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Abstract

It is well-known that stable models (as dl-domains, quiiligadomains and coherence
spaces) are not fully abstract for the langu@§eF. This fact is related to the existence of
stable parallel functions and of stable functions that aenmonotone with respect to the
extensional order, which cannot be defined by progranfRCi.

In this paper, a paradigmatic programming language naft@&LCF is proposed, which
extends the languageCF with two additional operators. The operational descriptod
the extended language is presented in f@ctive way, although the evaluation of one of
the new operators cannot be formalized in a PCF-like revgsitdem.

SinceStPCF can define all finite cliques of coherence spaces the aboveigfagtable
models is filled, consequently stable models are fully alssfior the extended language.

1 Introduction

PCF is a paradigmatic example of a typed functional programmamguage,
which arose from the language LCF introduced by Dana Sco#t ‘@slculus or
algebra” for the purpose of studying logical properties adgrams [1]. In time,
PCF has become the most popular language investigated in tliedieseman-
tics of programming languages. In fact many kinds of matherabstructures have
been related to it (examples are in [2,3,4,5,6,7,8,9,102,13,14,15]).

Much investigation #ort has been devoted to the full abstraction problem (a key
notion introduced by Robin Milner in [16]). Two programs agerationally equiv-
alent whenever they are interchangeable “in all contexiffiout afecting the ob-
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servable outcome of the computation (this equivalencesis @lled contextual or
observational). In contrast, according to a denotatioeadantics the meaning of a
program lies in its denotation; hence, two programs are @¢ionally equivalent
in a given model only when they have the same denotation imibeel itself. If
the denotational equivalence implies the operational thes the model isorrect

If the reverse implication holds then the modelcismplete If the equivalences
coincide then the model fslly abstract

Independently, Gordon Plotkin [15] and VIadmir Sazonov][h@ve shown that
the standard (with respect to the interpretation) Scotitiooous model [18] is not
fully abstract forPCF. In a nutshell, the mismatch may be explained by the fact
that there is a function callegplarallel-or which is Scott-continuous but cannot be
defined (i.e. programmed) ®CF. In particular, Plotkin extende®CF with a
parallel-if operator and shown that the Scott-continuous model is albistract for
this extended language. Note that parallel-if and paraltere interdefinable [19].
The problem of finding fully abstract models of unexten@éF has been resolved
in [2,10,16,12,13]. On the other hand, many models have pemred to be fully
abstract with respect to languages derived fr®@F, as in [20,8,21,11,22,15].
Furthermore, the investigations G1CF have been fruitfully related to many other
studies, for instance to works on higher-type computabiih sequential functions
and degrees of parallelism [23,5,24,25,26,27,9,28,13(291,32].

The notions of stability and dl-domains have been definedé&waf@ Berry in [33].
dl-domains are Scott-domains satisfying two additionab@s; stable functions
produce some amount of “output information” only when a minm amount of
information is incoming. dI-domains and stable functioosf a cartesian closed
category. The theory of stable functions has been redisedyendependently, by
Jean-Yves Girard as a semantic counterpart of his theorylatods [34] and he
used stability in order to provide a model for second orddymaorphic A-calculus
(the Systent) [35]. Girard has also introduced qualitative domains [86§ co-
herence spaces [36], which are cartesian closed full sepoaes of the category
of dl-domains. All these categories contain the objectsrantphisms in the range
of the standard interpretation fCF, and without ambiguity they will be called
“stable domains”. Like the standard Scott-continuous matie standard stable
models are not fully abstract with respect®C€F, because there exist stable func-
tions with a finite domain of definition that cannot be prognaed inPCF. In
particular, there exist stable functions which have sonrallg flavour, like the
Gustave functiorfGustave is Berry’s nickname), and there exist stable fanst
that are not monotone with respect to the extensional oB88jr [

A natural question is, how to exterfdCF in such a way that the stable models
are fully abstract for it? This question was already congdan many papers
[37,11,14]. In this paper the answer is given. The langusgeCF is obtained
by extendingPCF with two operatorsgor andstrict?. Thegor operator corre-
sponds to a Gustave-liker function, while thestrict? operator corresponds to



a non extensional-monotone function. It is shown that tHeecence space model
is fully abstract with respect t6tPCF. In particular, each finite clique of a co-
herence space which is the interpretation oP@F-type is the denotation of a
StPCF-program. The results holds for the other stable domainsidened above.

In particular, the above question was approached by Trewoadd Albert Meyer
in [37]. They have shown some negative results. Let the st preorder be
the usual operational preorder defined by comparing thevieinaof terms in all
contexts. On the other hand, let the applicative-preordedéfined by observing
only the behaviour of terms applied to sequences of terms.utell-known that
the previous preorder relations coincide &CF. First of all, Jim and Meyer de-
fine in a denotational way theeue-separatorfunction which is a stable function
that corresponds to a boolean versiorsafict?. Hence, they show that the true-
separator breaks down the coincidence between the apydigaieorder on terms
and the contextual-preorder. Finally, they show that vhihdlass of “linear ground
operational rules” (definin@CF-like rewrite systems) the coincidence mentioned
before cannot be broken. Therefore, a fully abstract exdensf #CF using only
operators having a “linear ground operational descrigtawes not exist. Jim and
Meyef? state,

“However, one important result about cpos is not known fabkt domains,
namely, full abstraction with respect to some extension@F Rnalogous to the
parallel-or extension which Plotkin and Sazonov providedthe cpo model.
What might a symbolic-evaluator for an extended PCF loog& Ifkit was well
matched- fully abstract—with the stable model? We conclhdesuch an evalu-
ator will have to be unusual looking: it cannot be specifiedh®/kind of term-
rewriting based evaluation rules known for PCF and its esitars.

The significance of this negative result hinges heavily om dastic we judge
it to go beyond the scope of PCF-like rules. It is of coursesps that some
operational behavior that we declare to be non-PCF-likeumtechnical sense,
will nevertheless fier a useful extension of PCF for which stable domains are
fully abstract. ..... (The general benefits of structurepgrapches to operational
semantics and connection to full abstraction are discussi&8,22])".

Their paper gives a slicient motivation for the study of theffective operational
description, given in this paper, atrict?. Butstrict? is also a strongly stable
operator (in the sense of Antonio Bucciarelli and Thomasgtd [25,39,40]) that
can be defined iPCF extended either with control operators [41,42] or with Leng
ley’sHoperator [11]. Thus such extensions cannot be evaluateddhra”CF-like
rewrite system. Informally, the langua@C F+H provides an answer to the ques-
tion of how far one can travel in languages endowed with @jperators without
sacrificing the functional nature (i.e. extensionality pobgrams. Presently no op-
erational semantics has been given ¥on a direct way, albeitican be defined

2 [37], page 664.



in actual programming languages [43]. Hence, the givenuewmn of strict? is
related to the interest for the operational descriptiorhettoperator.

In conclusion, its fective evaluation makeStPCF an interesting paradigmatic
purely functional typed programming language that can lezl@s a core for the
development of real functional languages. The equival&eteeenStPCF pro-

grams can be tackled by the elegant mathematical toolsged\ny stable models.

1.1 Ouitline of the paper

After an informal presentation the language®CF is formalized in Section 2.
In Section 3 an fective operational semantics is given using a straighthotw
inductive closure of schematic big-step operational ruldss section ends with
some discussions abaftPCF, in particular on the question of relations between
strict? andPCF-like rewrite system. Section 4 contains some cumbersonie te
nical details needed for the proof of Theorem 3.3. In Sedditime basic notions on
coherence spaces are stated. The interpretati®&tBCF on coherence spaces is
given and its adequacy and correctness are proved in Se@&iand 7 respectively,
by quite standard proofs. Section 8 is devoted to the defibabi finite cliques and
to the full-abstraction result. In this section many exagsphave been presented.
Conclusions, open questions and future works are presentgection 9.

2 Syntax of StPCF

StPCF is an extension of RCF-like language without explicit truth-values which
are coded on integers (zero means “true” while any other maistands for “false”).

Definition 2.1 (StPCF-Types) Let ¢ be the onlygroundtype.
Typesof StPCF are generated by the following grammar:

oci=t] (o1
whereo, 7, ... are metavariables ranging over types$tfPCF.

As customary;— associates to right. Heneg »— o, > o3 is an abbreviation for
o1 — (0 » o3). Furthermore, it is easy to see that all typekave the shape
T1 > ... ™ T > (, for some typery, ..., 7, wheren > 0.

Definition 2.2 (St PCF-Words) Let Var be a denumerable set of variables.
Words ofStPCF are produced by the following grammar:

M:= x | (Ax°.N)| (PQ) | Y,

| if | succ |pred | fi | strict?| gor



wherex € Var ando is a type, whileé4, N, P, Q, ... are metavariables ranging over
the words ofStPCF andi, in, ... are metavariables ranging over numerals, namely
the denumerable constar@isi, 2, ......

As customaryMNP will be used as an abbreviation faQIN)P while A1x°y™.P is an
abbreviation for {x”.(1y".P)). The set offree variablesof a termM is denoted by
FV(M) and it is defined as faPCF extended with FVdor) = FV(strict?) = 0.
A term M is closedif and only if FV(M) = 0, otherwiseM is said to beopen
Words are considered up teequivalence (denotes in the following), namely a
bound variable can be renamed provided no free variablepigicad. Moreover, as
customaryM[N/x] denotes the capture-free substitution of all free ocowes ofx
in M byN.

The A-abstraction is the only binder as customarytigalculi, Y., is the recursion
operator of typed » o) » o for each typer, numerals represent natural num-
bers having type while succ andpred are successor and predecessor operators
having type: > « (for us pred® will be undefined). Moreoverif is a condi-
tional operator having type>— ¢ » ¢ » ¢; it checks if the first argument is zero
or not, in order to choose how to forward the evaluation. Ideorto fill the gap
betweenPCF functions and stable morphisms, the operat@rs andstrict? are
introduced. They have respectively type> ¢ > ¢t > cand ¢ 1) » .

The operatogor corresponds essentially to a parallel Gustave-like “laba™.
This kind of function was introduced independently by Kléén by Berry [4,33]
and by Coppo, Dezani-Ciancaglini, Ronchi Della Rocca [£é}{.R = gor PoP; P,

be a “well-typed” term and ledval be the evaluation procedure. In an informal way,
the evaluation oR can be described as follows:

- if eval(Pg) = ® and eval(P;) = # & then eval(R) = 9,
- if eval(P;) =0 and eval(P,) =1 # 0 then eval(R) = 1,
- if eval(P,) =0 and eval(Pg) =i # 0 then eval(R) = 2,

undefined otherwise.

The evaluation oktrict? is subtler. This kind of operator was first considered by
Berry in [33], and its use is crucial in the paper of Jim and B8 7] (in fact, their
“true-separator” corresponds straightforwardly to a leaol version oktrict?).

Let strict?M be a “well-typed” term, lef and| denote respectively “divergence”
and “convergence” of the evaluation (being a partial fumctiand letQ, denote a
divergent term of type. In an informal way, a nonconstructive description of the
evaluation ofstrict?M is

- if eval(M®) | and eval(MQ,) T then eval(strict?M) = 9,
- if eval(M®) | and eval(MQ,) | then eval(strict?M) = 1
- undefined otherwise.

