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ABSTRACT

In this paper we point out some relevant issues in relation to pri-
vacy when providing holistic recommendations. We emphasize that
a holistic recommender should be fair, explainable and privacy-
preserving to ensure the ethicality of the recommendation process.
Further, we point out relevant research questions that should be
addressed in the future, as well as propose some preliminary sug-
gestions to face the emergent issues with reference to privacy in
the recommendation domain.

CCS CONCEPTS

+ Human-centered computing — HCI theory, concepts and mod-
els; « Security and privacy — Privacy protections.
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1 INTRODUCTION

In recent years, due to an increased use of ubiquitous and wearable
technologies as well as social networks, the everyday-life of the
individuals is now tightly bounded with the digital life: an increas-
ingly large fraction of what we say and do, from taking a picture
to buying a good, from visiting a place to meeting a friend, leaves
a digital trace that tells something about our lives [13]. Unprece-
dented capabilities in collecting user and context data, together
with technical and theoretical advancements in computer science
give novel opportunities for User Modeling: a User Model (UM)
could now exploit information related to many aspects of the user
(from her medical records to her food behavior, from her physiolog-
ical parameters to her psychological states, etc.), creating a sort of
total, holistic representation of an individual [4, 17]. The increased

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UMAP’19 Adjunct, June 9-12, 2019, Larnaca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6711-0/19/06...$15.00
https://doi.org/10.1145/3314183.3323461

Ruggero G. Pensa
Dept. of Computer Science,
University of Turin
Torino, Italy
ruggero.pensa@unito.it

Amon Rapp
Dept. of Computer Science,
University of Turin
Torino, Italy
amon.rapp@gmail.com

complexity of UM would then enable novel forms of personalized
services, which may be delivered anywhere at any time, potentially
impacting every domain of people’ daily life [5]. In particular, new
forms of recommendations might be able to give suggestions on an
aspect in a specific domain starting from data coming from multiple,
and maybe apparently unrelated, contexts. This would enable a sort
of holistic recommendation, that is to say, a recommendation built
on the ground of a holistic representation of the user’s needs, inter-
ests, knowledge, preferences [5]. Such a representation is defined
through the collection of data from diverse data sources and by rea-
soning over them in order to populate the different facets describing
the person. As an example, the interests of the users may be inferred
on the ground of the places she visits, the topics she discusses or the
opinions she expresses on social networks or through the reviews
she writes. The notion of holistic recommendation can be seen
as an evolution ofcontext-aware (recommender) systems [1], which
have a long tradition in creating algorithms considering different
variables about the user in order to provide (possibly just-in-time)
recommendations. For instance, they can mine social networks to
automatically infer context features [18, 21]. Other works focused
on providing real-time dynamic recommendations [23]. Probably
the field where real-time recommendations have been most used is
tourism [2]. Holistic recommendations are based on a “complete”
representation of the user. Such systems could capture every aspect
of the user pertaining to the different spheres of her life, even over
very long periods of time, and handle their changes, according to a
lifelong user modeling vision [12]. In principle, the user could be
allowed to explore her holistic user model, which could further scaf-
fold processes of self-reflection. Moreover, holistic recommenders
could be exploited to make forecasts on the user’s goals, behavior
and preferences on the basis of past and current trends in her data.
For example, we can think of smart adaptive systems able to predict
what would be useful for users, by simulating the future evolution
of their data and setting the right goals to be reached based on
such predictions. Then, they could provide recommendations trig-
gered by the user’s current condition, suggesting which kinds of
actions and changes the user should put in place to meet the set
goals. Finally, holistic recommenders can provide suggestions in
every domain and context of the user’s everyday life, becoming
a sort of pervasive personal advisor. However, even if extremely
accurate, how and when such suggestions are delivered may arise
potential issues, e.g. interrupting the user’s activities, or being out
of context and socially inappropriate (e.g. the user does not want
to have recommendations about the diet to follow, which could be
seen by her friends, when she is out with them). In this perspective,
privacy surely becomes a fundamental concern. How can we de-
fine a holistic user model, provide holistic recommendations and
ensure, at the same time, the privacy issues that may arise from the
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collection of data potentially coming from the whole individual’s
life?

2 PRIVACY ISSUES IN HOLISTIC
RECOMMENDATION

Although holistic recommendation may provide undeniable advan-
tages to end users, they use large amounts of potentially sensi-
tive/private data (e.g., health data, location data, sexual preferences,
and so on). Moreover, models and algorithms trained by using such
behavioural data may leverage discriminating patterns, e.g., gender-
or ethnicity-based decisions that results in recommending two
completely different products to two different persons (e.g., with
different gender or ethnicity), sharing exactly the same behaviour.
In addition, it is important to trace provenance and proof of the
data in the user and context model, in the perspective to make the
models explainable and scrutable by the user [24] and give her the
possibility to know how the data in the models are gathered and
inferred. Consequently, an ethical holistic recommender system al-
gorithm or model must be fair, explainable and privacy-preserving.

