0̃/z] ⇓e m̃ + 1

(?1if )
(strict? (if M0 M1))[0̃/z] ⇓e ñ

then

strict?(λzι.M0) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction.

...
(...)

M0[0̃/z] ⇓e m̃ + 1

...
(...)

strict?(λzι.M0) ⇓e k̃
(λ?num)

strict?(λzι.0̃) ⇓e 1̃
(λ?1if )

strict?(λzι.if M0 M10̃) ⇓e k̃ or 1̃
(λ??)

strict?(λzι.strict? (if M0 M1)) ⇓e k̃ or 1̃

If (strict?(if M0 M1))[Ωι/x] ⇓e ñ
′ then the last applied rule must be (?1if ), so

the proof follows by induction.
• If the derivation ends with

M0[0̃/x, 0̃/z] ⇓e 0̃ (strict? (λxι.M0))[0̃/z] ⇓e ñ0 (strict? (λxι.M1))[0̃/z] ⇓e ñ1
(λ?0if )

(strict? (λxι.if M0 M1 M2))[0̃/z] ⇓e ñ0 or ñ1

thenstrict?(λzι.strict? (λxι.M0)) ⇓e k̃0 andstrict?(λzι.strict? (λxι.M1)) ⇓e k̃1

wherek̃0, k̃1 ∈ {0̃, 1̃}, by induction. In both those derivations the last applied rule
must be (λ??), sostrict?(λzι.(λxι.M0)0̃) ⇓e k̃0 andstrict?(λzι.(λxι.M1)0̃) ⇓e k̃1

and yet (strict?(λzι.M0))[0̃/x] ⇓e k̃0 and (strict?(λzι.M1))[0̃/x] ⇓e k̃1 by rule
(λ?head). Sostrict? (λzι.(if M0 M1 M2)[0̃/x]) ⇓e k̃0 or k̃1 by rule (λ?0if ) and,
moreover,strict? (λzι.(λxι.if M0 M1 M2)0̃) ⇓e k̃0 or k̃1 by rule (λ?head).
Thereforestrict? (λzι.strict?(λxι.if M0 M1 M2)) ⇓e k̃0 or k̃1 by rule (λ??).
If strict?((λxι.if M0 M1 M2)[Ωι/z] ⇓e ñ

′ then the proof follows by induction.
• If (λ?1if ) is the last applied rule then the proof is similar to that of (λ?0if ).
• Cases (?0gor) and (?2gor) are respectively similar to cases (?0if ) and (?1if ).

If (λ?0gor), (λ?1gor) or (λ?2gor) is the last applied rule then the proof is simi-
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lar to the case (λ?0if ).
�

Lemma 4.2 If M0̃ is a program andM0̃ ⇓e ñ thenstrict?M ⇓e k̃ wherek̃ ∈ {0̃, 1̃};
moreover, if MΩι ⇓e ñ

′ then k̃ ≡ 1̃ and ñ′ ≡ ñ.

Proof. The proof is given by induction on the derivation provingM0̃ ⇓e ñ.
Note that no rule of Figure 3 can conclude the derivationM0̃ ⇓e ñ.

• If the last applied rule is (head) then there are two cases.

- If the derivation ends with
P[Q/x]M1...Mm0̃ ⇓e ñ (m≥ 1)

(head)
(λxσ.P)QM1...Mm0̃ ⇓e ñ

thenstrict?(P[Q/x]M1...Mm) ⇓e k̃ wherek̃ ∈ {0̃, 1̃}, by induction.
Thusstrict?((λxσ.P)QM1...Mm) ⇓e k̃ by rule (?head).
If (λxσ.P)QM1...MmΩι ⇓e ñ

′ then the proof follows by induction.

- In case
P[0̃/x] ⇓e ñ

(head)
(λxσ.P)0̃ ⇓e ñ

then the proof follows by Lemma 4.1.

• Let (Y) be the last applied rule. It easy to see that a wordYσ0̃ cannot be a program,
for each typeσ. Thus the proof is similar to that of the first subcase of rule (head).

• If the derivation ends with (0if ) then the proof is easy by rule (?0if ). Since
if M0 M1Ωι ⇓e the proof is done. If the derivation ends with (1if ) then the proof
is easy by rule (?1if ). Note thatif M0 M1Ωι ⇑e.

• If (succ ) is the last applied rule then the proof is trivial, by rule (?succ ). Note
thatsuccΩι ⇑e. The last applied rule cannot be (pred ), sincepred 0̃ ⇑e. Also
the cases (num) and (1gor) are not possible.

• If (0gor) or (2gor) is the last applied rule then the proof follows respectively by
rule (?0gor), (?2gor).

�

Lemma 4.3 If strict?M ⇓e k̃ then k̃ ∈ {0̃, 1̃} and there is a numeral̃n such that
M0̃ ⇓e ñ; moreover, if̃k ≡ 1̃ thenMΩι ⇓e ñ.

Proof. The proof is given by induction on the derivation provingstrict?M ⇓e k̃.

• The proof is trivial if the derivation is one of the following

(?succ )
strict?succ ⇓e 0̃

(λ?num)
strict? (λxι.ñ) ⇓e 1̃

(λ?x)
strict? (λxι.x) ⇓e 0̃

• If the derivation ends with
strict? (P[Q/x]M1...Mm) ⇓e k̃ (m≥ 0)

(?head)
strict?((λxσ.P)QM1...Mm) ⇓e k̃

thenk̃ ∈ {0̃, 1̃} andP[Q/x]M1...Mm0̃ ⇓e ñ by induction, so (λxσ.P)QM1...Mm0̃ ⇓e ñ

by rule (head). If k̃ ≡ 1̃ thenP[Q/x]M1...MmΩι ⇓e ñ by induction, so the proof is
trivial by rule (head).

• If (?Y) is the last applied rule then the proof is similar to that of the previous case.

• If the derivation ends with
strict? (λxι.P[Q/z]M1...Mm) ⇓e k̃

(λ?head)
strict? (λxι.(λzσ.P)QM1...Mm) ⇓e k̃
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then k̃ ∈ {0̃, 1̃} and (λxι.P[Q/z]M1...Mm)0̃ ⇓e ñ by induction, for somẽn. But
the last applied rule in the derivation proving (λxι.P[Q/z]M1...Mm)0̃ ⇓e ñ must be
(head), thus (P[Q/z]M1...Mm)[0̃/x] ⇓e ñ. Therefore, both ((λzσ.P)QM1...Mm)[0̃/x] ⇓e

and (λxι.(λzσ.P)QM1...Mm)0̃ ⇓e by rule (head).
If k̃ ≡ 1̃ then (λxι.P[Q/z]M1...Mm)Ωι ⇓e ñ by induction, but the last applied rule
must be (head), having as premise ((P[Q/z])M1...Mm)[Ωι/x] ⇓e ñ. The proof fol-
lows by applying the rule (head) twice.

• If (λ?Y) is the last applied rule then the proof is similar to that of (λ?head).

• If the derivation ends with
M[0̃/x] ⇓e m̃ + 1 strict? (λxι.M) ⇓e k̃

(λ?pred )
strict? (λxι.pred M) ⇓e k̃

then

k̃ ∈ {0̃, 1̃} and (λxι.M)0̃ ⇓e ñ by induction. The last rule applied in the derivation
proving (λxι.M)0̃ ⇓e ñmust be (head), thusM[0̃/x] ⇓e ñ and clearlym̃ + 1 ≡ ñ.
The proof follows by rules (pred ) and (head).
If k̃ ≡ 1̃ then (λxι.M)Ωι ⇓e ñ by induction, but the last applied rule must be (head),
having as premiseM[Ωι/x] ⇓e ñ. The proof follows by Lemma 4.1, reasoning as
before.

• If (λ?succ ) is the last applied rule then the proof is similar to that of case
(λ?pred ).

• If the derivation ends with
M0 ⇓e 0̃ M1 ⇓e ñ

(?0if )
strict? (if M0 M1) ⇓e 1̃

then the proof is

easy, since bothif M0M10̃ ⇓e ñ andif M0M1Ωι ⇓e ñ by hypothesis and by rule
(0if ).

• If (?1if ) is the last used rule then the proof is easy, since0̃ ⇓e 0̃ by rule (num).
Thusif M0M10̃ ⇓e 0̃ by hypothesis and by rule (1if ). Note thatif M1M2Ωι ⇑e.