3 See [3,25] for references.
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BFrsucc it Brpred : ¢t Brif it 1> 11
Brgor:it»i»i>>1 B strict? : (> () ¢

Figure 1. Typing Rules

Note that the expected type fetrict? implies that — ¢ is the type font; thus, if
the evaluation ofi® converges (to a numeral) themrict? tells us whethell uses

® or not. Note that an operataonst? corresponding taf>>.if (strict?f) 10
could be used in place aftrict?. ClearlyAx'.9 is (extensionally) more defined
thanAx*.if x99. Thusstrict? andconst? are not monotone with respect to the
extensional order, in facttrict?(1x*.9) = 1 while strict?(1x.ifx99) = 0. On
the other handgonst?(1x'.9) = ® while const?(1x*.ifx99) = 1.

Definition 2.3 (StPCF-Terms and StPCF-Programs)
A basisB is a partial function from Var to types &t PCF with a finite domain of
definition. If B is a basis then[R : o] denotes the basis such that

o if y=x,

Blx : ol(y) = _
B(y) otherwise.

Moreover, the basis B such that d@) = {x, ..., xp} (n € N) and Bx) = o, for
1<i<ncanbedenoted by : o4, ....., X, : 0y Without repetition of variables.

A wordM of StPCF is a (well-typedYermwhen it is the subject of gping judg-
ment (often simplytyping) of the shape B- M : o which is the conclusion of a
derivation built by the rules of Figure 1. programis a closed well-typed term.

As usual, we writeB + M : o when the typing is a conclusion of a derivation built
using the rules of Figure 1, while we writ@ ¥ M : o when such derivation does
not exist. If the basis of a typing is empty then we simply @¥itM : o

Definition 2.4 (B”-Contexts)

Leto be a type and-] be a new symbol, called the-hole. IfP is a StPCF-word
then de], D[], ... will be used in the following as metavariables, ranging over
words produced by the following grammar:

Cl] = P [ [7] | (ax".C[]) | (C[]D[])



P[Q/xX]My.. M e 7o P(Y,P)My.. M Ue R

~ (heag —
Mole® Myl Mollek+1 M led
- — (0if) - = (1if)
if Mo My M» Uen if Mo M1 M, Uen
Mlen+1 M e fi
Ue— (pred) . —— (succ) it U it (num
predM |l 1 succlM Jen+1 e
~— (Ogor) ~— (1gor) ~— (2gor)
gorPoP1 P> [ 0 gorPoP1 Py (e 1 gorPoP1 Py e 2

Figure 2. Operational Evaluation, Part |

If B + M : o for some basis B, then[@] denotes the word obtained by replacing
all occurrences of holes in[€] by M. A word (-] is called B'-contexf if there is
a basis Bsuch that B+ C[M] : « whenever B- M : o holds.

It is useful to name some terms. In particu@y, will denote the term defined by
inductiono as follows:

Q, =Y,(1x".x), Qe = AXH Q..
By usingQ,, it is possible to define terni& (k € N) in the following way:

Yg = Qroo)oo > Y'C‘:l = /lx"""’.x(Y'c‘r X).

3 Structured Operational Semantics

The operational evaluation &t PCF will be given in an &ective way, by a struc-
tured operational semantics [45,46].

Definition 3.1 Let |} be theevaluation relatiorassociating a program M to a nu-
meralii whenever a judgment of the shape

Mefh

can be proved by rules of the formal system defined in Figut@sad 3.
If there is a numerafh such thaM |Je fi then we writé1 |, otherwise we writ® fle.

4 Figure 2 is sfiicient for the evaluation oSt#CF-programs without occurrences of
strict?. The operational behavior etrict?M is a little more complex than the other op-
erators. A constructive operational description $arict? is given by rules in Figure 3.



- (Aum) — (A7X)
strict? (Ax‘'.0) e 1 strict? (1x".x) e O

strict? P[Q/x]M;...My) Je Rt strict? (1x".P[Q/z]M;...Mp) e B
(*head
strict?((A1x”.P)QM;... M) Je i . strict? (1x‘.(1z7.P)QM;...My,) e At

strict? P(Y,P)M;..Mp) Je strict? (1x".P(Y,P)M;...Mp) Je i
(?Y) (a7Y)
...... T
M[O/x] Jem+ 1 strict? (1x'M) i : (2suce)
- - (1%pred) : ! g
strict? (Ax'.pred M) | fi __: strict?succ [e 0
strict? (1x".(M0)) Je fi : strict? (Ax".M) Je fi
12?) : - — (47succ)
strict? (1x'.strict?M) | i : strict? (Ax‘.succM) |e i
1VIOJJeé My Jefd Moﬂem
: : — (20if) — (?1if)
strict? if MoMy) e 1 strict? if MoMy) e O
Mo[0/x] Je ® strict? (1x‘M) le fig strict? (Ax'.Mi) e iy
(120i£)
strict? (/lXL.if Mo M, Mz) JeNgor n, ®
Mo[0/x] ek +1 strict? (1x'Mo) Jefip  strict? (1x'.Mp) le fip
(1?71if)

strict? (/lXL.if Mo M, Mz) JeNgor n, ®

Pole® Pilck+1 Polek+1
= (?0gor) ~ (?2g0r)
strict? (gor PoP;) Je 1 strict? (gor PoP;) Je ©
Po[@/x] e @\/ strict? (/1XL.P0) le Tig
P1[0/x] Jek + 1 strict? (1x'.P;) e Ny
(1?0gor)
strict? (Ax'.gor Py P, Py) e figor iy @)
Py[0/x] Je® strict? (1x'.P1) e iy
Po[0/x] Jek + 1 strict? (1x'.P,) | Nip
(1?1gor)
strict? (Ax'.gor Po P, Py) e fiy or fip @)
Po0/x] Je® strict? (1x“.P,) | fip
Po[0/x] Jek + 1 strict? (Ax‘.Pg) e Nig
(1?2g0r)
strict? (Ax'.gor Po P, Py) e figor i @)

+ Note that pred® fle, hence strict?pred fle (Without further rules).
1 Note thatfigor fi; is an abbreviation for the numerdtsuch thati f fig  fi; Je k.

Figure 3. Operational Evaluation, Part Il




The relation|e implements aall-by-nameparameter passing policy, since the ar-
guments of abstractions are substituted without beinguaetadl. It does not imple-
ment alazy (or weak evaluation strategy, since reductions ungl@bstractions are
taken into account (for example in th&Zhead rule).

Since terms are only of interest as they are part of programas;an regard terms
with the same type as operationally equivalent if they cafrdmdy substituted for
each other in a program withouffacting the behavior of the program itself.

Definition 3.2 (Operational Equivalence) Suppose B M: o, B+ N : 0.

() M 5, Nwhenever ] |e fi for some numerai implies that N] | fi, for all
B7-contexts @r] such that FYC[!]) = FV(C|[N]) = 0.
(i) M=~, NifandonlyifM 5, NandN 5, M.

It is easy to check that, is a congruence relation, i.e. an equivalence relation
closed under contexts. Sometimesis called observational or contextual equiva-
lence.

Theorem 3.3 and Theorem 3.4 formalize our intuition on therafponal behaviour
of strict? and of the termg,, andYX defined at the end of the Section 2. They will
be useful in order to decrease the complexity of the proofeshina 7.3.

Theorem 3.3 Let- M : (> ¢

(i) strict?M | 0 if and only if M® e and MQ, fle.
(i) strict?M . 1 if and only if MO | and MQ, |e.

Proof. The proof follows by Lemmas 4.1, 4.2 and 4.3 (Section 4). ]

Theorem 3.4 LetM,, ..., My, be a sequence of terms @r0).

(i) If Q,Mo...My, is a program them,Mo...Mp, fe.
(i) LetY,Mo... M, be a program.
Y, Mo.. M e i if and only if Y<Mo.. My, e 7i, for some ke N.

Proof. (i) The proof can be done by induction am
(i) Both implications can be proved by induction on derigas proving the hy-

pothesis. O

3.1 Some Remarks

In the literaturePCF is often presented with booleans and some operator on them.
Only integers have been used here, since tfierdinces between the two formaliza-
tions are irrelevant for our purposes. Thus, without losgeferality, some notions



formalized by Jim and Mey& will be adapted to this setting in a natural way, in
order to explicitly relate this paper to their one.

An extension ofPCF is conservativ®) when it contains all programs 6fCF and
moreover, ifi1 is one of such programs then the outcomes of the evaluatidnrof
bothCF and its extension coincide (either diverging or converginghe same
numerati). StPCF is clearly conservative!
Stable models will be introduced in Section 5. A stable mixjeleorder-adequaté
for an extension ofP"CF whenever a tern is “less or equal (in the model)” of a
termN thenM is “operationally (contextually) less or equal” Bf
In [37] a family of small-step operational rules for cons#ive extensions aPCF
is studied, as a kind of “rewriting system” [47]. Jim and Meyemark that almost
all the reduction rules considered in literature for extens of PCF (as in case
of the join operator [20], the parallel-or and the existahtiperators [15,17]) are
instances of an abstract shape of ruldin®ar grounds-rule® is a rewrite rule of
the shape

omg..my, — P

whereé is a constant of the languageg,is either a numeral or a variabkg andP

is a term whereny, ..., m, can occur. The variables must be pairwise distinct, hence
linear grounds-rules are “driven” by the simple observation of some nurisera

If sis a substitution then the tersfémg...my) can be reduced tg(P) by the corre-
spondingd-rule.

Example 3.5 () Let por be ad-constant with type »» ¢ > «. Its operational
behaviour may be formalized with the following linear grduarules:

por 8x — 0 por x® — 0 porn+im+1 — 1

Clearlypor corresponds to a parallel-or operator.

A PCF-like rewrite systef® is a language’ together with a se® of linear ground
s-rules on the constants f. The crucial statemefit of Jim and Meyer is:

“every stable model (interpreted in standard way) that &épter-adequate for a
conservative extensiafi of PCF obtained by & CF-like rewrite system is not
fully abstract forL".

Actually, the proof of the previous statement is developgddasoning on the true-
separator function (corresponding to a boolean versiosteict?) which is not
extensionally-monotone. They show tifaCF-like rewrite systems can only de-
scribe extensionally-monotone operators. Hence, theglade that aPCF-like
rewrite system cannot describe the operational behaviblanguages analogous
to StPCF.

5> [37] Definitions 2.4, 2.8 (page 667), Definition 4.1 (page 6 Theorem 5.5 (page 676).
6 Other examples can be found in [37], in particular the reswniles for (a full version of)
PCF are presented in Figure 2 (page 678).
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It is an easy exercise to give an operational descriptioh@8tPCF by a small-
step operational rules less restrictive than the lineaugdooperational rules. A
careful treatment of contextual closures for the reductides must be given.