Fairness. With the recent advances in artificial intelligence and
machine learning and the resulting concerns for their consequences
on human freedom and rights, in the last decade, many research
groups have addressed fairness issues [9, 11]. The topic, however,
has been only superficially addressed in the recommender systems
community [9], even though this is a crucial aspect of holistic rec-
ommendation, due to the heterogeneity and complexity of data
sources. Consequently, many research questions are still far from
being solved or even discussed, in some cases. First, how wide-
spread is the problem of algorithmic bias in recommender systems?
How to address the complexity of holistic recommender systems in
an efficient way without affecting the accuracy of the recommen-
dations too much? How to detect discrimination in the underlying
algorithms? How to regularize them in order to dismiss potentially
discriminative patterns and decisions?

Explainability. Fairness is strictly related to explainability, i.e.,
the ability of an algorithm to be interpretable and scrutable, a pop-
ular issue in machine learning due to the opacity of recent (and
popular) nonlinear techniques, such as deep learning algorithms
[16]. In holistic recommendation, a way to achieve explainability
consists in enabling the user to visualize her models in order to
add the meaning associated to some contexts, people, memories,
etc. following a scrutability vision [24]. This can provide valuable
source of information otherwise not easily collectible. But how
to make such a complex User Model scrutable? In principle, the
user could be allowed to explore her holistic user model, which
could further scaffold processes of self-reflection. However, it is
not feasible to present all the data to the user, since it could cause
information overload. This problem is strictly related to the granu-
larity of the collected data. For example, not all the data about the
user’s blood pressure should be provided to her. Data to be visual-
ized could change format according to the specific application that
is using them, and/or the user’s features (e.g., goals or expertise),
and/or the specific context. Also the interaction modalities should
be adapted to the user’s features and context. How should the data
be presented? At which level of aggregation? What are the best
representations (graphical, textual, etc.)?

Privacy preservation. The problem of privacy has been ad-
dressed by the data mining and machine learning communities
for twenty years [22], but the recent advances brought by differ-
ential privacy [6] have opened new research opportunities in rec-
ommender systems as well [3, 14]. Holistic recommendation adds
new complex dimensions to the problem of computing privacy-
preserving models: the interplay between lifestyle aspects, pur-
chasing behaviour, contextual properties and so on could reveal
very private habits and preferences. Hence, the most intriguing
research questions concern the definition of leakage or attack mod-
els (and the related countermeasures) leveraging the uniqueness
of the relations between multiple dimensions, and how to improve
user’s awareness about privacy, by enhancing her perception of the
trade-off between the accuracy of the recommendations and the
amount of required disclosure of private sensitive information.

Attitude to privacy. Although fairness and privacy are univer-
sally recognized challenges, users may exhibit different attitudes
towards them, as shown in several studies [15, 19, 25]. Hence, what
is considered private, sensitive by some users, is deemed safe or
public by other people. The same can be applied to discrimination:
subjective discrimination, in particular, can be perceived differently,
according to diverse sensibility degrees. An issue here is how to
gather such preferences: gamification approach can be used for
the scope [8, 20]. Moreover, if, from one hand, holistic recommen-
dation should take into account all the above-mentioned ethical
issues, from another hand, the attitude of the users towards these
issues could be used to adjust recommendation models and patterns.
Learning the attitude towards privacy or discrimination issues is
then crucial, and a holistic recommender system should be able to
automatically adjust its models according to explicit or inferred
user preferences. Explainability could be then used to enable the
user to decide to what extent recommendation should take privacy
and fairness into account. An even more challenging achievement
would make such mechanism dynamic and able to adapt to different
contexts and situations.

Ethical issues. In the light of the characteristics of Holistic-
based recommendations, a lot of ethical issues arise, especially
in relation to health. Considering problem complexity and data
structure as well as security and autonomy aspects, the user em-
powerment and engagement is of paramount importance, fostering
reflection of the recommendations and of integrating the user into
the loop. In a preliminary empirical analysis, [10] show that pre-
senting uncertainty to the user might help the user to reflect the
recommendation and integrate him into the loop. Moreover, it might
increase trust, perceived transparency, system responsibility, and
overall user satisfaction. Moreover, it is crucial to provide accu-
rate recommendation, since wrong recommendation, especially in
health domain, can be dangerous for the user [7].

3 CONCLUSION

In this paper, we tried to surface some relevant themes in relation
with privacy when building holistic user models in order to provide
holistic recommendations. We pointed out research questions that
should be explored in the future, as well as proposed some tentative
suggestions to preliminary address some of the key privacy issues
emerging in the user model domain.
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