• If the derivation ends with

M0[0̃/x] ⇓e 0̃ strict? (λxι.M0) ⇓e k̃0 strict? (λxι.M1) ⇓e k̃1
(λ?0if )

strict? (λxι.if M0 M1 M2) ⇓e k̃0 or k̃1

then (λxι.M0)0̃ ⇓e ñ0, (λxι.M1)0̃ ⇓e ñ1 andk̃0, k̃1 ∈ {0̃, 1̃} by induction.
Since if k̃0 0̃ k̃1 ⇓e k̃0 or k̃1, it is easy to see that̃k0 or k̃1 ∈ {0̃, 1̃}. But
the last rule applied in the derivation proving (λxι.M1)0̃ ⇓e ñ1 must be (head),
having as premiseM1[0̃/x] ⇓e ñ1. Note thatM0[0̃/x] ⇓e 0̃ by hypothesis; thus
(if M0 M1 M2)[0̃/x] ⇓e ñ1 by rule (0if ), so (λxι.if M0 M1 M2)0̃ ⇓e ñ1 by rule
(head).
Moreover, ifif k̃0 0̃ k̃1 ⇓e 1̃ thenk̃0 ≡ k̃1 ≡ 1̃; thus, both (λxι.M0)Ωι ⇓e ñ0 and
(λxι.M1)Ωι ⇓e ñ1. HenceM1[Ωι/x] ⇓e ñ1 by rule (head). SinceM0[0̃/x] ⇓e 0̃ by
hypothesis,M0[Ωι/x] ⇓e 0̃ by Lemma 4.1. So (if M0 M1 M2)[Ωι/x] ⇓e ñ1 by rule
(0if ), thus (λxι.if M0 M1 M2)Ωι ⇓e ñ1 by rule (head).

• If (λ?1if ) is the last applied rule then the proof is similar to that of (λ?0if ).

• If the last applied rule is
strict? (λxι.M 0̃) ⇓e ñ

(λ??)
strict? (λxι.strict?M) ⇓e ñ

then (λxι.M 0̃)0̃ ⇓e

andñ ∈ {0̃, 1̃} by induction. ThusM[0̃/x]0̃ ⇓e by rule (head), so by Lemma 4.1
strict?M[0̃/x] ⇓e k̃ wherek̃ ∈ {0̃, 1̃}; hence (λxι.strict?M)0̃ ⇓e by rule (head).
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If k̃ ≡ 1̃ then (λxι.M 0̃)Ωι ⇓e by induction, but the last applied rule must be (head),
having has premiseM[Ωι/x] 0̃ ⇓e ñ. The proof follows by Lemma 4.1, reasoning
as before.

• If (?0gor) or (?2gor) is the last applied rule then the proof is similar to that of
case (?0if ). If (λ?0gor), (λ?1gor) or (λ?2gor) is the last applied rule then the
proof is similar to that of case (λ?0if ). �

5 Coherence Spaces

Coherence spaces are a simple framework for Berry’s stable functions [4,33], de-
veloped by Girard [50]; in this Section their basic definitions and properties are
stated. Proof details can be found in [36].

First, some basic definitions are given. IfX is a finite set then‖X‖ is the number of
elements ofX. A partial orderor posetis a pair (D,⊑) whereD is a set and⊑ is an
order relation, often noted simply asD. An element ofD is bottomand denoted⊥⊥⊥⊥⊥⊥⊥⊥⊥
if and only if⊥⊥⊥⊥⊥⊥⊥⊥⊥ ⊑ d for eachd ∈ D. A partial orderD is flat when, for allx, y ∈ D,
if x ⊑ z thenx = ⊥⊥⊥⊥⊥⊥⊥⊥⊥ or x = y. A nonempty subsetX of D is directedif ∀x, x′ ∈ X
∃x′′ ∈ X such thatx ⊑ x′′ andx′ ⊑ x′′, namely for each pair of elements ofX there
is an upper bound inX. A cpo is a posetD with bottom⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∈ D such that ifX ⊆ D
is directed then there is⊔X ∈ D which is the least upper bound ofX. Let A, B be
cpos; a functionf : A → B is monotoneif and only if ∀x, x′ ∈ A if x ⊑A x′ then
f (x) ⊑B f (x′).

Definition 5.1 A coherence spaceX is a pair(|X|,⌣⌢X) where|X| is a set called the
web, its elements are calledtokensand⌣⌢X is calledcoherence relationon X.
⌣⌢X is a binary reflexive and symmetric relation between tokens.The set ofcliques
of X isCl(X) = {x ⊆ |X| / ∀a, b ∈ x a⌣⌢X b}; moreover,Cl f in(X) denotes the set
of finite cliques ofCl(X).
The strict incoherence⌢X is the complementary relation of⌣⌢X; the incoherence
⌢⌣X is the union of relations⌢X and=; the strict coherence⌣X is the complemen-
tary relation of⌢⌣X.

If X is a coherence space thenCl(X) is a poset with respect to the relation⊆.

Lemma 5.2 Let X be a coherence space.

(i) ∅ ∈ Cl(X).
(ii) {a} ∈ Cl(X), for each a∈ |X|.
(iii) If y ⊆ x and x∈ Cl(X) then y∈ Cl(X).
(iv) If D ⊆ Cl(X) is directed then∪D ∈ Cl(X).

Hence, cliques of a coherence space with set-inclusion forma cpo.
Let x, x′ be sets;x ⊆ f in x′ means thatx ⊆ x′ andx is finite.
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Definition 5.3 Let X and Y be coherence spaces and f: Cl(X) −→ Cl(Y) be a
monotone function.

- f is continuouswhenever∀x ∈ Cl(X) ∀b ∈ f (x) ∃x0 ⊆ f in x such that b∈ f (x0).
- f is stablewhenever∀x ∈ Cl(X) ∀b ∈ f (x) ∃x0 ⊆ f in x such that b∈ f (x0) and
∀x′ ⊆ x, if b ∈ f (x′) then x0 ⊆ x′.

Continuity asks for the existence of a finite amount of input for which some amount
of output is produced, while stability asks for a minimum finite amount input for
which some amount of output is produced. Equivalent formulations of continuity
and stability are formalized in the following Lemmas.

Lemma 5.4 (i) Let X and Y be coherence spaces and f: Cl(X) −→ Cl(Y) be a
monotone function. Then f is continuous if and only if f(∪D) = ∪{ f (x)/x ∈
D}, for each D⊆ Cl(X) directed.

(ii) Let X and Y be coherence spaces and f: Cl(X) −→ Cl(Y) be a continuous
function. Then f is stable if and only if∀x, x′ ∈ Cl(X), x∪ x′ ∈ Cl(X) implies
f (x∩ x′) = f (x) ∩ f (x′).

Stable functions can be represented as cliques.

Definition 5.5 Let X and Y be coherence spaces.
Thetracetr( f ) of the stable function f: Cl(X) −→ Cl(Y) is the set of pairs(x0, b) ∈
Cl f in(X) × |Y| such that b∈ f (x0) and∀x ⊆ x0, b ∈ f (x) implies x= x0.

Stable functions can be represented as cliques of a coherence space.

Definition 5.6 Let X and Y be coherence spaces.
X ⇒ Y is the coherence space having|X ⇒ Y| = Cl f in(X) × |Y| as web, while
if (x0, b0), (x1, b1) ∈ |X ⇒ Y|, then (x0, b0) ⌣⌢X⇒Y (x1, b1) under the following
conditions:

(i) x0 ∪ x1 ∈ Cl(X) implies b0⌣⌢Y b1;
(ii) x0 ∪ x1 ∈ Cl(X) and b0 = b1 imply x0 = x1.

The bridge between stable functions and cliques follows.

Lemma 5.7 If f : Cl(X) −→ Cl(Y) is a stable function thentr( f ) ∈ Cl(X⇒ Y).

Let X,Y be coherence spaces andt ∈ Cl(X ⇒ Y) and x ∈ Cl(X). Let us define
F (t) : Cl(X) −→ Cl(Y) be the function such that

F (t)(x) = {b ∈ |Y| / ∃x0 ∈ Cl(X) (x0, b) ∈ t ∧ x0 ⊆ x}.

Lemma 5.8 If t ∈ Cl(X⇒ Y) thenF (t) : Cl(X)→ Cl(Y) is a stable function.

Coherence spaces and stable functions form a cartesian closed category which is a
full subcategory of the categories of qualitative domains and dI-domains endowed
with stable functions. All these categories contain objects and morphisms in the
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range of the standard interpretation ofPCF, so without ambiguity they will be
called stable models.

6 Interpretation

An interpretation ofPCF is standardwhen ground types are interpreted on flat par-
tial orders. Plotkin in [15] has shown how it is possible to interpret thePCF syntax
on Scott’s domains [51] by a set-theoretical standard interpretation. Although the
same constraints can be formalized in a cleaner categoricalstyle, for sake of sim-
plicity, a set-theoretical interpretation is provided, since the proofs are developed
by reasoning on cliques. Types will be mapped to coherence spaces and terms to
cliques.