In the literature, many extensions $CF in which strict? can be defined have
been proposed; in particul&PCF [8], PCF extended with the Longleysoperator
[11] (denoted a*CF+H in the follows) anduPCF [42,21]. All these languages
are related to the study of concrete data structures [5s#@jngly stable functions
[6] and sequentially realizable functionals [11]. It is piide to write a program

simulatingstrict? in the languag&#CF by using thecatch operator. First of

all, a variant ofcatch is presented informally. Without loss of generality, assum

Blx1:t, .., Xk ] FM 1t

B+ catchx;..x,inM: ¢

be the typing rule okatch and note that F\{atchx;...x, in M) = FV(M) -
{x;...Xx}, i.e. catch is a binder. The evaluation afatchx;...x, in M asks the
evaluation of4, if the computation ol asks the evaluation of the variabtgthen
the computation otatchx;..x, in M terminates, returning'/?Jl. Otherwise, if
the computation off terminates on a numerélwithout using any of the;, then
catchx;..xx in M returnsn + k.

Note that the evaluation afatchx‘ in (if xQ Q) returns®, while the evalu-
ation of catchx’ in Q diverges. Butstrict?(1x".if xQ Q) diverges and it is
easy to understand thattch cannot be defined bytrict?. On the other hand,
if (if (M®)(catchx in Mx)(catchx in Mx))01 is a term with the same behaviour
of strict?(M).

Moreover,StPCF can be studied from a true functional programming point of
view. In this perspective to compaserict? with the Longley’si operator [11] ap-
pears to be interesting. Reasonably the “computationdf cbsstrict? is lower
than that ofi (see [49]), butstrict? is again sflicient in order to express many
meaningful applications that cannot be expressef@¥. Longley noted that in
PCF+H interesting applications like thmodulus[43] can be programmed, as an
example a similar application will be implemented here.

Let F be a term of type(>— ¢) > ¢ andg a term of type »» ¢ such thatg .
Informally, in the course of the evaluation Bf, the termF can learn informations
aboutg by applying it to various arguments. When the computatioRgofinishes
(i.e. aresult is returnedy, has learnt finite informations abogt Such finite infor-
mation can be expressed by a teghtorresponding to the minimumestriction of

g such thafg’ |e.

If Fg e thenTy = AFC->tg>if strict?(ly*.F(1z.if y g(z) Q)) 1 6 re-
turns® in caseF is constant and returnsotherwise. Let: be defined as in Page
25. If Fg Je thenT, = AFC-0tgo2xt strict?(ly . F(1z.g(i f (x = z)(ifyzQ,)z)))
returnsi when either is constant or the behaviour gfon x is not observed from
F, otherwisé) is returned. Thus

AFC=P=gigt i £ (ToF g) Q, (if (T1Fgx) g(x) ()

11



is an implementation of the restriction 8t PCF. Note that the restriction respect
the stable order (not the extensional one), in the sens# et a constant function
then its restriction ig itself. Clearly the above term is not equivalent t8@F one.

4 Technical characterizations ofstrict?

The following three lemmas give some technical characéons of the opera-
tional behaviour obtrict?. They are useful in order to prove Theorem 3.3.

Lemma4.11f z::+M:¢ and M[8/z] Je i then strict?(1z*M) J. k where
k € {8, 1}; moreover, if M[Q,/z] Je i thenk =1 and & = A.

Proof. The proof is given by induction on the derivation proviti@/z] | fi.

P Mp..Mp)[0 fi
e |f the derivation ends with(( [&/xDMy 0/2] bt (heag

((Ax7.P)QM;...M,)[0/2] Je 1t
thenstrict?(1z'.P[Q/x]M;... M) Ue k wherek € {0, 1}, by induction.
Thusstrict?(1z*.((1x”.P)QM;...My)) Ue k, by rule @?head.

If ((Ax7.P)QM;...M)[€2/2z] Je §i’ then the last applied rule must blee@d, so
((P[Q/x])M;..My)[Q /2] Ue @’ to0. Hencek = 1 andii’ = f by induction.

e If (Y) is the last applied rule then the proof is similar to thatie# previous case,
where rules {?Y) and {) are used in place ofithead and head.

Mo[0/z 0 M[0/z n
e If the derivation ends with ol9/2] Ue 119/2] e ©if) then by induction

(if MoM1M,)[8/2] Ue
StriCt?(/lZL.Mo) Je Ro and strict?(/lz‘.Ml) e lN{l Wheref{o, lN{l € {@, i}
Thusstrict?(1z-.if MyM; M) e k wherek € {0, 1} by rule 2?0i f).
If (if MoM; Mo)[Q2,/2] e @ then the last applied rule must be eithei£0Q or
(1if), soMo[€,/z] Ue. HenceMo[Q,/z] e 8 andko = 1 by induction.
Thus the last applied rule must bei@) andM;[Q,/z] . fi’. Thereforei’ = i
andk; = 1 by induction. Butif 101 e I impliesk = 1.
e If (1if) isthe last applied rule then the proof is similar to the preg case.
M[0/z] Jen+1

o predM[0/z] Je i )
wherek € {0, 1}, by induction; sestrict?(1z'.pred M) | k by rule (1?pred).
If predM[Q,/z] U i’ thenM[Q,/z] e 0 + 1, since the last applied rule must be
(pred). The proof follows by induction.

e If (succ) is the last applied rule then the proof is similar to thathe# previous
case, by rule{?succ).

e Let (num) be the last applied rule; sindd0/z] is a numeral then eithet = z
or M = fa, for some numeralfi. In the first casez[0/z] Je andz[Q,/z] 1., but
strict?(1z'.z) e 0 by rule (1?x). In the other casi[0/z] | i andm[Q,/z] | 1,
but strict?(1z".f) | 1 by rule @2num).

o If the derivation ends with (ored) then strict?(1z*.M) Y. k
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If (Ogor), (1gor) or (2gor) is the last applied rule then the proof is similar to
that of (Gif), where ?0gor), (1?1gor) and @?2gor) are used respectively in
place of Q?0if).

If (2?num) is the last applied rule then two are three ca¥es: strict? (1x'.z)
andM = strict? (1x".1i). The proofs are:

~ (A7um - — (A2um
strict? (1z°.z) | 0 strict? (1z.0) Je 1
= = (1%head p” = (1%head
strict? (1z*.(1x".z)0) J. 0O strict? (1z*.(1x".x)0) J. 1
— (172) — (17?)
strict? (1z‘.strict?(1x".z)) e ® strict? (1z*.strict?(1x".x)) Je 1

If (1?) is the last applied rule then the proof is similar to the pres one.
. _ (strict? (P[Q/x])M1.. Mm))[0/2] Je i (M= 0)

If the derivation ends with - (*head

(strict?((Ax”.P)QM;...M))[0/z] e it

thenstrict?(1z'.strict? ®P[Q/x]M;...My)) Ue k wherek e (8, 1}, by induction.

But the last rule of the derivation provisgrict?(1z'.strict? P[Q/x]M;...My)) Je

k must be £?7?), thereforetrict?(1z-.P[Q/x]M1... Mn0) U k.

Thus strict?(1z*.(1x” . P)QM;...Mn0) Ue k by rule (1?head and, by rule £?7?),

strict?(1z'.strict?((1x”.P)QM1... Mm)) Ue k.

If (strict?((1x”.P)QM;...Mn))[Q/z] e D’ then the last applied rule must be

(?head, so (strict?(P[Q/x])M1...Mn))[/z] e @i’ too. Sok = 1 and#’ = #

by induction.

- ') L = ~
If the derivation ends witrgsumt' (. (PLO/y DM Hm))(O/2] flen (m=0) (%heag
(strict? (x.(1y” .P)Qly.. M)[8/2] e i

thenstrict?(1z'.strict? (1x".(P[Q/y])M1...My)) Ue k Wherek € {9, 1}, by induc-
tion. The last applied rule provingtrict?(1z'.strict? (1x".(P[Q/y])M1...Mm)) le
k must be £??), sostrict?(1z".(Ax".(P[Q/y])M1..M)0) Ue k where the last ap-
plied rule must be{?head, thusstrict?(1z*.((P[Q/y])M1..M)[8/x]) Ue k. Now
strict?(1z".((1y”.P)QM1.. Mn)[8/x]) Ue k andstrict?(1z.(1x".(1y”.P)QM;...M)0) Ue k,
by rule @?head. So strict?(1z'.strictA1x".(1y".P)QM;..My)) e k by rule
(1??). Moreover, ifstrict?(Ax‘.(1y”.P)QM;.. M)[€2./z] e fi’ then the last ap-
plied rule must be A?head, so strict?(1x".(P[Q/y])M;...Mm)[2./2z] e R’ tOO.
Hencek = 1 andii’ = i by induction.
Cases (?) and (1?7Y) are respectively similar to f2ad and @?head.
If the derivation ends withM[@/x’ 8/z] ben +1 (StriCt?N(/lxt'M))[é/Z] Je 1 (17pred)
(strict? (Ax‘.predM))[0/z] | ii
then strict? (1z*.strict? (1x*.M)) le k wherek e {8, i}, by induction. But the
last rule of the derivation must ba??), sostrict? (1z.(Ax".M)8) Je k, where
the last rule of the derivation must b#?head, sostrict? (1z-.M[0/x]) Je k. But
by hypothesigi[8/x,8/z] Je n+ 1, sostrict? (1z-.predM[/x]) le k by rule
(A?pred). Thusstrict? (1z'.(1x".pred M)8) | k by rule (@?head. The proof
follows by rule @?7?).
If (strict? (1x‘.pred M))[Q,/z] Je i’ then the proof is immediate by induction.
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e Let (succ) be the last applied rule. Clearttrict?succ [Q,/z] e, SO

= ~ (Aum)
strict? (1z.0) Je 1

— (A?succ)

strict? (1z".succ 0) Y 1

strict? (1z'.strict?succ) le 1 “
e If (1?succ)isthe last applied rule then the proof is easier than thetifepred ).
o _ (strict? (1x.(M 6)))[6/z] U fi
e If the derivation ends with - (12?)
(strict? (Ax‘.strict?M))[0/z] . i

then strict? (1z*.strict? (1x*.(M0))) e k wherek e {6, 1}, by induction. But
the last rule of the derivation must b&?), hencatrict? (1z*.(Ax'.(M §))8) e k
where the last rule must bahead, thusstrict? (1z*.(M0)[0/x]) Ue k. Then
strict? (A1z'.strict?([0/x])) Ue k by rule 1??), sostrict? (1z*.(Ax".strict?M)0) U
k by rule @?head. Sostrict? (1z*.strict?(1x‘.strict™M)) | k by rule (1??).
If (strict? (Ax‘.strict?M))[Q,/z] J. i’ then the last applied rule must b&?(?),
therefore ftrict? (1x*.(M0)))[Q./z] Ue &’ too. Hencek = 1 and#’ = i by
induction, so the proof is immediate.

e If (?0if) is the last applied rule then the proof is easier than tha#ti f ).

. . Mo[8/2] Uem+1
o If the derivation ends with . 1) then
(strict? Lf MoMp))[0/z] e 1

strict?(1z'.Mo) e k wherek € {8, 1}, by induction.