Definition 6.1 Let N denote the space of natural numbers, namely(|N|,⌣⌢N) such
that |N| = N and m⌣⌢N n if and only if m= n, for all m, n ∈ |N|.
ThusCl(N) = {∅} ∪ { {n} | n ∈ |N| } is the following poset

{0} {1} {n}

∅

Note thatCl(N) endowed with the set theoretical inclusion forms a flat partial order.
Emphatic brackets will be used as notation in order to formalize both the correspon-
dence between types and coherence spaces and the correspondence between terms
and cliques, in particular~ι� = N and~σ τ� = ~σ� ⇒ ~τ�. If σ is the type of
aStPCF program thenσ = τ1  .....  τm  ι, for somem ≥ 0; if ~σ� is the
corresponding coherence space, in what follows for sake of simplicity its tokens
will be wrote as (x1; ...; xm; b) wherexi ∈ Cl f in(~τi�), for all i ≤ m, andb ∈ |N|.

Lemma 6.2 Let E = X1 ⇒ ... ⇒ Xm ⇒ N be a coherence space (m≥ 1) and let
(x1; ...; xm; bx), (y1; ...; ym; by) be distinct tokens of|E|.
(x1; ...; xm; bx)⌣E (y1; ...; ym; by) if and only if∃k ≤ m such that xk ∪ yk < Cl(Xk).

Proof. Both directions are proved by induction onm.

(⇐) If m = 1 thenx1 ∪ y1 < Cl(X1), by hypotheses. Thus the proof is immedi-
ate, by coherence conditions. Ifm ≥ 2 then there are two cases. Ifx1 ∪ y1 <
Cl(Xk) then again the proof is immediate. Otherwise,x1 ∪ y1 ∈ Cl(X1) implies
(x2; ...; xm; bx) , (y2; ...; ym; by), since∃k ≤ m such thatxk ∪ yk < Cl(Xk) by hy-
pothesis. So (x2; ...; xm; bx)⌣E (y2; ...; ym; by) by induction, and the proof follows
by coherence conditions.

(⇒) Let m= 1 and (x1, bx)⌣E (y1, by). There are two cases, sinceCl(N) is flat.
The casebx = by impliesx1 , y1, since (x1, bx) , (y1, by) by hypothesis; therefore
x1 ∪ y1 < Cl(X1), by Definition 5.6.(ii). In the second casebx ⌢ by, therefore

19



x1 ∪ y1 < Cl(X1) by Definition 5.6.(i).
Let (x1; ...; xm; bx)⌣E (y1; ...; ym; by). If x1 ∪ y1 < Cl(X1) then the proof is trivial.
If x1∪y1 ∈ Cl(X1) then (x2; ...; xm; bx)⌣⌢E (y2; ...; ym; by) by coherence conditions,
thus there are two cases.
- (x2; ...; xm; bx) = (y2; ...; ym; by) would imply x1 = y1 by coherence conditions,

and therefore (x1; ...; xm; bx) = (y1; ...; ym; by) against the hypothesis.
- The case (x2; ...; xm; bx)⌣E (y2; ...; ym; by) follows by induction. �

The corollary below follows immediately.

Corollary 6.3 Let E= X1⇒ ...⇒ Xm⇒ N be a coherence space (m≥ 0).
If (x1; ...; xm; bx), (y1; ...; ym; by) ∈ |E| then

(x1, ...xm, bx)⌢⌣E (y1, ...ym, by) if and only if∀k ≤ m xk ∪ yk ∈ Cl(Xk).

In order to give an interpretation to aStPCF-termM we need to know its typing,
therefore the interpretation will implicitly interpret typings rather than terms.
Let B be a basis;EnvB will denote the set of functionsρ such that, ifB(x) = σ
thenρ(x) is a clique of~σ�. Moreover, ifρ ∈ EnvB, B(x) = σ andx ∈ ~σ� then
ρ[x/x] ∈ EnvB is theenvironmentsuch that, ifx ≡ y thenρ[x/x](y) = x, otherwise
ρ[x/x](y) = ρ(y). The interpretation mapping is presented in Figure 4. Please note
that, sometimes some parts of a formula will be underlined inorder to make it more
readable (as in the interpretation ofstrict? in Figure 4).

The interpretation ofYτ is well defined (see [3] for instance) andF n(x) ⊆ F n+1(x).
Let E = X1⇒ ...⇒ Xm+1 be a coherence space (m≥ 0) and lett ∈ Cl(E).
F∗(t) : Cl(X1) −→ ... −→ Cl(Xm+1) is the function such that∀xi ∈ Cl(Xi),

F∗(t)x1.....xm = {b ∈ |Xm+1| | ∃(y1; ...ym; b) ∈ t such that∀i ≤ m, yi ⊆ xi}.

Lemma 6.4 LetM0...Mm be a term where m≥ 1.
Thus~M0...Mm�ρ = F∗(~M0�ρ)~M1�ρ...~Mm�ρ.

Proof. The proof is easy, by induction onm. �

ClearlyF∗ extends theF used in Theorem 5.8.

Lemma 6.5 The interpretation ofstrict? is actually a clique.

Proof. Let ({(x0, b0)}, c0), ({(x1, b1)}, c1) ∈ ~strict?�.
We will prove that ({(x0, b0)}, c0) ⌣⌢(N→N)→N ({(x1, b1)}, c1). Always x0 ∪ x1 ∈

Cl f in(N), thus the proof is immediate by Corollary 6.3 and Lemma 6.2. �

Theorem 6.6 and Theorem 6.7 formalize our intuition on the denotational meaning
of the termsYk

σ (defined at the end of the Section 2) and ofstrict?. They will be
useful in order to decrease the complexity of the proof of Lemma 7.3.

Theorem 6.6 Let B⊢ M : ι andρ ∈ EnvB.
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Let B ⊢ M : σ be a typing ofStPCF and letρ ∈ EnvB.
The interpretation ofM with respect toρ is denoted~M�ρ (((†††))) and it is a clique of
~σ� obtained by induction onM in the following way:

• ~x�ρ = ρ(x)

• Letσ = µ τ for some typesµ, τ, thus

~λxµ.P�ρ =


(x0, b) ∈ Cl(~µ�) × |~τ�|

∣∣∣∣∣∣∣∣∣

b ∈ ~P�ρ[x0/x] and

∀y ⊆ x0 b ∈ ~P�ρ[y/x] impliesy = x0



• ~PQ�ρ = F (~P�ρ)~Q�ρ

• Letσ = (τ τ) τ andx ∈ Cl(~τ τ�), thus

~Yτ�(x) =
⋃⋃⋃

n≤0 F
n(x) whereF n(x) =


∅ if n = 0

F (x)(F n−1(x)) otherwise

• ~if � = { ({0} ; {n} ; ∅ ; n) | n ∈ N } ∪ { ({m} ; ∅ ; {n} ; n) | n ∈ N andm, 0 }.

• ~ñ� = {n}, for eachn ∈ N.

• ~gor� =
{

((( {0}; {n+1}; ∅; 0 )))
∣∣∣ n ∈ N

}

⋃⋃⋃ {
((( ∅; {0}; {n+1}; 1 )))

∣∣∣ n ∈ N
}

⋃⋃⋃ {
((( {n+1}; ∅; {0}; 2 )))

∣∣∣ n ∈ N
}

• ~strict?� =
{ (
{({0}, n)} ; 0

) ∣∣∣ n ∈ |N|
}⋃ { (

{(∅, n)} ; 1
) ∣∣∣ n ∈ |N|

}
.

††† It would be clear that the interpretation of closed terms as constants is invariant with
respect to environments, thus in such cases the environmentindexing the interpretation
mapping can be omitted.

Figure 4. Interpretation ofStPCF

F (~strict?�) ~λxι.M�ρ =



{0} if ~M�ρ[{0}/x] , ∅ and~M�ρ[∅/x] = ∅ ,

{1} if ~M�ρ[∅/x] , ∅ (hence,~M�ρ[{0}/x] , ∅) ,

∅ otherwise.

Theorem 6.7 (i) ~Y(n)
σ �(x) = F n(x), for all n ∈ N and typeσ.

(ii) ~Yσ�(x) =
⋃

n≤0~Y
(n)
σ �(x), for all n ∈ N and typeσ.

The notion of denotational equivalence [16,15] can be formalized. Let B ⊢ M : σ
andB ⊢ N : σ. We writeM ∼σ N if and only if ~M�ρ = ~N�ρ, for eachρ ∈ EnvB.
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If M ∼σ N impliesM ≈σ N then the stable models arecorrect for StPCF. If M ≈σ N
impliesM ∼σ N then the stable models arecompletefor StPCF. The stable models
are fully-abstract for StPCF if and only if it is both correct and complete for
StPCF.

Lemma 6.8 Let B⊢ M : σ and B⊢ N : τ andρ, ρ′ ∈ EnvB.

(i) If ρ(x) ⊆ ρ′(x), for all FV(M), then~M�ρ ⊆ ~M�ρ′.
(ii) If x : τ ∈ B then~M[N/x]�ρ = ~M�ρ[ ~N�ρ/x] .
(iii) If τ = σ, ~M�ρ = ~N�ρ and C[σ] is a Bσ-context such that FV(C[M]) =

FV(C[N) = ∅ then~C[M]� = ~C[N]�.

It is easy to check thatF (~λxσ.M�ρ)(x) = ~M�ρ[x/xσ] wherex ∈ ~σ�.
The interpretation is sound in the sense of the next Lemma.

Lemma 6.9 LetM be a program. IfM ⇓e ñ then~M� = ~ñ�.

Proof. The proof is done by induction on the derivation provingM ⇓e ñ.

• If the last applied rule is (head), (Y), (0if ), (1if ), (pred ), (succ ) or (num)
then the proof is standard.

• If the last applied rule is either (0gor), (1gor) or (2gor) then the proof is easy,
by interpretation ofgor.

• If the derivation ends with
strict? (P[Q/x]M1...Mm) ⇓e ñ (m∈ N)

(?head)
strict?((λxσ.P)QM1...Mm) ⇓e ñ

then

by induction~strict?(P[Q/x]M1...Mm)� = ~ñ�. Since~(λxσ.P)Q�ρ = ~P[Q/x]�ρ,
by Lemma 6.8.(ii) and the interpretation, the proof followsby Lemma 6.8.(iii).

• If the last applied rule is (λ?head), (?Y) or (λ?Y) then the proof is similar to that
of the rule (?head).

• If the derivation ends with
M0 ⇓e 0̃ M1 ⇓e k̃

(?0if )
strict? (if M0 M1) ⇓e 1̃

then~M0� = {0} and

~M1� = {k} by induction. Hence~if M0 M1� = F∗(~if �)~M0�ρ~M1� = {(∅, k)} and
the proof follows by interpretation ofstrict?.

• If (?1if ) is the last applied rule then the proof is similar to that of (?0if ).
• If the last applied rule is (λ?0if ) or (λ?pred ) then the proof is similar to that of

(λ?1if ).
• Let ρ be an environment. If the derivation ends with

M0[0̃/x] ⇓e ñ + 1 strict? (λxι.M0) ⇓e ñ0 strict? (λxι.M2) ⇓e ñ2
(λ?1if )

strict? (λxι.if M0 M1 M2) ⇓e ñ0 or ñ2

then~strict? (λxι.if M0 M1 M2)�ρ = F (~strict?�)~λxι.if M0 M1 M2�ρ = z.
Let k̃ ≡ ñ0 or ñ2 , i.e. if ñ0 0̃ ñ2 ⇓e k̃ ; thus there are three cases.
- If k̃ ≡ 1̃ then, bothstrict? (λxι.M0) ⇓e 1̃ andstrict? (λxι.M2) ⇓e 1̃; therefore
~strict? (λxι.M0)�ρ = ~strict? (λxι.M2)�ρ = {1} by induction.
So~M0�ρ[∅/x] , ∅ , ~M2�ρ[∅/x], by Theorem 6.6. But by induction~M0[0̃/x]�ρ =
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{n+ 1}, thus both~M0�ρ[{0}/x] = {n+ 1} and~M0�ρ[∅/x] = {n+ 1} too.
Therefore~if M0 M1 M2�ρ[∅/x] , ∅ and the proof follows by Theorem 6.6.

- If ñ0 ≡ 0̃ thenstrict? (λxι.M0) ⇓e 0̃, so~M0�ρ[∅/x] = ∅ while ~M0�ρ[{0}/x] , ∅.
Thus~if M0 M1 M2�ρ[∅/x] = ∅. By induction~M0[0̃/x]�ρ = {n+1}, so~M0�ρ[{0}/x] =
{n + 1}. On the other handstrict? (λxι.M2) ⇓e ñ2 implies ~M2�ρ[{0}/x] , ∅ so
~if M0 M1 M2�ρ[{0}/x] , ∅. The proof follows by Theorem 6.6.

- If ñ2 ≡ 0̃ and ñ0 ≡ 1̃ then strict? (λxι.M2) ⇓e 0̃, so ~M2�ρ[∅/x] = ∅ while
~M2�ρ[{0}/x] , ∅. Moreover~M0[0̃/x]�ρ = {n + 1} implies~M0�ρ[∅/x] = ∅. Thus
~if M0 M1 M2�ρ[∅/x] = ∅. Since~if M0 M1 M2�ρ[{0}/x] , ∅ the proof follows by
Theorem 6.6.

• The cases (λ?succ ), (?succ ), (λ?num) or (λ?x) are easy.

• If the derivation ends with
strict? (λxι.M 0̃) ⇓e ñ

(λ??)
strict? (λxι.strict?M) ⇓e ñ

, remark that

~M 0̃� , ∅ if and only if ~strict?M� , ∅. By Theorem 6.6, the proof is easy.
• If the last applied rule is (?0gor), (?2gor), (λ?0gor), (λ?1gor) or (λ?2gor) then

the proof is similar to one of the previous cases. �

7 Correctness

The operational behaviour may be related to the denotational model in a weaker
sense than correctness. The denotational semantics is saidto be adequatewhen
~M� = ~ñ� andM ⇓e ñ are logically equivalent for any programM, numeral̃n.
The proof of adequacy is based on a computability argument inTait style and it was
used in [15] for Scott-continuous domains.

Definition 7.1 The predicate Comp(B, M, σ) holds whenever B⊢ M : σ and one of
the following cases is satisfied:

(i) B = ∅ andσ = ι if and only if ~M�ρ = ~ñ�ρ impliesM ⇓e ñ, for eachñ;
(ii) B = ∅ andσ = µ τ if and only if Comp(∅, N, µ) implies Comp(∅, MN, τ);
(iii) B = {x0 : ν0, ..., xn} for some n≥ 1, if and only if Comp(∅, N0, ν0) for all i ≤ n

implies Comp(∅, M[N0/x0, ..., Nn/xn], σ).

Note thatComp(∅, M, σ τ) andComp(∅, N, σ) imply Comp(∅, MN, τ).

Property 7.2 Comp({x0 : ν0, ..... , xn : νn}, M , τ1  ..... τm ι) if and only if,
for all Ni and Pj such that Comp(∅, Ni , νi) and Comp(∅, P j , τ j) (where i≤ n, j ≤ m)
~M[N0/x0, ..., Nn/xn]P1...Pm�ρ = ~ñ�ρ impliesM[N0/x0, ..., Nn/xn]P1...Pm ⇓e ñ.

The previous property will often be used implicitly in the next lemma.

Lemma 7.3 If B ⊢ M : σ then Comp(B, M, σ).

Proof. The proof is given by induction on the derivation provingB ⊢ M : σ.
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• Supposeσ = τ1  ...  τm  ι (m ∈ N) and B[x : σ] ⊢ x : σ and
Comp(∅, P, σ). If Comp(∅, Ni , τi) (1 ≤ i ≤ m) and~x[P/x]N1...Nm�ρ = ~ñ�ρ then
PN1...Nm ⇓e ñ sinceComp(∅, P, σ), thusComp(B, x, σ), by Property 7.2.

• If B ⊢ ñ : ι then the proof is trivial.
• SupposeB ⊢ if : ι ι ι ι andComp(∅, Ni , ι) (1 ≤ i ≤ 3).

If ~if N1N2N3�ρ = ~ñ�ρ then either~N1�ρ = ~0̃�ρ or ~N1�ρ = ~m̃ + 1�ρ, by inter-
pretation ofif . In the first case, clearly~N2�ρ = ~ñ�ρ for someñ. Thus, both
N1 ⇓e 0̃ andN2 ⇓e ñ by hypothesesComp(∅, N1, ι) andComp(∅, N2, ι), and the
proof follows by applying the evaluation rules. The second case is similar.

• The casesB ⊢ succ : ι ι, B ⊢ pred : ι ι are easier than the previous one.
• We will show thatComp(B, P, µ τ) andComp(B, Q, µ) imply Comp(B, PQ, τ).

Let B = x1 : ν1, ..., xh : νh (h ∈ N) andComp(∅, Ni , νi) (1 ≤ i ≤ h).
Let τ = τ1 ... τm ι (m ∈ N) andComp(∅, Ri , τi) (1 ≤ i ≤ m).
ThusComp(∅, P[N1/x1, ..., Nh/xh], µ τ) andComp(∅, Q[N1/x1, ..., Nh/xh], µ) by
hypotheses, soComp(∅, P[N1/x1, ..., Nh/xh]Q[N1/x1, ..., Nh/xh]R1...Rn, ι).
The proof follows by Definition 7.1.