_ — () — () : ——— (um
Mo[0/z] Jem+ 1 strict?(1z'.Mp) Je k strict?(1z'.0) e 1

strict?(1z.if MyM0) Je kor 1
- = (17?)
strict?(1z’.strict? if MpM;)) Je kor 1

If (strict?(if MoM1))[Q,/x] e &’ then the last applied rule must be {Z]), so
the proof follows by induction.
e If the derivation ends with

Mo[0/x,0/z] e ® (strict? (1x'.Mo))[0/z] Je fig (strict? (1x'.M;))[0/z] Je fis
(strict? (Ax‘.if MoM; Mz))[@/z] lJe ipor 1y

(1?1if)

(120i£)

thenstrict?(1z'.strict? (1x“.My)) le ko andstrict?(1z'.strict? (1x'.M1)) Je k1
whereko, k; € {8, 1}, by induction. In both those derivations the last applidd ru
must be 4??), sostrict?(1z'.(1x".Mo)8) Ue ko andstrict?(1z'.(1x*.M1)8) Je k1
and yet gtrict?(1z'.My))[0/x] e ko and etrict?(1z-.M;))[0/x] e ki by rule
(A?head. Sostrict? (1z-.(if MyM; Mo)[0/x]) Ue koor ki by rule @?0if) and,
moreoverstrict? (1z.(Ax".if MoM; M,)0) e koor ki by rule @?head.
Thereforestrict? (1z*.strict?(1x".if MoM; My)) e kgor ki by rule (12?).
If strict?((Ax".if MoM; Mp)[Q,/z] e @i’ then the proof follows by induction.

o If (1?1if) is the last applied rule then the proof is similar to that 5@ £ ).

e Cases (?for) and (?3or) are respectively similar to cases {F) and (?1if).
If (1?0gor), (1?1gor) or (1?2gor) is the last applied rule then the proof is simi-

14



lar to the caseA?0if). O

Lemma 4.2 If M8 is a program and1d | i thenstrict?M | k wherek < {8, 1};
moreover, ifMQ, | #’ thenk = 1 and &’ = A.

Proof. The proof is given by induction on the derivation provingy /e fi.
Note that no rule of Figure 3 can conclude the derivat®rie fi.

e If the last applied rule isilead then there are two cases.
- If the derivation ends with PLO/x]My. M e nﬂ (m=1) (head
(Ax7 P)QM1.. M0 e i
thenstrict?P[Q/x]M;...Mn) Ue k wherek € {0, 1}, by induction.
Thusstrict?((1x”.P)QM;...Mn) Ue k by rule (head.
If (1x7.P)QM;...MnQ2, Je iV’ then the proof follows by induction.

P[O/x] Lt
- Incase ———— (heag then the proof follows by Lemma 4.1.

(Ax7.P)d | & )

e Let(Y) bethe lastappliedrule. It easy to see that a wQicannot be a program,
for each typer. Thus the proof is similar to that of the first subcase of raka@.

e If the derivation ends with (Df ) then the proof is easy by rule (9). Since
if MoM; Q, |e the proof is done. If the derivation ends withil) then the proof
is easy by rule (?if ). Note thati £ MoM; Q, Tle.

e If (succ) is the last applied rule then the proof is trivial, by rulegec ). Note
that succ Q, fe. The last applied rule cannot bered ), sincepred ® fl.. Also
the casesnunm) and (Igor) are not possible.

e If (Ogor) or (2gor) is the last applied rule then the proof follows respecjis/

rule (?QGor), (?2gor). O

Lemma 4.3 If strict?M | k thenk € {8, 1} and there is a numeral such that
MO | fi; moreover, ifk = 1 thenMQ, | fi.

Proof. The proof is given by induction on the derivation provisigrict?M | k.

The proof is trivial if the derivation is one of the following

— (?succ) : - — (A7um : — (A7)
strict?succ | ® strict? (1x‘.0) e 1 strict? (1x'.x) (. 0

e If the derivation ends with strict? P1Q/x]t - Mn) U k (nl 29) (heag
strict?((1x.P)QM;..Mpy) Je k
thenk e {0, 1} andP[Q/x]M;..Mn® e @i by induction, o {x”.P)QM;.. M0 e @i
by rule (ead. If k = 1 thenP[Q/x]M;.. MnQ, le i by induction, so the proof is
trivial by rule (head.
e If (?Y) is the last applied rule then the proof is similar to thatef previous case.

o _ strict? (1x".P[Q/z]M;..M k
e If the derivation ends with ( 10/z]M1. M) B ~ (Aheag
strict? (1x‘.(1z7.P)QM;...My) Je k
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thenk e {8, 1} and @x".P[Q/z]M;..M)® | 1 by induction, for somei. But
the last applied rule in the derivation provingx(.P[Q/z]M;...My)® | fi must be
(head, thus €[Q/z]M;...Mn)[0/x] U fi. Therefore, both @z .P)QM1...M)[0/x] Ue
and @x.(1z7.P)QM;...Mm)® Je by rule head.
If k = 1 then Qx".P[Q/z]M:..Mn)Q, e i by induction, but the last applied rule
must be fead, having as premiseE[Q/z])M;...Mm)[€2,/x] (e ©i. The proof fol-
lows by applying the ruleread twice.
If (17Y) is the last applied rule then the proof is similar to thattfhead.

o o M[0/x] Jem+1 strict? (1x"M) Jc k
If the derivation ends with _ (pred) then

strict? (Ax‘.predM) J. k

k € {0, 1} and @x*.M)® . i by induction. The last rule applied in the derivation
proving (1x*. M) | fi must be kead, thusM[8/x] | fi and clearlym + 1 = .
The proof follows by rulesgred) and fead.
If k = 1then @x".M)Q, Je @i by induction, but the last applied rule must be&d,
having as premis#[Q,/x] |le ©i. The proof follows by Lemma 4.1, reasoning as
before.
If (1?succ) is the last applied rule then the proof is similar to that ase

(1?pred). )
M 0 M i
If the derivation ends with o Le b — 0if) then the proof is
strict? if MpMy) e 1
easy, since bothfMoM;0 |, i andifMM:Q, e fi by hypothesis and by rule
(0if).
If (?1if) is the last used rule then the proof is easy, sii¢g 6 by rule (um).
Thusif MM;.0 | 6 by hypothesis and by rule {¥). Note thati £ M;M>Q, fle.
If the derivation ends with

Mo[0/x] Je ® strict? Ux'Mo) Je ko strict? (Ax'M;) e ke
strict? (/lxllf Mo M, Mz) e Ro or lN{l

(120i£)

then (x.Mp)® e fig, (1x*.M1)0 e Ry andko, k; € {8, 1} by induction.
Sinceif ko® k; Ue koor ki, it is easy to see thdtyor k; € {8,1}). But
the last rule applied in the derivation provingx(.M1)® e fi; must be fead,
having as premis#;[0/x] e fi;. Note thatMg[0/x] Je ® by hypothesis; thus
(if MoMiMy)[0/x] Ue fiy by rule (Gif), so Qx“.if MgM; M) | 1y by rule
(head.
Moreover, ifif kq® k; [ 1 thenky = k; = 1; thus, both {x*.Mo)Q, |. fip and
(Ax*M1)Q, e fiz. HenceMy[Q,/x] | fi; by rule head. SinceMy[0/x] J. 0 by
hypothesisMo[Q,/x] le ® by Lemma 4.1. Soi(f MyM; M,)[Q,/x] Je fi1 by rule
(0if), thus @x".if MoM; Mp)Q, e fi; by rule head.
If (1?1i£) is the last applied rule then the proof is similar to that 8@ £ ).

_ . strict? (1x'.M0) e i .
If the last applied rule is @22 then @x*.M0)0 |

strict? (Ax‘.strict?M) [ i

ands € {0, 1} by induction. Thug1[0/x]® |. by rule fead, so by Lemma 4.1
strict?M[0/x] e k wherek € {6, 1}; hence {x'.strict?M)d | by rule head.
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If k = 1then @x*.M8)Q, | by induction, but the last applied rule must be&d,
having has premis#{Q,/x] 8 |e fi. The proof follows by Lemma 4.1, reasoning
as before.

e If (?0gor) or (?Zyor) is the last applied rule then the proof is similar to that of
case (?0f). If (1?0gor), (1?1gor) or (1?2gor) is the last applied rule then the

proof is similar to that of caselP0if ). O

5 Coherence Spaces

Coherence spaces are a simple framework for Berry’s staloletibns [4,33], de-
veloped by Girard [50]; in this Section their basic definmisoand properties are
stated. Proof details can be found in [36].

First, some basic definitions are givenXis a finite set thefjX|| is the number of
elements o. A partial orderor posetis a pair O, C) whereD is a set and is an
order relation, often noted simply & An element oD is bottomand denoted.
if and only if L C d for eachd € D. A partial orderD is flat when, for allx,y € D,
if XC zthenx = 1 or x = y. A nonempty subseX of D is directedif ¥x, X' € X
dx” € X such thax C x” andx’ C x”, namely for each pair of elements Xfthere
is an upper bound iX. A cpois a poseD with bottom. € D such thatifX € D
is directed then there 19X € D which is the least upper bound &f Let A, B be
cpos; a functionf : A — B is monotonaf and only if Yx, X' € A if X Cpa X then
f(x) Cg f(X).

Definition 5.1 A coherence space is a pair(|X|, Cx) where|X] is a set called the
web, its elements are callebkensand C is calledcoherence relatioan X.

Cx is a binary reflexive and symmetric relation between tok&hs.set otliques
of X isCI(X) = {x C |X|] / Ya,b € x ax b}; moreoverCl;i,(X) denotes the set
of finite cliques ofCI(X).

The strict incoherence-x is the complementary relation afy; the incoherence
= IS the union of relations—x and=; the strict coherence~y is the complemen-
tary relation of<y.

If X is a coherence space th€h(X) is a poset with respect to the relatign

Lemma 5.2 Let X be a coherence space.

(i) 0 e CI(X).

(i) {a} € CI(X), for each ac |X|.
(i) Ify € x and xe CI(X) then ye CI(X).
(iv) If D c CI(X) is directed theruD € CI(X).

Hence, cliques of a coherence space with set-inclusion &cpo.
Let x, X' be setsx Ctin X means thak C x’ andxis finite.
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Definition 5.3 Let X and Y be coherence spaces and €l(X) — CI(Y) be a
monotone function.

- fis continuousvhenevei’x € CI(X) Vb € f(X) Ixg Ctin X such that ke f(x).
- f is stablewheneveix € CI(X) Yb € f(X) AXy Ctin X such that be f(x;) and
VX C X, ifbe f(X)then  C X.

Continuity asks for the existence of a finite amount of inputfhich some amount
of output is produced, while stability asks for a minimum ténamount input for
which some amount of output is produced. Equivalent fortnute of continuity

and stability are formalized in the following Lemmas.

Lemmab5.4 (i) Let X and Y be coherence spaces anddi(X) — CI(Y) be a
monotone function. Then f is continuous if and only(ifD) = U{f(X)/x €
D}, for each Dc CI(X) directed.

(i) Let X and Y be coherence spaces andGl(X) — CI(Y) be a continuous
function. Then f is stable if and only¥ix, X' € CI(X), xU X' € CI(X) implies
f(xNx) = f(x)n f(X).

Stable functions can be represented as cliques.

Definition 5.5 Let X and Y be coherence spaces.
Thetracetr(f) of the stable function f CI(X) — CI(Y) is the set of pairgxy, b) €
Cltin(X) x Y] such that be f(Xp) andVx C Xo, b € f(X) implies x= Xp.