• We show thatComp(B[x : µ], P, τ) impliesComp(B, λxσ.P, µ τ). Without loss
of generality letB = x1 : ν1, ..., xh : νh (h ∈ N) andComp(∅, Ni , νi) (1 ≤ i ≤ h).
Let τ = τ1 ... τm ι (m ∈ N) andComp(∅, Ri , τi) (1 ≤ i ≤ m).
Let Comp(∅, Q, µ) and~(λxσ.P)[N1/x1, ..., Nh/xh]QR1...Rn�ρ = ~ñ�ρ, for someñ;
therefore,~(λxσ.P)[N1/x1, ..., Nh/xh]QR1...Rn�ρ = ~P[Q/x, N1/x1, ..., Nh/xh]R1...Rn�ρ
by Lemmas 6.8.
ButComp(B[x : µ], P, τ) impliesComp(∅, P[Q/x, N1/x1, ..., Nh/xh]R1...Rn, ι), hence
it follows that P[Q/x, N1/x1, ..., Nh/xh]R1...Rn ⇓e ñ by Definition 7.1. The proof
follows by rule (head).

• SupposeB ⊢ gor : ι ι ι ι andComp(∅, Ni , ι) (1 ≤ i ≤ 3).
Let ~gor N1 N2 N3�ρ = ~ñ�ρ. There are 3 cases bygor interpretation. Ifñ = 3̃,
~N1�ρ = ~0̃�ρ and~N2�ρ = ~k̃ + 1�ρ thenN1 ⇓e 0̃ andN2 ⇓e k̃ + 1 by hypotheses;
thus the proof follows by rule (0gor). The remaining cases are similar.

• SupposeB ⊢ strict? : (ι ι) ι andComp(∅, N, ι ι).
We will show that, if~strict?N�ρ = ~ñ�ρ thenstrict?N ⇓e ñ. It is easy to
check that, bothComp(∅,Ωι, ι) andComp(∅, 0̃, ι), so bothComp(∅, NΩι, ι) and
Comp(∅, N0̃, ι) by hypothesis. By interpretation ofstrict? there are two cases.
- If ñ ≡ 0̃ then ~NΩι�ρ = ∅ and ~N0̃�ρ = ~m̃�ρ. HenceN0̃ ⇓e m̃; moreover
strict?N ⇓e k̃ wherek̃ ∈ {0̃, 1̃} by Lemma 4.2. If̃k . 1̃ thenMΩι ⇓e m̃ by
Lemma 4.3, thus~NΩι�ρ = ~m̃�ρ , ∅ by Lemma 6.9 against our hypothesis.

- If ñ . 0̃ then~NΩι�ρ = ~N0̃�ρ = ~m̃�ρ. HenceNΩι ⇓e m̃ andN0̃ ⇓e m̃; thus the
proof follows by Lemma 4.2.

• Let B ⊢ Yσ : (σ σ) σ whereσ = τ1 ... τm ι (m ∈ N).
The casem = 0 is trivial (((7))), so letm ≥ 1. Without loss of generality assume
B = ∅, Comp(∅, Q, σ σ) andComp(∅, Ri , τi) (1 ≤ i ≤ m).
We will prove that, if~YσQR1...Rn�ρ = ~ñ�ρ thenYσQR1...Rn ⇓e ñ. Note that there
existsk ∈ N such that~Yk

σQR1...Rn�ρ = ~YσQR1...Rn�ρ by Theorem 6.7. Thus

7 Note thatΩσ andYk
σ are defined using onlyYι.

24



Yk
σQR1...Rn ⇓e ñ by the previous points of this Lemma. The proof follows by The-

orem 3.4. �

Corollary 7.4 The stable models are adequate forStPCF.

Proof. Lemma 7.3 (together with Definition 7.1) and Lemma 6.9 imply that~M� =
~ñ� if and only if M ⇓e ñ, for any programM, numeral̃n. �

Theorem 7.5 The stable models are correct forStPCF.

Proof. Let B ⊢ M : σ andB ⊢ N : σ such that~M�ρ = ~N�ρ, for each environment
ρ ∈ EnvB. If C[.] is a Bσ-context such that bothC[M] andC[N] are programs and
C[M] ⇓e ñ for some valuẽn, then~C[M]� = ~ñ� by Lemma 6.9.
Since~C[N]� = ~C[M]� = ~ñ� by Lemma 6.8, it follows thatC[N] ⇓e ñ by ade-
quacy. By definition of operational equivalence the proof isdone. �

8 Definability and Full Abstraction

The proof of full abstraction is done like the one forPCF and Scott’s domains [15].
If x0 is a finite clique (in a coherence space interpretation of a typeσ) then there
exists a closed termM of StPCF such that⊢ M : σ and~M� = x0. It follows that
coherence spaces (and stable models) are fully abstract forStPCF.

Definition 8.1 Let x be a finite clique of a coherence space in the range of the
interpretation ofStPCF-types. The class of closed terms having x as interpretation
is denoted byPxQ , hencePxQ = {M | ~M� = x}.

Pa1, ..., akQ is used as an abbreviation forP{a1, ..., ak}Q andPxQ = M is used as an
abbreviation forM ∈ PxQ.
If B ⊢ Pi : ι, B ⊢ Mi : ι wherei ≤ 2 then gif P0 P1 P2 M0 M1 M2 is used as an
abbreviation for the termif (gor P0 P1 P2) M0

(
if (pred (gor P0 P1 P2)) M1 M2

)
.

Clearly ~gif P0 P1 P2 M0 M1 M2 �ρ =



~M0�ρ if ~P0�ρ = {0}, ~P1�ρ = {n+ 1},

~M1�ρ if ~P1�ρ = {0}, ~P2�ρ = {n+ 1},

~M2�ρ if ~P2�ρ = {0}, ~P0�ρ = {n+ 1},

∅ otherwise.

An explicit operational description ofgif is given in [52]. IfM andN are programs
thenM � N is an abbreviation for the application of the following termto M andN:

Yιιι

(
λFιιιxιyι.if x (if y0̃1̃)

(
if y 1̃ (F(pred x)(pred y))

))
.
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It is easy to check that~M � N� =



0 ~M� = m= ~N�,

1 ~M� = m, n = ~N�,

∅ otherwise.

Let N0 or N1 be an abbreviation for the termif N0 (if N1 0̃ 0̃) N1 (being equivalent
to if N0 0̃ N1, under the hypothesis that bothN0 ⇓e andN1 ⇓e). Let N0 and N1 be
an abbreviation for the termif N0 (if N1 0̃ 1̃) (if N1 1̃ 1̃). Let not N0 be an abbre-
viation for the termif N0 1̃ 0̃. It is easy to check that the operational behaviour of
and , or and not is the expected one. Note thatand , or and not are strict
operators, in the sense that if one of their parameters diverges then their evalua-
tion diverges. Last, let̃k-succ M be an abbreviation for (succ .....(succ︸              ︷︷              ︸

k

M)...) where

k ∈ N andM is a term (possibly open) having typeι.

In order to help the reader, we will try to give an informal idea of the problems
raised by definability proof by presenting some examples.

Example 8.2

a) Consider({3}, 4) ∈ |~ι ι�|; clearly P({3}, 4)Q = λxι.if (x � 3̃)4̃Ωι.
b) Consider({({3}, 4)}, 5) ∈ |~(ι ι) ι�|.

At a first sight, the termM ≡ λfιι.if (f3̃ � 4̃)5̃Ωι is a natural candidate
for P({({3}, 4)}, 5)Q but unfortunately this impression is wrong. In fact,~M� =
{({({3}, 4)}, 5), ({(∅, 4)}, 5)}. It is easy to check that

P({({3}, 4)}, 5)Q = λfιι.if


f3̃ � 4̃ and

strict?(λzι.f(3̃-succ z))

 5̃ Ωι.

c) Consider({({({3}, 4)}, 5)}, 6) ∈ |~((ι ι) ι) ι�|.

ThusM ≡ λF(ιι)ι.if
(
F
(
λxι.if (x � 3̃)4̃Ωι

)
� 5̃
)
6̃Ωι does not define the given

token, in fact~M� = {({({({3}, 4)}, 5)}, 6), ({(∅, 5)}, 6)}.
It is easy to check that

P({({({3}, 4)}, 5)}, 6)Q = λF(ιι)ι.if



(
F
(
λxι.if (x � 3̃)4̃Ωι

)
� 5̃
)
and

strict?
(
λzι.F

(
λxι.if (x � 3̃)(4̃-succ z)Ωι

))

 6̃Ωι.

d) Let a= ({({({({3}, 4)}, 5)}, 6)}, 7) ∈ |~(((ι ι) ι) ι) ι�|.

Note that the termM ≡ λF((ιι)ι)ι.if
(
F
(
λfιι.if ((f3̃) � 4̃)5̃Ωι

)
� 6̃
)
7̃Ωι does

not define the given token, in fact

~M� = {({({({({3}, 4)}, 5)}, 6)}, 7), ({({({(∅, 4)}, 5)}, 6)}, 7), ({(∅, 6)}, 7)}.