Stable functions can be represented as cliques of a coleespace.

Definition 5.6 Let X and Y be coherence spaces.

X = Y is the coherence space having= Y| = Cl,(X) x |Y| as web, while
if (Xo,b0), (X1, b1) € [X = Y], then(X,by) Tx=y (X1,by) under the following
conditions:

() X U xg € CI(X) implies lh v by;
(i) X U X, € CI(X) and kpy = by imply x% = X;.

The bridge between stable functions and cliques follows.
Lemmab5.7 If f : CI(X) — CI(Y) is a stable function thetn(f) € CI(X = Y).

Let X, Y be coherence spaces and CI(X = Y) andx € CI(X). Let us define
F(t) : CI(X) — CI(Y) be the function such that

FO)(X) =1{belY|/Ax € CI(X) (X,b) et A X C X
Lemmab5.8 If t € CI(X = Y) thenF (t) : CI(X) — CI(Y) is a stable function.

Coherence spaces and stable functions form a cartesisedatasegory which is a
full subcategory of the categories of qualitative domaing dl-domains endowed
with stable functions. All these categories contain olgetd morphisms in the
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range of the standard interpretation ®CF, so without ambiguity they will be
called stable models.

6 Interpretation

An interpretation ofPCF is standardwhen ground types are interpreted on flat par-
tial orders. Plotkin in [15] has shown how it is possible ttenpret thePCF syntax

on Scott’s domains [51] by a set-theoretical standard pm&tation. Although the
same constraints can be formalized in a cleaner categatigal, for sake of sim-
plicity, a set-theoretical interpretation is providedie the proofs are developed
by reasoning on cliques. Types will be mapped to coherenaeespand terms to
cliques.

Definition 6.1 Let N denote the space of natural numbers, nanf@ly, Zy) such
that|N| = N and mCy nif and only if m=n, for allmn € |N|.
ThusCI(N) = {0} U { {n} | n € [N| } is the following poset

0
Note thatCI(N) endowed with the set theoretical inclusion forms a flatipborder.
Emphatic brackets will be used as notation in order to foizeddoth the correspon-
dence between types and coherence spaces and the correspebetween terms
and cliques, in particulgl] = N and[o — 7] = [[c] = [7]. If o is the type of
aStPCF program therr = 71 > ... — Ty > t, for somem > O; if o] Is the

corresponding coherence space, in what follows for sakengblity its tokens
will be wrote as &i; ...; Xm; b) wherex; € Clsin([7i]), foralli <m, andb € |N|.

Lemma6.2 Let E= X; = ... = X, = N be a coherence space (m1l) and let
(X1} -5 Xms Dy), (Y15 -..; Yms by) be distinct tokens gE|.
(X1} s X By) —~€ (Y15 -..; Ym; by) if @and only if 3k < m such that xuU yi ¢ CI(X).

Proof. Both directions are proved by induction an

(&) If m= 1thenx, Uy, ¢ CI(Xy), by hypotheses. Thus the proof is immedi-
ate, by coherence conditions.ff > 2 then there are two cases.Xf U y; ¢
Cl(Xx) then again the proof is immediate. Otherwige y; € CI(X;) implies
(X2} o Xms D) # (V25 ... Ym; by), sincedk < msuch thatx U yx ¢ CI(X) by hy-
pothesis. SOXy; ...; Xm; bx) —~e (Y2; ...; Ym; by) by induction, and the proof follows
by coherence conditions.

(=) Letm=1and &, b,) —~e (y1,by). There are two cases, sinC&N) is flat.

The casd, = by impliesx; # yi, since &, by) # (y1, by) by hypothesis; therefore
X1 Uyy ¢ CI(Xy), by Definition 5.6.(ii). In the second cagg — by, therefore
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X1 Uy ¢ CI(X;) by Definition 5.6.(i).

Let (X; ...; Xm DY) —~& (Ya; ... Ymi By). If X U ys ¢ CI(X;) then the proof is trivial.

If x,Uy; € CI(Xy) then o; ...; Xm; by) e (Y2 -.-; Ym: By) by coherence conditions,

thus there are two cases.

- (X5 oy Xmy 0y) = (Y25 ... Ymy by) would imply x; = y; by coherence conditions,
and thereforeXy; ...; Xm; by) = (Y1, ...; Ym; by) against the hypothesis.

- The caseXy; ...; Xm by) —~e (Y2; ...; Ym; by) follows by induction. m|

The corollary below follows immediately.

Corollary 6.3 Let E= X; = ... = X, = N be a coherence space @0).
If (X5 ...; X D), (V15 ...; Ym: by) € |E| then
(X1, ... Xm, By) <g (Y1, ...Ym, by) if and only ifVk < m x Uy, € CI(X,).

In order to give an interpretation to&t PCF-termM we need to know its typing,
therefore the interpretation will implicitly interpretpyngs rather than terms.

Let B be a basisEnvg will denote the set of functions such that, ifB(x) = o
thenp(x) is a clique of[o]. Moreover, ifp € Envg, B(x) = o andx € [o] then
p[x/x] € Envg is theenvironmensuch that, itk = y thenp[x/x](y) = X, otherwise
o[x/x](y) = p(y). The interpretation mapping is presented in Figure 4.$8ewte
that, sometimes some parts of a formula will be underlineatder to make it more
readable (as in the interpretationsafrict? in Figure 4).

The interpretation of . is well defined (see [3] for instance) affd'(x) € F™(X).
LetE = X; = ... = Xq,,1 be a coherence spaaa & 0) and lett € CI(E).
F.(t) : CI(X1) — ... — CI(Xq1) is the function such thatx; € CI(X),

Fe()Xg..o. Xm = {b € [Xmea| | A(Y1; ...¥m; B) € t such thatyi <m, y; C x}.

Lemma 6.4 LetM,...M,, be aterm where iz 1.
Thus[[Mo...Mm]]p = 7—'*([[M0]]p)[[M1]]p...[[Mm]]p.

Proof. The proof is easy, by induction on. ]
Clearly 7. extends theF used in Theorem 5.8.

Lemma 6.5 The interpretation oétrict?is actually a clique.

Proof. Let ({(Xo, bo)}, Co), ({(X1, b1)}, €1) € [strict?].
We will prove that ((Xo, bo)},Co) Snony-n (X1, b1)}, C1). Always X U X1 €
Cl+in(N), thus the proof is immediate by Corollary 6.3 and Lemma 6.2. O

Theorem 6.6 and Theorem 6.7 formalize our intuition on theod&tional meaning
of the termsy* (defined at the end of the Section 2) andsafict?. They will be
useful in order to decrease the complexity of the proof of bemv.3.

Theorem 6.6 Let B+ M : t andp € Envg.
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LetB+ M: o be a typing ofStPCF and letpo € Envg.
The interpretation oft with respect tg is denotedM], ) and it is a clique of
[o] obtained by induction oM in the following way:

o [x], = p(x)

e Leto = u - 7 for some typeg, 7, thus

be [[P]]p[xo/x] and
[Ax*.P], = < (%o, b) € CI([ul) x [[71] o
Yy C Xo b€ [Pl impliesy = X

i [[PQ]]/) = T([P]]/))[[Q]]p
e Leto = (7> 1) »> randx € CI([r > 7]), thus
if n=0
F(X)(F"Yx)  otherwise
o [if] ={({0}; {n}; 0;n)IneN}U{({m};0;{n};n)[neNandm=0}.

[Y-1(9) = |_neo F(x) whereF"(x) =

e [fi] = {n}, for eachn € N.

e [gor] ={( {O){n+l;  0;0) |neN}
U{( & {0+l 1) [neN}
U{(in+1; 0, {0; 2) [neN}

o [strict?] = { ({((0L,n)}; 0) | ne INIJU{ ({@.n)}; 1) | ne NI}

+ It would be clear that the interpretation of closed termsa@sstants is invariant with
respect to environments, thus in such cases the environm@gning the interpretatior
mapping can be omitted.

Figure 4. Interpretation a$tPCF

{0} if Mlpgoyx # 0 and Mo =0,
F ([strict?]) [Ax" M, =4 (1} if [Mlym # 0 (hence[Ml, o # 0),

0 otherwise.

Theorem 6.7 (i) [Y™](x) = F"(x), for all n € N and typeo-.
(i) [Y,1(%) = Uncol Y 1(x), for all n € N and typeo-.

The notion of denotational equivalence [16,15] can be fdized. LetB + M : o
andB + N : 0. We writeM ~,. N if and only if [M]|, = [N],, for eacho € Envg.
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If M ~, NimpliesM ~, N then the stable models aterrectfor StPCF. If ¥ ~, N
impliesM ~, N then the stable models atempletdor StPCF. The stable models
are fully-abstractfor StPCF if and only if it is both correct and complete for
StPCF.

Lemma 6.8 Let B+ M: o and B+ N : randp,p’ € Envg.

(i) If p(x) € p'(x), for all FV(M), then[M], < [M], .
(i) Ifx:7eBthen[M[N/x]1, = [Mlx1,/x-
(i) If 7 = o, M, = [N], and J¢] is a B-context such that HZ[M]) =
FV(CIN) = 0 then[C[M]] = [C[N]1.

It is easy to check that ([Ax” M],)(X) = [Mlxyx; Wherex e [o].
The interpretation is sound in the sense of the next Lemma.

Lemma 6.9 LetM be a program. IM | fi then[M] = [f].

Proof. The proof is done by induction on the derivation provihge .

o If the last applied rule ishead, (Y), (0if), (1if), (pred), (succ) or (num
then the proof is standard.
¢ If the last applied rule is either {@r), (1gor) or (2gor) then the proof is easy,

by interpretation ofjor. - )
e If the derivation ends with ~ CLO/x]th. Mn) b1 (me 1) (heag then
strict?((A1x”.P)QM;...Mp) Je i
by induction[[strict?®[Q/x]M;..Mm)] = [fi]. Since[[(1x”.P)Ql, = [P[Q/x]],.
by Lemma 6.8.(ii) and the interpretation, the proof followsLemma 6.8.(iii).
e If the last applied rule isAZhead, (?Y) or (1?Y) then the proof is similar to that

of the rule (‘head.

Mole® M lek
e If the derivation ends with o be s — 20i£) then[Mo] = {0} and

strict? (if MoMy) Je 1
[M1] = {k} by induction. Hencgfif MoM;] = F.([if I)[Moll,[M:] = {(0,K)} and
the proof follows by interpretation aftrict?.
o If (?1if) is the last applied rule then the proof is similar to that2i(f ).
e Ifthe last applied rule isA?0i £ ) or (1?pred) then the proof is similar to that of
(A?1if).
e Letp be an environment. If the derivation ends with

Mo[0/%] e n+1 strict? (Ax‘Mp) Je ip  strict? (Ax'.Mp) |e fip

(?1if)
strict? (/lxtlf Mo M, Mz) Je Ngor n,
then[[strict? (Ax".if MoM; Mp)]l, = F ([strict?[)[Ax".if MM Mo, = Z
Letk = figor fi,, i.e. if fiy® Ay e k; thus there are three cases.
- If k = 1 then, bothstrict? (1x*.My) e 1 andstrict? (1x*.My,) |, 1; therefore
[strict? (Ax‘.Mo)]l, = [strict? (1x'.M,)], = {1} by induction.
So [Mollpfo/ # @ # [Mallj0/x, By Theorem 6.6. But by inductiofMo[8/x]1, =
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{n+ 1}, thus both[Moll,[10)/5 = (N + 1} and[[Moll, [0/x) = {N + 1} toO.
Therefore[if Mo M1 Mzl (0,5 # O and the proof follows by Theorem 6.6.