Let N ≡ λF((ιι)ι)ι.if
(
FP({({3}, 4)}, 5)Q � 6̃

)
7̃Ωι, whereP({({3}, 4)}, 5)Q is de-

fined inb). Again,N does not define the considered token. In fact, it is easy to
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check that~M� = {({({({({3}, 4)}, 5)}, 6)}, 7), ({(∅, 6)}, 7)}. Finally,

PaQ = λF((ιι)ι)ι.if



((
F P({({3}, 4)}, 5)Q

)
� 6̃
)
and

strict?
(
λxι.F

(
λfιι.if ((f3̃) � 4̃)(5̃-succ z)Ωι

))

 7̃Ωι.

e) Let a= ({({10}, 11)}︸       ︷︷       ︸
ιι

; {({({3}, 4)}, 5), ({({3}, 8)}, 9)}︸                              ︷︷                              ︸
(ιι)ι

; 6) ∈ |~(ι ι) ((ι ι) ι) ι�|.

Note that the term
M ≡ λfιιF(ιι)ι.if

(
f1̃0 � 1̃1 and (F P{({3}, 4)}Q) � 5̃ and (FP{({3}, 8)}Q) � 9̃

)
6̃Ωι

does not define the given token a, in fact

~M� =



(
{({10}, 11)}; {({({3}, 4)}, 5), ({({3}, 8)}, 9)}; 6

)

(
{(∅, 11)}; {({({3}, 4)}, 5), ({({3}, 8)}, 9)}; 6

)



It is easy to check that

PaQ = λfιιF(ιι)ι.if


f1̃0 � 1̃1 and strict?(λzι.f(1̃0-succ z))

(F P{({3}, 4)}Q) � 5̃ and (FP{({3}, 8)}Q) � 9̃

 6̃Ωι.

The following property is the crucial point enabling us to prove the definability. It
is a formalization of the technique (illustrated by some of the previous examples)
which allows us to check, syntactically, the “minimality” (with respect to the stable
order [4]) of an input.

Property 8.3 Let ⊢ M : σ ι and x∈ Cl f in~σ�. If x = {a0, ...., an} for some n≥ 1,
xak = {(∅, a0), ..., (∅, ak−1), ({0}, ak), (∅, ak+1), ..., (∅, an)} ∈ ~ι σ� for all k ≤ n and
b ∈ N then the following conditions are equivalent:

(i) b ∈ F (~M�) x and∀y ⊆ x, b∈ F (~M�) y implies x= y;
(ii) b ∈ F (~M�)(((F (PxakQ){0}))) while F (~M�)(((F (PxakQ)∅))) = ∅, for all k ≤ n;
(iii) b ∈ ~MPxQ� and,∀k ≤ n, ~strict?(λzι.M(PxakQz))� = {0}.

Proof. Easy, by using Theorem 6.6. �

A last example may help the reader to understand a further problem arising from
definability.

Example 8.4 Lete=



({({3}, 30), ({4}, 41)}, 101), ({(∅, 90)}, 109),

({({3}, 31), ({5}, 50)}, 102), ({({4}, 40), ({5}, 51)}, 103)


∈ Cl
(
~(ι ι) ι�

)
.

Let x101 = {({3}, 30), ({4}, 41)}, x102 = {({3}, 31), ({5}, 50)}, x103 = {({4}, 40), ({5}, 51)},
x109 = {(∅, 90)} and, note that they are pairwise incoherent. We will try to define the
clique e in a compositional way, by using cliques defined in Fig. 5.
Thus it is easy to check that:
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:

(x101, 0)

(x109, 1)

;

= λfιι.if



f3̃ � 3̃0

and

f4̃ � 4̃1


0̃
(
if (fΩι � 9̃0) 1̃ Ωι

)
(†††)

< (x101, 1)

(x102, 0)

(x103, 0)

=

= λfιι.gif


if (f3̃ � 3̃0) (if (f4̃ � 4̃1)0̃Ωι)(if



f3̃ � 3̃1

and

f5̃ � 5̃0


1̃Ωι)



if (f4̃ � 4̃0) (if (f5̃ � 5̃1)0̃Ωι)(if



f4̃ � 4̃1

and

f3̃ � 3̃0


1̃Ωι)



if (f5̃ � 5̃0) (if (f3̃ � 3̃1)0̃Ωι)(if



f5̃ � 5̃1

and

f4̃ � 4̃0


1̃Ωι)



1̃

0̃

0̃

< (x109, 0)

(x102, 1)

(x103, 1)

=

= λfιι.if (f5̃ � 9̃0)
(
if (fΩι � 9̃0) 0̃ Ωι

)

if (f5̃ � 5̃0)(if (f3̃ � 3̃1)1̃Ωι)(if



f5̃ � 5̃1

and

f4̃ � 4̃0


1̃Ωι)



††† It would be clear that, in casef3̃ � 3̃0 andf4̃ � 4̃1 there is no need for checking the
minimality, since it must be~fΩι� = ∅ by monotonicity and correctness.

Figure 5. Examples of Clique Definitions

PeQ = λfιι.gif



:

(x101, 0)

(x109, 1)

;

f





< (x101, 1)

(x102, 0)

(x103, 0)

=

f





< (x109, 0)

(x102, 1)

(x103, 1)

=

f



1̃01


if (f5̃ � 5̃0) (if (f3̃ � 3̃1) 1̃02Ωι)(if



f5̃ � 5̃1

and

f4̃ � 4̃0


1̃03Ωι)


1̃09

Clearly, one can find simpler terms defining e.

A non standard measure on types will be useful in the proof of the Lemma 8.5. The
 of a type is defined inductively as follows:
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- (ι) = 0
- (σ τ) = 1+ (σ) + (τ).

It is easy to check that(µ1 ..... µm ι) = m+
∑m

j=1 (µi).

Lemma 8.5 (Definability)
If σ = τ1 ..... τk ι for some k≥ 0 and u∈ Cl f in(~σ�) then u is definable.

Proof. The proof is given by induction on the pair〈 (σ), ‖u‖ 〉 ordered in a
lexicographic way.

q If (σ) = 0 then~σ� = N andσ = ι. ThusΩι and numerals define all
possible finite cliques, sinceCl f in(N) = {∅} ∪ {{n} / n ∈ |N|}.

q If (σ) = 1 then~σ� = N⇒ N andσ = ι ι.

- If ‖u‖ = 0 thenu = ∅ is defined byΩιι.
- Let ‖u‖ = 1 andu = {(y0, d0)} such thaty0 ∈ Cl f in(N) andd0 ∈ N.

If y0 = ∅ thenPuQ = λzι.Pd0Q. If y0 , ∅ then‖y0‖ = 1, i.e. it contains a numeral
sinceCl(N) is a flat cpo. Ify0 = {n} then the program defining the clique has the
following shape:λzι.if (z � ñ) Pd0QΩι.

- Let ‖u‖ > 1 and (y0, d0) ∈ u wherey0 ∈ Cl f in(N) andd0 ∈ N.
Clearlyy0 , ∅ by Lemma 6.2. Ifu′ = u− {(y0, d0)} andy0 = {n} then the program
defining the clique has the following shape:λzι. (((z �ι PnQ))) Pd0Q (((Pu′Qz))) where
Pu′Q is well defined by induction, since‖u′‖ < ‖u‖.

q Suppose(σ) ≥ 2 andk = 1; soσ = τ1 ι andτ1 = µ1 ..... µm ι,
for somem ∈ N. Clearly (σ) = 1+ (τ1) = 1+m+

∑m
j=1 (µi).

- If ‖u‖ = 0 thenu = ∅ is defined byΩτ1ι.
- Suppose‖u‖ = 1 andu = {(y0, d0)} wherey0 ∈ ~µ1 ..... µm ι�.

At this crucial point the proof proceeds by induction on‖y0‖ too.
• If y0 = ∅ thenPuQ = λFτ1.Pd0Q.

• Supposey0 = {a0, ....., an} (n ≥ 0) whereai = (xi
1; ...; xi

m; bi) and xi
j ∈ ~µ j�

(i ≤ n, 1 ≤ j ≤ m). If y′ = y0 − {a0} thenu′ = {(y′, d0)} is a clique definable by
induction, whileu0 = {({(x0

2; ...; x0
m; b0)}, 0)} is a clique definable by induction

on the. Clearlya0 = (x0
1; ...; x0

m; b0). ((( 8 )))

8 The termM ≡ λFτ1.if
(
(F Px0

1Q...Px
0
mQ) �

ι Pb0Q and Pu0Q(FPx0
1Q)
) (
Pu′QF

)
Ωι does not de-

fineu (see Examples 8.2.b/c/d/e).
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If x0
1 = {c

0
1, ..., c

0
h0
} andk ≤ h0 then letx

c0
k

1 = {(∅, c
0
1), ..., ({0}, c

0
k), ..., (∅, c

0
h0

)} so

PuQ = λFσ.if



(((F Px0
1Q...Px

0
mQ))) �

ι Pb0Q and

strict?(λxι.F (Px
c0

1
1 Qx) Px

0
2Q...Px

0
mQ)

and ..... and

strict?(λxι.F (Px
c0

h0
1 Qx) Px

0
2Q...Px

0
mQ)

and Pu0Q(FPx0
1Q)



(
Pu′QF

)
Ωι.