- If fg = 0 thenstrict? (/lXL.Mo) Je @, SO [[Mo]]p[(/)/x] = @ while [[Mo]]p[{o}/x] = 0.
Thus[[if MoM; Ma]l,q0/5 = 0. By induction[Mo[8/x]1, = {n+1}, SO[Moll 05 =
{n + 1}. On the other handtrict? (1x'.Mp) | fip implies [Ma]l 05 # @ SO
[if MoMi M2l p0)5 # 0. The proof follows by Theorem 6.6.

- If i, = 0 andfip = 1 thenstrict? (1x'.Mz) le 0, SO [Mall,0 = @ While
M2llop0/5 # O. Moreover[[Mo[K)/x]]]p = {n+ 1} implies [Moll,j0/xy = 0. Thus
[if MoMiMollo/x) = 0. Since[[if MoM; Mallop05 # O the proof follows by
Theorem 6.6.

e The casesA?succ), (?succ), (A7nun) or (1?X) are easy.
o _ strict? (1x".M0) e i
¢ If the derivation ends with 1?7 , remark that
strict? (1x‘.strict?M) | ii

[MO] # 0 if and only if [strict?M] # 0. By Theorem 6.6, the proof is easy.

o Ifthe last applied rule is (%br), (?Zor), (1?70gor), (1?1gor) or (1?2gor) then
the proof is similar to one of the previous cases.

O

7 Correctness

The operational behaviour may be related to the denotdtrondel in a weaker
sense than correctness. The denotational semantics isosh&ladequatewhen
[M] = [#]] andM |, 1i are logically equivalent for any prograM) numeralt.

The proof of adequacy is based on a computability argumerFditrstyle and it was
used in [15] for Scott-continuous domains.

Definition 7.1 The predicate Com(B, M, o) holds whenever B M : o and one of
the following cases is satisfied:

(i) B=0ando =ifandonly if [M], = [1], impliesM |, fi, for eachii;
(i) B=0ando = u > vifand only if Comd, N, i) implies Com0, MN, 7);
(i) B={xo: vo, ..., Xy} fOor some n> 1, if and only if Comfi, No, vo) for all i < n
implies Com[, M[No/Xo, ..., Nn/Xn], 0).

Note thatComg0, M, o »— 1) andComg0, N, o) imply Comp®, MN, 7).

Property 7.2 Comg{xo : vo, ..... ,Xn - vnh M, 71— .. — Ty = ¢) if and only if,
for all N; and P such that Com(@®, Ni, v;) and Com @, P;, ;) (where i< n, j <m)
[[M[NO/XO, ceey Nn/Xn]Pl...Pm]]p = [[ﬁ]]/) ImplIeSM[NO/XO, Ty Nn/Xn]Pl...Pm U,e ﬁ.

The previous property will often be used implicitly in thexaiéemma.
Lemma7.31fB+M: o then CompB,NM, o).

Proof. The proof is given by induction on the derivation provigg M : o.

23



e Supposer = 11 > .. > T > t(Mme N)andB[x : o] + x : o and
Comy0,P, o). If Comg0, N;, 7;) (1 <i <m) and[[x[P/x]N;..Nnl, = [fi], then
PN;...Np, Je i SinceComg0, P, o), thusComgB, x, o), by Property 7.2.

e If B+ 1:(then the proofis trivial.

e SupposB+ if 1> > > candCom0,Ni,¢) (1<i < 3).

If [1£NiNN3]l, = [£i]l, then eithed[N]l, = [8], or [Ni]l, = [m + 11, by inter-
pretation ofif. In the first case, clearl§N], = [fi],, for somef. Thus, both
N; Je ® andN, | fi by hypothese€omp0, N1,:) andCom0, Ny, ), and the
proof follows by applying the evaluation rules. The secoaskcis similar.

e The case8 + succ : >, B+ pred : ¢ >> ( are easier than the previous one.

e We will show thatComgB, P, u > 7) andComgB, Q, 1) imply ComgB, PQ, 7).
LetB=x1:vy, ..., Xn: Vh (h € N) andComF((Z), Ni, Vi) (1 <i< h)

Lettr =11 > ... > 7yt (Me N)andComg0, R, ;) (1 <i <m).
ThusComg0, P[Ny/x, ..., Nn/Xp], u > 7) andComp0, Q[N1 /x4, ..., Nn/xn], 1) by
hypotheses, sGom@0, P[N1 /X1, ..., Nn/xXn]Q[N1/X1, ..., Nn/Xp]R1...Rn, ).

The proof follows by Definition 7.1.

e We showthaComgB[x : ], P, 1) impliesComgB, Ax.P, u » 7). Without loss
of generality letB = x; : vy, ..., Xp : vy (h € N) andComg0, Ni, vi) (L <i < h).
Lettr =11 > ... > 1y >t (Me N)andComg0, R, ;) (1 <i <m).

Let Comi0, Q, ) and [(1x”.P)[N1/X1, ..., Nn/Xp]QR1...Rn]l, = [fi],, for somefi;
therefore[[(/lx“.P)[Nl/xl, ooy Nh/xh]QRl---Rn]]p = [[P[Q/X, Ny/Xq, ..., Nh/xh]Rl---Rn]]p
by Lemmas 6.8.

ButComgBlx : ], P, 7) impliesComg0, P[Q/x, N1/x, ..., Nn/xp]R1...Rn, ¢), hence
it follows thatP[Q/x, N1/X4, ..., Nn/xXp]R1...Ry Je 7t by Definition 7.1. The proof
follows by rule head.

e SupposeB + gor : ¢ »> ¢ ¢ > candCompd, Ni, o) (L <i < 3).

Let [gor N1 N, N3], = [fi],. There are 3 cases lyor interpretation. Iffi = 3,
[N:], = [61, and[N,], = [k + 1], thenN; | & andN, | k + 1 by hypotheses;
thus the proof follows by rule @r). The remaining cases are similar.

e SupposeB + strict? : ( > ¢) > candCom0, N, ¢ »> ¢).

We will show that, if[strict?N], = [fi], thenstrict?N | fi. It is easy to

check that, bottCom0, Q,,) andComg0, 8, ¢), so bothComg0, NQ,, ) and

Com0, N®, ) by hypothesis. By interpretation etrict? there are two cases.

- If & = 0 then[[NQ,], = 0 and [NO], = [#@],. HenceN® |, f; moreover
strict?N | k wherek € {0, 1} by Lemma 4.2. Ik # 1 thenMQ, |, i by
Lemma 4.3, thug§NQ, ], = [i], # 0 by Lemma 6.9 against our hypothesis.

- If /i # 8 then[[NQ,], = [NO], = [f]l,. HenceNQ, | i andN® | f; thus the
proof follows by Lemma 4.2.

o LetB+ Y, : (00> o) > ocwhereoc =11 > ... > 7 > ¢ (me N).

The casen = 0 is trivial (), so letm > 1. Without loss of generality assume
B=0,Comf0,Q, o — o) andComg0,R;, 7)) (L <i < m).

We will prove that, if[Y,QR;1...R,]l, = [il, thenY,QR;...R, e fi. Note that there
existsk € N such that[[Yi(,QRl...Rn]]p = [Y,QR;1...Rnll, by Theorem 6.7. Thus

" Note thatQ, andYX are defined using only,.
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YXQR;...R, Je fi by the previous points of this Lemma. The proof follows by The
orem 3.4. O

Corollary 7.4 The stable models are adequate &itPCF.

Proof. Lemma 7.3 (together with Definition 7.1) and Lemma 6.9 impigt{{M] =
[#i] if and only if M |J. fi, for any progran¥, numeral. O

Theorem 7.5 The stable models are correct f{StPCF.

Proof. LetB + M : o andB + N : o such that[M], = [[N],, for each environment
p € Envg. If C[.] is a B”-context such that bot@[M] and C[N] are programs and
C[M] . i for some valudi, then[C[M]] = [#i]] by Lemma 6.9.

Since[[C[N]] = [C[M]] = [i] by Lemma 6.8, it follows thaC[N] |e fi by ade-
guacy. By definition of operational equivalence the proafase. O

8 Definability and Full Abstraction

The proof of full abstraction is done like the one CF and Scott’'s domains [15].
If %o is a finite clique (in a coherence space interpretation ofpa ¢y) then there
exists a closed term of StPCF such that- M : o and[[M]] = Xo. It follows that
coherence spaces (and stable models) are fully abstraStfoCF.

Definition 8.1 Let x be a finite clique of a coherence space in the range of the
interpretation ofSt PCF-types. The class of closed terms having x as interpoatati
is denoted by x§ , hencel x§ = {M | [M] = X}.

(&, ..., &} IS used as an abbreviation fpfay, ..., a}§ and{x§ = M is used as an
abbreviation forM € [ x§.

If B+Pi:(, B+rY :¢wherei < 2then gif Py P, P, Mg M; M, is used as an
abbreviation for the ternif (gor PoP; P,) My (if (pred (gor PoP1 Py)) My M, )

[Moll, if [Poll, = {0}, [P1], = {n+ 1},
M, if [P11, = {0}, [P2], = {n+ 1},
M1, if [P2l, = {0}, [Poll, = {n+ 1},
0 otherwise.

Clearly [gif Pg Py Py Mg M; My ]]p =

An explicit operational description @fif is given in [52]. IfM andN are programs
thenM = N is an abbreviation for the application of the following teto! andN:

YLHLHL(AF"—”’_"X‘y‘.if x (ify01) (if y I (F(predx)(pred y)))).
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0 [M] = m= [[N],
It is easy to check thafM = N =< 1 [M] = m# n=[N],
0 otherwise.

LetNoor Ni be an abbreviation for the terirf Ny (if N; 0 0) N; (being equivalent

to if Ng® Ny, under the hypothesis that bath |J. andN; |e). Let Noand N; be

an abbreviation for the termf No(if N; 8 1) (if N; 11). Let not N be an abbre-
viation for the termi f No 1 0. It is easy to check that the operational behaviour of
and , or andnot isthe expected one. Note thaitd , or andnot are strict
operators, in the sense that if one of their parameters giagethen their evalua-
tion diverges. Last, lét-succ M be an abbreviation fos(icc .....(succ M)...) where

k €e N andM is a term (possibly open) having type k

In order to help the reader, we will try to give an informal édef the problems
raised by definability proof by presenting some examples.

Example 8.2

a) Consider({3},4) € |[« »> (]I; clearly { ({3}, 4)§ = Ax“.if (x = 3)4Q..

b) Consider({({3},4)},5) € [[(c = ¢) = (]Il
At a first sight, the term = Af*>tif (£3 = 4)5Q, is a natural candidate
for {({({3},4)},5)§ but unfortunately this impression is wrong. In faf¥] =
{({({3},4)},5), ({(0, 4)},5)}. It is easy to check that

f3=4 and

((({3},4)}.5)§ = af7.if [ 5Q,.

strict?(1z'.£(3-succ z))

c) Consider({({({3},4)},5)},6) € [[((t ™ ¢) » ) = (]Il
ThusM = AFC0~0 i f (F(Ax'if (x = 3)3Q,) = 5)6Q, does not define the given

token, in facqM]l = {({({({3}, 4)}, 5)}, 6). ({(0, 5)}, 6)}.
It is easy to check that

(F(Ax'if (x = 3)4Q,) = §) and

L{({({3), 4)).5)). 6) = AFC0 i f [ s

strict?(/lz‘.F (Axt.if (x = 3)(4-succ z)QL))
d) Leta= ({({({({3},4)}.5)}. 6)1. 7) € II(((t > ¢) »> 1) > ) > dII.
Note that the terrt = AF(@0—~0~t i £ (F(Afi £ ((£3) = 4)5Q,) = 6)7Q, does

not define the given token, in fact

[0 = {({{E 3} 4)1 5)1 6)), 7). (@, 4)}, 5)1 6)), 7). ({(0, 6)}, 7))

LetN = AF(=0~0- 1 £(F{({({3),4)}. 5)§ = 6)7€, where(({({3},4)}, 5) is de-
fined inb). Again,N does not define the considered token. In fact, it is easy to
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check thai[M]] = {({({({({3}, 4)}, 5)}. 6), 7). ({(0, 6)}, 7)}. Finally,

3},4)},5)§) = 6) and
la§ = AF( o0 f (e 20031 49.515) = &) an 79,

strict?(/lx‘.F (Af~if ((£3) = 4)(5-succ z)QL))

€) Leta= ({({10}, 11)}; {({(3},4)}. 5). (3}, 8)}, 9} 6) € [[(t > 1) > (L > 1) »> ) > ]Il

B (00—

Note that the term
M= /lf”‘”F(‘HL)"”.if(ff@ =11 and (F {({3},4)}5) =5 and (F{{({3},8)}) = Q)GQL
does not define the given token a, in fact

(11203, 12)5; ((1(£3), 4)), 5). (1(43), 8)), 9)); 6)
(0.2 ((1(3),4)), 5). (1(43). 8)), 9)}; 6)

It is easy to check that

Ml =

f10 = 11 and strict?(1z'.£(10-succ z)) |
185 = A£FE i £ 6Q..

(FU({31,4)5) = 5 and  (FY{({3}.8))5) =9

The following property is the crucial point enabling us t@ye the definability. It
is a formalization of the technique (illustrated by someld previous examples)
which allows us to check, syntactically, the “minimalityVi¢h respect to the stable
order [4]) of an input.

Property 8.3 Let+ M : o » ¢ and xe Clgjy[o]. If X = {ay, ...., &y} for some n> 1,

X = {(0, ag), .., (0, &-1), ({0}, &), (0, &:1), -, (0, an)} € [t > o] for allk < nand
b € N then the following conditions are equivalent:

() be F(MI) x and¥y C x, be F([MI)y implies x=;

(i) b e FMI(F x*5){0}) while F([MI)(F ((x5)0) = 0, for all k < n;
(i) be [M{x§] and,¥k < n, [strict?(1z- M x*5z))] = {O}.

Proof. Easy, by using Theorem 6.6. ]

A last example may help the reader to understand a furthdslgmoarising from
definability.

3},30), ({4}, 41)}, 101 0,90)}, 109
Example 8.4 Lete= ({(i3), 30) (4, 41, 101) ({(0, 90§, 109) € Cl(I( = 1) = d1).
({({3}, 31), ({5}, 50)}, 102), ({({4}, 40), ({5}, 51)}, 103)

Let x01 = {({3}, 30), ({4}, 41)}, X102 = {({3}, 31), ({5}, S0}, X103 = {({4}, 40), ({5}, 51)},
X100 = {(0, 90)} and, note that they are pairwise incoherent. We will try tGriethe
clique e in a compositional way, by using cliques defined ¢n &i

Thus it is easy to check that:
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£3 =30
Z(X“’l’ O)S =Afif | and | 0 (1f(£Q =99) 1) (4)
(X100, 1) L
f4 =41
(X101, 1) f3 =31
(X102,0) | = Af7.gif|if (£3 = 30) (if (f4 = 41)0Q,)(if | and iQ)
(X103, 0) 5 =50
f4 = 41
if (£F4 = 40) A£ (£5 = 51)0Q)(if | and [IQ)
£3 =30
f5 =51
if (£5 = 50) £ (£3 =31)0Q,)(if | and [IQ)
f4 = 40
i
0
0
(X109, 0)
(Xa02, 1) | = A4 (£5 = 9O)(if (£Q, = 90) § Q)
(X10s, 1) £5 =51
iF(£5 = SO)(Af (£3 = 3DIQ)(Ef| and |1IQ)
fd = 49
+ It would be clear that, in case3 = 39 andf4 = 41 there is no need for checking thie
minimality, since it must b £Q,] = @ by monotonicity and correctness.

Figure 5. Examples of Clique Definitions

(X101, 1) (X109, 0)
ot (X101, 0)
ZeS = Af glf [Z (X 1)8 f] (X102, 0) f (X102, 1) f
o (X103, 0) (X103, 1)
f5 =51

101 |if (£5 = 50)(if(£3=31)102Q)(if | and |103Q)| 109
fi = 49
Clearly, one can find simpler terms defining e.

A non standard measure on types will be useful in the prodi®@tiemma 8.5. The
rANK Of a type is defined inductively as follows:
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- rRaNK(1) =0
- RANK(0™ > 7) = 1 + RANK(0) + RANK(T).

Itis easy to check thakank(u; > ..... = pm = ) = m+ YL, RaNK (1)

Lemma 8.5 (Definability)
Ifo=1y> ..... — 1 »— ¢ for some k> 0 and ue Cli,([o]]) then u is definable.

Proof. The proof is given by induction on the pairrank(c), ||ul| ) ordered in a
lexicographic way.

¢ If rank(o) = O then[o] = N and(r = «. ThusQ, and numerals define all
possible finite cliques, sinc@l i, (N) = {0} U {{n} / n € N]}.

¢ If rank(0) = 1theno] =N = Nando =¢»> .

- If |Jull = O thenu = 0 is defined byQ,, ...

- Let|lull = 1 andu = {(y°, d°)} such that® € Cl,(N) andd® € N.
If y° = 0 then{u§ = 1z.{d°. If yO # 0 then|y°|| = 1, i.e. it contains a numeral
sinceCI(N) is a flat cpo. Ify° = {n} then the program defining the clique has the
following shapeiz'.if (z = i) ZdOSQ

- Let]jul| > 1 and ¢°, d°) € uwherey® € Cl;,(N) andd® € N
Clearlyy® # 0 by Lemma 6.2. Iir = u—{(y°, d°)} andyO n} then the program
defining the clique has the following shape'.(z = an) Zdoj ({u'§z) where
{u'§ is well defined by induction, sindgr|| < [ul].

¢ Supposeank(o) > 2andk = 1; soo = 11 > candry = pg > ... — Um L,
for somem e N. Clearly rRank(0) = 1+ rank(r1) = 1+ m+ 371, RaNK().

- If Jlull = O thenu = 0 is defined byQ,,,,,.
- Supposéiul| = 1 andu = {(y°, d°)} wherey® € [[u1 > ..... ™ pm = (]

At this crucial point the proof proceeds by induction|pf| too.

o IfY=0 thenZuS = AF™.1d°S.

e Supposgl = (&’ ..... ,a% (n > 0) wherea = (X;;...; %, b) andx| € [yl
(i<nl<jc< m) Ify’ y° — (&% thenu’ = {(y’,d%)} is a clique deflnable by
induction, whilew® = {({(x3; ...; X3, b9}, 0)} is a clique definable by induction
on therank. Clearlya® = (xJ; ...; X8, b°). (&)

8 The term = AF i f ((F 15...005) = (%5 and {WOS(FLES)) (LU SF) ©, does not de-
fineu (see Examples 8.2/djd/e).
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If 3¢ = {c2, .... % } andk < h, then et = (0,€0). . (10}, D). .. 0, Chy)} SO

(F 085..045) = (%5 and

strict?(1x'F (X §x) D35 088)

(U§ = AF73if | and .. and ((U3F) Q.

Strct?(xF (X §x) D85, 105)
and {U§(F{x}5)

Now an informal justification of the previous reasoning igagi. Essentially® =
{a%,.....,a" is a set of constraints . If & = (x; ...; X,;; b) then we must check
thatF {X5...0x,5) = {b'§) in a minimal way with respect to the stable order,
thus ; ...; Xi.; b') € [F]. A descriptive analysis of the three arguments 6fin
the term{ u§ defined before can be done as follows.

1. The first argument verifies that the constraihts satisfied. More explicitly,
it verifies both(f {x75...0>¢,) =* (b°§ and the stable minimality of?, while the
further stable minimal constraints are verified inductjiMey the term{ u°s.

2. The second argument inductively checks the constréis..., a"} and, in
the dfirmative case, gives ouf as the result.

The third argument “loops forever”, therefofgu§] = u.

Supposédiul| > 2 andu = {(y°,d°), ....., (y*, dP)} for somep > 1. If i, j < pand

i # j theny Uyl ¢ CI(U), by Lemma 6.2; thug' # 0 for eachj < p.

Lety = {a09, ..., abm)} for somen; > 0 andal) = (X”; ...; x{&”; bD) where
XV € [ugl, b9 e N, forall 1<q<m, i <njandj < p.

There area®) ¢ Y anda®™) e y! for someky < Ny, k1 < ny, s.t.a®k) _ gtk
From a®@ = (%) x{H0 ol gltk) = (b (L) ptk)y and by
Corollary 6.3, it follows that; = X9 U xX* € CI([]) forall 1 <i <m.

The cliquesz for all 1 < i < m, and the following cliques (well-defined by

Lemma 6.2) are definable by induction on thek,
vi={(y.d) eu/a% ey}
v2 = {(y,d) eu/at ey
Vs =U— (Vi UW) = {(Y,d) € u/a®) ¢y andal*) ¢ y}
wo = {(y,0) / (v, d) e va) U{(Y, 1) / (Y, d) € w1}
ws = {(y,0) / (v, d) e v} U{(Y, 1) / (. d) € v3)

Note thaty® ¢ vy, y* ¢ v, andvs can be empty. Clearlg(®<) # a*x) implies that
bOk) 2 pk) or 3g, XM £ X (1 < g < m). In both cases

Lu§ = AF7.gif T ((waSF) ({waSF) (LvaSF) (VaSF) (Lv25F)
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whereT is the open term defined as follows.

(i) If b@k) £ pLk) thenw, = {(b@), §), (bk), 1)} is definable, by induction on
RANK. Let T be the open terr(@w*S(F Zzls...szS)).

(i) Otherwiseb®¥) = bk and there ig) such than™* = X (1 < q < m).
Without loss of generality, there is a tokefie X such thatd ¢ x{. If

such a token does not exist, it isfBoient to exchangef, d°) and §*, db).