Now an informal justification of the previous reasoning is given. Essentiallyy0 =

{a0, ....., an} is a set of constraints onFσ. If ai = (xi
1; ...; xi

m; bi) then we must check
that (((F Pxi

1Q...Px
i
mQ))) �

ι PbiQ) in a minimal way with respect to the stable order,
thus (xi

1; ...; xi
m; bi) ∈ ~F�. A descriptive analysis of the three arguments ofif in

the termPuQ defined before can be done as follows.
1. The first argument verifies that the constrainta0 is satisfied. More explicitly,
it verifies both (((F Px0

1Q...Px
0
mQ))) �

ι Pb0Q and the stable minimality ofx0
1, while the

further stable minimal constraints are verified inductively by the termPu0Q.
2. The second argument inductively checks the constraints{a1, ....., an} and, in
the affirmative case, gives outd0 as the result.
The third argument “loops forever”, therefore~PuQ� = u.

- Suppose‖u‖ ≥ 2 andu = {(y0, d0), ....., (yp, dp)} for somep ≥ 1. If i, j ≤ p and
i , j thenyi ∪ yj < Cl(U), by Lemma 6.2; thusyi , ∅ for each j ≤ p.

Let yj = {a( j,0), ....., a( j,nj )} for somen j ≥ 0 anda( j,i) = (x( j,i)
1 ; ...; x( j,i)

m ; b( j,i)) where
x( j,i)

q ∈ ~µq�, b( j,i) ∈ N, for all 1 ≤ q ≤ m, i ≤ n j and j ≤ p.
There area(0,k0) ∈ y0 anda(1,k1) ∈ y1 for somek0 ≤ n0, k1 ≤ n1, s.t.a(0,k0) ⌢ a(1,k1).
From a(0,k0) = (x(0,k0)

1 , ..., x(0,k0)
m , b(0,k0)), a(1,k1) = (x(1,k1)

1 , ..., x(1,k1)
m , b(1,k1)) and by

Corollary 6.3, it follows thatzi = x(0,k0)
i ∪ x(1,k1)

i ∈ Cl(~µi�) for all 1 ≤ i ≤ m.
The cliqueszi for all 1 ≤ i ≤ m, and the following cliques (well-defined by
Lemma 6.2) are definable by induction on the,

v1 = {(yi, di) ∈ u / a(0,k0) ∈ yi}

v2 = {(yi, di) ∈ u / a(1,k1) ∈ yi}

v3 = u− (v1 ∪ v2) = {(yi , di) ∈ u / a(0,k0) < yi anda(1,k1) < yi}

w2 = {(yi , 0̃) / (yi , di) ∈ v3} ∪ {(yi , 1̃) / (yi , di) ∈ v1}

w3 = {(yi , 0̃) / (yi , di) ∈ v2} ∪ {(yi , 1̃) / (yi , di) ∈ v3}

Note thaty0 < v1, y1 < v2 andv3 can be empty. Clearlya(0,k0) , a(1,k1) implies that
b(0,k0) , b(1,k1) or ∃q, x(0,k0)

q , x(1,k1)
q (1 ≤ q ≤ m). In both cases

PuQ = λFσ.gif T
(
Pw2QF

) (
Pw3QF

)
(Pv1QF) (Pv3QF) (Pv2QF)
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whereT is the open term defined as follows.
(i) If b(0,k0) , b(1,k1) thenw⋆ = {(b(0,k0), 0̃) , (b(1,k1), 1̃)} is definable, by induction on
. Let T be the open term

(
Pw⋆Q(F Pz1Q...PzmQ)

)
.

(ii) Otherwiseb(0,k0) = b(1,k1) and there isq such thatx(0,k0)
q , x(1,k1)

q (1 ≤ q ≤ m).
Without loss of generality, there is a tokenc0

q ∈ x(0,k0)
q such thatc0

q < x(1,k1)
q . If

such a token does not exist, it is sufficient to exchange (y0, d0) and (y1, d1).

Hencez
c0

q
q = {({0̃}, c0

q)} ∪ {(∅, c) / c ∈ zq andc , c0
q} is a clique definable by

induction, soT is the open term

(F Pz1Q...PzmQ) �
ι Pb(0,k0)Q and strict?(λxι.FPz1Q...Pzq−1Q

(
Pz

c0
q

q Qx
)
Pzq+1Q...PzmQ).

Informally, if the set of constraintsyj = {a( j,0), ....., a( j,nj )} is satisfied byFσ thenPuQ
must returnd j. The constrainta(0,k0) = (x(0,k0)

1 , ..., x(0,k0)
m , b(0,k0)) means that we must

check that (((F Pxi
1Q...Px

i
mQ))) �

ι PbiQ) and fulfils some minimal conditions. The cliques
yj are pairwise incoherent by the Lemma 6.2, in fact given an input only one integer
d j can be the result ofPuQ. Without loss of generality, we can assume thaty0, y1

contain respectively the incoherent tokensa(0,k0) anda(1,k1) having the shapea(0,k0) =

(x(0,k0)
1 , ..., x(0,k0)

m , b(0,k0)) anda(1,k1) = (x(1,k1)
1 , ..., x(1,k1)

m , b(1,k1)). Sincex(0,k0)
i and x(1,k1)

i

are pairwise coherent by Corollary 6.3, the cliqueszi = x(0,k0)
i ∪ x(1,k1)

i ∈ Cl(~µi�)
are more defined thanx(0,k0)

i andx(1,k1)
i . Hence (((F Pz1Q...PzmQ))) is defined, whenever

either (((F Px(1,k1)
1 Q...Px(0,k0)

m Q))) is defined or (((F Px(1,k1)
1 Q...Px(1,k1)

m Q))) is defined. In case

b(0,k0) , b(1,k1) the evaluation of
(
P(b(0,k0), 0̃), (b(1,k1), 1̃)Q (F Pz1Q...PzmQ)

)
allows to

discriminate between the constraintsy0, y1. In caseb(0,k0) = b(1,k1) without loss of
generality there is a token inc0

q ∈ x(0,k0)
q which is not used by aFσ satisfying the

constrainty1. The evaluation ofT defined in (ii ) allows to discriminate between the
constraintsy0, y1, in this latter case. Inductively, the cliquesw2, w3 give to thegif
operator sufficient information in order to choose the proper conditional-branches
(between the three rightmost branch) on which to forward theevaluation. Each of
those branches verifies its respective stable minimal constraints.

q Suppose(σ) ≥ 2 andk ≥ 2, thusσ = τ1 ..... τk ι.

- If u = ∅ thenPuQ = Ωσ.
- Supposeu = {(y1; ...; yk; d)} whereyj ∈ ~τ j� (1 ≤ j ≤ k). Thus

PuQ = λzτ11 ...z
τk
k .if

(
P(y1, 0)Qz1 and .... and P(yk, 0)Qzk

)
PdQ Ωι

since (yj , 0) ∈ ~τ j  ι� (1 ≤ j ≤ k) is definable by induction on.
- Supposeu = {e0, ....., en} wheren ≥ 1, ei = (yi

1; ...; yi
k; di) and yi

j~τ j� (i ≤ n,
1 ≤ j ≤ k). There existsh such thaty0

h ∪ y1
h < Cl(~τh�) by Lemma 6.2 and, in
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particular, there exista(0) ∈ y0
h anda(1) ∈ y1

h such thata(0)⌢Yh a(1). Therefore

u1 = {(yi
1; ...; yi

m; di) ∈ u / a(0) ∈ yi
h ∈ Cl(Yh)}

u2 = {(yi
1; ...; yi

m; di) ∈ u / a(1) ∈ yi
h ∈ Cl(Yh)}

u3 = u− (u1 ∪ u2) = {(yi
1; ...; yi

m; di) ∈ u / a(0), a(1) < yi
h}

w1 = {({a(0)}, 0̃)} ∪ {({a(1)}, 1̃)}

w2 = {(y1; ...; ym; 0̃) / ∃(y1; ...; ym; b) ∈ u3} ∪ {(y1; ..., ym; 1̃) / ∃(y1; ...; ym; b) ∈ u1}

w3 = {(y1; ...; ym, 0̃) / ∃(y1; ...; ym; b) ∈ u2} ∪ {(y1; ...; ym; 1̃) / ∃(y1; ...; ym; b) ∈ u3}

are cliques by Lemma 6.2, and they are definable by induction.Hence,

PuQ = λzτ11 ...z
τk
k .gif (Pw1Qzh) (Pw2Qz1...zm) (Pw3Qz1...zm)

(Pu1Qz1...zm) (Pu3Qz1...zm) (Pu2Qz1...zm).
�

Note that at first order types (of the shapeτ1  ... τn  ι whereτk = ι for all
k), all finite elements are definable fromgor alone (no need forstrict?).