Hencesz' = {(8},c)} U {(0,0) / ¢ € zgandc # ¢} is a clique definable by

induction, sdr is the open term

(F 1225.02mf) = 6O and strict?(1x'.F{z5...02 15 (zzfﬁ sx) 1Zgs150-120m5).

Informally, if the set of constraintg = {a(9, ....., alk)} is satisfied by then{u§
must returnd’. The constraina©® = (x> x4 10k)) means that we must
check tha(k {X.§...{x,5) =* {b'S) and fulfils some minimal conditions. The cliques
yl are pairwise incoherent by the Lemma 6.2, in fact given antioply one integer
d! can be the result ofu§. Without loss of generality, we can assume tyfat*
contain respectively the incoherent tokefs®) anda*) having the shapa®) =
&R X pely andak) = (M) xR bk, Sincex®*) and XM
are pairwise coherent by Corollary 6.3, the cliques: X9 U X" e CI([u1)
are more defined thaxf®* andx™. Hence(F {z$...1z.S) is defined, whenever
either @ DXHY5..1X96) is defined o {x"5...0xG")5) is defined. In case
b0k 2 k) the evaluation o(Z(b(O’ko),G)), (b®k) 1) (F 2213---22m3)) allows to
discriminate between the constrainfsy*. In caseb©k) = pLk) without loss of
generality there is a token ief € x;*® which is not used by & satisfying the
constrainty’. The evaluation of defined in {i) allows to discriminate between the
constraints/®, y*, in this latter case. Inductively, the cliques, ws give to thegif
operator sthicient information in order to choose the proper conditiemanches
(between the three rightmost branch) on which to forwardetveduation. Each of
those branches verifies its respective stable minimal cainss.

L 2

Supposeaank(o) > 2 andk > 2, thuso = 71 > ..... — Ty ™ L.

If u=0then{u§=Q,.
Supposes = {(y1; ...; Y; d)} wherey; € [7;] (1 < j <K). Thus

{uf = /lzzl...z;k.if(Z(yl, 0)§z;and ....and (k. O)Szk) (d§ Q,

since §;,0) € [rj — (] (1 < j <K)is definable by induction orank.
Supposau = {ey, ..., &) wheren > 1, & = (y;;...;¥;d) and yil[rj] (i < n,
1 < j < k). There existd such thatyﬁ Uy: ¢ Cl([rn]l) by Lemma 6.2 and, in
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particular, there exist® € y? anda® € y! such thag©® —, a®. Therefore

U = {(Yy; - Y d) €u/a® ey € CI(Yy)}

Uz = {(Yy; i Y d) € U/ @V e yi, € CI(Yy)}

Ug = U— (U Ulp) = {(Y}; ;¥ d) eu/a® a® ¢ yi )

wy = {({a9), 8)} L {(fa), 1))

Wo = {(Y1; - Y 8) / (Vs .or; Ymi B) € U} U {(Y1i ooes Yoms 1) / (Y - Y D) € U}
Wa = {(Y1; .-; Y, 0) / AY1; ... Ymi ) € U2} U {(Yas -ors Yons 1) / I(Vs s Vs b) € s}

are cligues by Lemma 6.2, and they are definable by indudtlence,

(U§ = Azh..zfgif ((Wi§zn) ((W25z1...2m) ({Ws§z1...2m)
((uiSzy...zm) ((usSz1...zm) ({U2521...2m).

O

Note that at first order types (of the shape— ... — 7, > ¢ wherer, = « for all
k), all finite elements are definable frogor alone (no need fostrict?).

The definability implies the completeness as shown in thé thexorem.
Theorem 8.6 The stable models are complete &1PCF.

Proof. Itis easy to see that, ¥, N are two open terms @t PCF such that +», N
and FV#) U FV(N) C {x4,...,xn} thenAx;...xp.M #, AX;...x,.N for somer. Thus
without loss of generality only closed terms will be consete LetM, N be two
closed terms oStPCF such that M : o-andr N : o, whileM «, N.

Leto = 11 > ... — Ty >— ¢ for somem > 0 and without loss of generality
assume that there &= (x4, ...; Xm; b) wherex; € [[7;] for all j, such that e [M]
buta ¢ [N]. There are closed ternjx;§ having x; as interpretation for alj by
Lemma 8.5. Hence by interpretatidM{ X, §.....{xm§1 = [{b§] while, on the other
hand, [N{X§......xn51 = 0 # [{bS], for someb € N. ThereforeM # N, since
by Corollary 7.4, bott] X3 §.....{Xn$ Ue {b§ andN{xy§.....{%xn§ Te, @and the proof is
done. O

Corollary 8.7 The stable models are fully abstract {8stPCF.
Proof. By Theorems 7.5 and 8.6. O

Therefore~, and=, are the same relation on programsStfPCF.

32



9 Conclusions, Open Questions and Future Works

First of all, note that the operatgpr is Scott-continuous, already definable in the
languagePCF+por (called bothPCF* andPCFP in literature). Without loss of
generality, lepor be the operator of Example 3.5, page 10néft is the operator
defined on page 26 anghnd xy = not (por (not x)(noty)) (i.e. the parallel-
and) then it is easy to check thadr x y z can be defined as

if (pand x(noty))® (if (pand y(not z)) 1 (if (pand z(not x)) 2 Q,)).

But strict? is not Scott-continuous, since it is not monotone with eespo the
extensional order. Hencstrict? cannot be defined '®RCF+gor which contains
only Scott-continuous functions (which are closed undengposition).

On the other handtrict? is strongly stable, whilgor is not. Hencegor cannot

be defined ifPCF+strict? that contains only strongly stable functions. The same
conclusion can be obtained in a syntactical way. It is easyiie an operational
semantic taPCF+gor through aPCF-like rewrite system. The results of [37]
assure that no non-estensionally-monotone operatorwamlisuch language.
Thereforegor andstrict? are independent.

It is well-known that Scott-domains contain elements tleahdt correspond to ef-
fective operators; this question is tackled in [53,54] ameroome via the notion of
effectively given domains. An element of a Scott-domainamputablavhenever
it is the least upper bound of a recursively enumerable stnioé elements of the
considered domains. In order to define all computable el¢ésradrScott-domains a
further operator has been addedRGF+por [15,55]. For the sake of simplicity,
an existential operatat of type ¢ > ¢) > ¢ will be considered here. L&V be a
“well-typed” term, and lef?, denote a divergent term of typeln an informal way,
the evaluation oHM is (by using the notation introduced in page 5)

- if eval(Mii) = ® for some numeralé then eval(3M) = 0,
- if eval(MQ,) =m+ 1 for some numeralgé then eval(@M) = 1,
- undefined otherwise.

A model isuniversalfor a language when every computable element (in the in-
terpretation of a type) is definable by a closed term of thguage [22]. Scott-
domains form a universal model (via the standard interpmtafor the language
PCF+por +3 (also calledPCF**). Similar results can be found in [56,22,57] for
modifications of the languageCF.

Notions of computable elements of stable models have béairced in [58,59]. |
find it plausible that stable models (via the standard imetgtion) give a universal
model of St PCF, and | am working on a proof of this conjecture.

The question concerning the relationship (full abstracéind universality) between
StPCF (or a variation of it) with the bidomains of Berry [4] is stiipen.
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Further questions arise in the study of tiigher-type computabilitj28,11].

Note that the operatatrict? (with the informal meaning given in page 5) cannot
be added in anféective way toPCF" (as essentially proved in [11]). In fact, it is
evident that ifM is a program then

0 if M7

strict?(Ax'.por (if MO 0) x) =
1 if My

whereT and| denote respectively “divergence” and “convergence” ofdialua-
tion. A simple transformation of the previous code-fragtheamely

Ay'.strict?(Ax‘.por (if y 0 0) x),

is a “halting program” which decides when the evaluationtefargument con-
verges. Thereforetrict? andpor cannot live together in the sam#&extive pro-
gramming language. Sincy*.strict?( Ax‘. 3(1z.if z x (if y00))) is another
“halting program”, the operatatrict? cannot also be added (in affiextive way)

to PCF+3. As suggested by a referee, it is conceptually interesbrexplore the
guestion of how much parallelism can coexist wittrict?. It is plausible that
gor represents the maximunffective degree of parallelism that can coexist with
strict? (in StPCF).

John Longle{? noted that there are seemingly natural incomparable netadn
higher-type computability. In contrast with the Churcligsis, there is no a maxi-
mum “higher-type computational formal system”. Infornya®CF"* andPCF+H
form different “higher-type computational formalisms” such thatréhdoes not ex-
ist a more generous “higher-type computational formalesystthat subsumes both
of them. The results of this paper give us some further isterg pieces of this jig-
saw puzzle.

A partial type structur® (PTS)7 consists of:

- aset7 7 for each typer and in particulaiT* is the flat poset of natural numbers,
- for eacho, T a total “application function” -“=7 : 777" xXT7 — T .

The partial type structurg is extensiona® (EPTS) if, for all typess,  and all
f, g e 7'0'—)'1"
¥Yxe77, f-x=g-x implies f =g.

Let 7, U be EPTSs. Asimulatiod® s : 7~ — U consists of a total relatiog”
77 x U’ for each typer, such thats is the identity relation on the flat poset of
natural numbers and for arfye 7777, g€ U ", Xxe 77,y € U’ we have

s7(f,g9) and g7(x,y) imply s (f-x.g-y).

If there is a simulatiors: 7~ — U then we write7 < U.

9 [11], Section 11, Page 77.
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It is clear that EPTSs and simulations form a category. lise aasy to see that
the only simulation/~ — 7 is the identity; so the relatios is a partial order
on EPTSs. Ii£ is a programming language thdi{L) denotes the type structure
corresponding to the term-model gfbuilt on its operational equivalence.

Proposition 9.1 (i) T(PCF+gor) £ T(PCF+strict?)
(i) T(PCF+strict?) £ T(PCF+gor)

Proof. Minor modifications of the proof of Proposition 11.8 in [11]. ]

A formalization of the notion o&ffective type structureorresponding to the ex-
pected one is given in Definition 11.2 of [11]. The relatiopshbetween some
effective type structures may be depicted as follows.

T(PCF*™) T(PCF+H)

T(PCF+por) T(StPCF)

/ \

T(PCF+gor) T(PCF+strict?)

\/

T(PCF)

Longley also showed that(PCF*") is a maximal €ective type structure and that
T(PCF+H) is a maximal &ectively sequential type structure. Therefore it is a
natural question ifStPCF is maximal (in some meaningful sense). Clearly this
guestion is related to the previous conjecture that stalddets are universal for
StPCF.

A further marginal question is related to the greatest ldweemd for the type struc-
turesT(PCF**) andT(PCF+H). Longley® noted that Curien’s Third counterex-
ample [9] is an operator definable #CF** andPCF+H but not inPCF, there-
fore T(PCF) is strictly included in the greatest lower bound B{PCF**) and
T(PCF+H) in the poset of EPTSs. This counterexample can also be gamaged
in StPCF. Therefore, itis natural to ask if the above greatest loveerrtal is strictly
included inT(StPCF).
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