The definability implies the completeness as shown in the next theorem.

Theorem 8.6 The stable models are complete forStPCF.

Proof. It is easy to see that, ifM, N are two open terms ofStPCF such thatM /σ N
and FV(M) ∪ FV(N) ⊆ {x1, ..., xn} thenλx1...xn.M /τ λx1...xn.N for someτ. Thus
without loss of generality only closed terms will be considered. LetM, N be two
closed terms ofStPCF such that⊢ M : σ and⊢ N : σ, whileM /σ N.
Let σ = τ1  .....  τm  ι for somem ≥ 0 and without loss of generality
assume that there isa = (x1; ...; xm; b) wherexj ∈ ~τ j� for all j, such thata ∈ ~M�
but a < ~N�. There are closed termsPxjQ having xj as interpretation for allj by
Lemma 8.5. Hence by interpretation~MPx1Q.....PxmQ� = ~PbQ� while, on the other
hand,~NPx1Q.....PxmQ� = ∅ , ~PbQ�, for someb ∈ N. ThereforeM 0 N, since
by Corollary 7.4, bothMPx1Q.....PxmQ ⇓e PbQ andNPx1Q.....PxmQ ⇑e, and the proof is
done. �

Corollary 8.7 The stable models are fully abstract forStPCF.

Proof. By Theorems 7.5 and 8.6. �

Therefore∼σ and≈σ are the same relation on programs ofStPCF.
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9 Conclusions, Open Questions and Future Works

First of all, note that the operatorgor is Scott-continuous, already definable in the
languagePCF+por (called bothPCF+ andPCFP in literature). Without loss of
generality, letpor be the operator of Example 3.5, page 10. Ifnot is the operator
defined on page 26 andpand x y ≡ not (por ( not x)( not y)) (i.e. the parallel-
and) then it is easy to check thatgor x y z can be defined as

if (pand x ( not y)) 0̃ (if (pand y ( not z)) 1̃ (if (pand z ( not x)) 2̃ Ωι)).

But strict? is not Scott-continuous, since it is not monotone with respect to the
extensional order. Hencestrict? cannot be defined inPCF+gor which contains
only Scott-continuous functions (which are closed under composition).
On the other handstrict? is strongly stable, whilegor is not. Hencegor cannot
be defined inPCF+strict? that contains only strongly stable functions. The same
conclusion can be obtained in a syntactical way. It is easy togive an operational
semantic toPCF+gor through aPCF-like rewrite system. The results of [37]
assure that no non-estensionally-monotone operator can live in such language.
Thereforegor andstrict? are independent.

It is well-known that Scott-domains contain elements that do not correspond to ef-
fective operators; this question is tackled in [53,54] and overcome via the notion of
effectively given domains. An element of a Scott-domain iscomputablewhenever
it is the least upper bound of a recursively enumerable set offinite elements of the
considered domains. In order to define all computable elements of Scott-domains a
further operator has been added toPCF+por [15,55]. For the sake of simplicity,
an existential operator∃∃∃ of type (ι ι) ι will be considered here. Let∃∃∃ M be a
“well-typed” term, and letΩι denote a divergent term of typeι. In an informal way,
the evaluation of∃∃∃ M is (by using the notation introduced in page 5)

- if eval(Mñ) = 0̃ for some numerals̃n then eval(∃∃∃ M) = 0̃,
- if eval(MΩι) = m̃ + 1 for some numerals̃m then eval(∃∃∃ M) = 1̃,
- undefined otherwise.

A model isuniversalfor a language when every computable element (in the in-
terpretation of a type) is definable by a closed term of the language [22]. Scott-
domains form a universal model (via the standard interpretation) for the language
PCF+por+∃∃∃ (also calledPCF++). Similar results can be found in [56,22,57] for
modifications of the languagePCF.
Notions of computable elements of stable models have been introduced in [58,59]. I
find it plausible that stable models (via the standard interpretation) give a universal
model ofStPCF, and I am working on a proof of this conjecture.

The question concerning the relationship (full abstraction and universality) between
StPCF (or a variation of it) with the bidomains of Berry [4] is stillopen.
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Further questions arise in the study of thehigher-type computability[28,11].
Note that the operatorstrict? (with the informal meaning given in page 5) cannot
be added in an effective way toPCF+ (as essentially proved in [11]). In fact, it is
evident that ifM is a program then

strict?(λxι.por (if M 0̃ 0̃) x ) =


0̃ if M ↑

1̃ if M ↓

where↑ and↓ denote respectively “divergence” and “convergence” of theevalua-
tion. A simple transformation of the previous code-fragment, namely

λyι.strict?( λxι.por (if y 0̃ 0̃) x ),

is a “halting program” which decides when the evaluation of its argument con-
verges. Thereforestrict? andpor cannot live together in the same effective pro-
gramming language. Sinceλyι.strict?

(
λxι.∃∃∃(((λzι.if z x (if y 0̃ 0̃))))

)
is another

“halting program”, the operatorstrict? cannot also be added (in an effective way)
to PCF+∃∃∃. As suggested by a referee, it is conceptually interesting to explore the
question of how much parallelism can coexist withstrict?. It is plausible that
gor represents the maximum effective degree of parallelism that can coexist with
strict? (inStPCF).

John Longley(((9))) noted that there are seemingly natural incomparable notions of
higher-type computability. In contrast with the Church’s thesis, there is no a maxi-
mum “higher-type computational formal system”. Informally,PCF++ andPCF+H
form different “higher-type computational formalisms” such that there does not ex-
ist a more generous “higher-type computational formal system” that subsumes both
of them. The results of this paper give us some further interesting pieces of this jig-
saw puzzle.
A partial type structure(((9))) (PTS)T consists of:

- a setT σ for each typeσ and in particularT ι is the flat poset of natural numbers,
- for eachσ, τ a total “application function” ···σ→τ : T σ→τ × T σ → T τ.

The partial type structureT is extensional(((9))) (EPTS) if, for all typesσ, τ and all
f , g ∈ T σ→τ,

∀x ∈ T σ, f ··· x = g ··· x implies f = g.

Let T ,U be EPTSs. Asimulation(((9))) s : T → U consists of a total relationsσ ⊆
T σ × Uσ for each typeσ, such thatsι is the identity relation on the flat poset of
natural numbers and for anyf ∈ T σ→τ, g ∈ Uσ→τ, x ∈ T σ, y ∈ Uσ we have

sσ→τ( f , g) and sσ(x, y) imply sτ( f ··· x, g ··· y).

If there is a simulations : T → U then we writeT ≤ U.

9 [11], Section 11, Page 77.
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It is clear that EPTSs and simulations form a category. It is also easy to see that
the only simulationT → T is the identity; so the relation≤ is a partial order
on EPTSs. IfL is a programming language thenT(L) denotes the type structure
corresponding to the term-model ofL built on its operational equivalence.

Proposition 9.1 (i) T(PCF+gor) � T(PCF+strict?)
(ii) T(PCF+strict?)� T(PCF+gor)

Proof. Minor modifications of the proof of Proposition 11.8 in [11]. �

A formalization of the notion ofeffective type structurecorresponding to the ex-
pected one is given in Definition 11.2 of [11]. The relationships between some
effective type structures may be depicted as follows.

T(PCF++) T(PCF+H )

T(PCF+por ) T(StPCF)

T(PCF+gor) T(PCF+strict?)

T(PCF)

Longley also showed thatT(PCF++) is a maximal effective type structure and that
T(PCF+H ) is a maximal effectively sequential type structure. Therefore it is a
natural question ifStPCF is maximal (in some meaningful sense). Clearly this
question is related to the previous conjecture that stable models are universal for
StPCF.

A further marginal question is related to the greatest lowerbound for the type struc-
turesT(PCF++) andT(PCF+H ). Longley(((9))) noted that Curien’s Third counterex-
ample [9] is an operator definable inPCF++ andPCF+H but not inPCF, there-
fore T(PCF) is strictly included in the greatest lower bound ofT(PCF++) and
T(PCF+H ) in the poset of EPTSs. This counterexample can also be programmed
inStPCF. Therefore, it is natural to ask if the above greatest lower bound is strictly
included inT(StPCF).
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