Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension

MATTEO BALDONI

Advisor: PROF. ALBERTO MARTELLI
Co-Advisor: DR. LAURA GIORDANO

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
http://www.di.unito.it/
Abstract

In this thesis we work on normal multimodal logics, that are general modal systems with an arbitrary set of normal modal operators, focusing on the class of inclusion modal logics. This class of logics, first introduced by Fariñas del Cerro and Penttonen, includes some well-known non-homogeneous multimodal systems characterized by interaction axioms of the form $[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi$, that we call inclusion axioms.

The thesis is organized in two part. In the first part the class of inclusion modal logics is deeply studied by introducing the the syntax, the possible-worlds semantics, and the axiomatization. Afterwards, we define a proof theory based on an analytic tableau calculus. The main feature of the calculus is that it can deal in a uniform way with any multimodal logics in the considered class. In order to achieve this goal, we use a prefixed tableau calculus á la Fitting, where, however, we explicitly represent accessibility relations between worlds by means of a graph and we use the characterizing axioms of the logic as rewriting rules which create new path among worlds in the counter-model construction. Some (un)decidability results for this class of logic are given. Moreover, the tableau method is extended in order to deal with a wide class of normal multimodal logics that includes the ones characterized by serial, symmetric, and Euclidean accessibility relations.

In the second part, we propose the logic programming language NemoLOG. This language extends the Horn clauses logic allowing free occurrences of universal modal operators in front of goals, in front of clauses, and in front of clause heads. The considered multimodal systems are the ones of the class of inclusion modal logics. The aim of our proposal is not only to extend logic languages in order to perform epistemic reasoning and reasoning about actions but especially to provide tools for software engineering (e.g. modularity and inheritance among classes) retaining a declarative interpretation of the programs. A proof theory is developed for NemoLOG and the soundness and completeness with respect to the model theory are shown by a fixed point construction.
A mio Papà
Contents

Preface xi

Part One: Inclusion Modal Logics 3

I Introduction 3

II Syntax and Semantics 9

II.1 Syntax 9

II.2 Possible-worlds semantics 10

II.3 Axiomatization 11

 Inclusion axiom schemas 11
 Some examples 12
 Inclusion frames and Kripke \mathcal{A}-interpretation 15
 Soundness and completeness 17

III Proof Theory 21

III.1 Preliminary notions 21

III.2 A tableau calculus 23

III.3 Soundness and completeness 28

 Soundness 28
 Completeness 29

IV Decidability 33

IV.1 Grammars, languages and modal logics 33

IV.2 Undecidability results for inclusion modal logics 36

IV.3 A decidability result for inclusion modal logics 39

V First-Order 45

V.1 Syntax 45

V.2 Possible-worlds semantics 46

V.3 A predicate tableau calculus 49
VI Towards a wider class of logics 53
VI.1 Syntax and possible-worlds semantics 53
Syntax 53
Possible-worlds semantics 54
VI.2 Incestual modal logics 55
VI.3 A tableau calculus 59
Soundness and completeness 65

VII Related work 69
VII.1 Prefixed tableau systems 69
VII.2 Translation methods 73

Part Two: Inclusion Modal Logics for Programming 77

VIII Introduction 77

IX A Programming Language 81
IX.1 Syntax 81
Some examples of modal logic programs 83
IX.2 Operational semantics 84
Derivability relation 84
A goal directed proof procedure 86
IX.3 Uniform proofs for NemoLOG 89
A sequent calculus 89
Uniform proofs 91
IX.4 Translating NemoLOG programs into Horn clause logic 96
The translation method 97

X Applications 103
X.1 Beliefs, knowledge, and actions representation 103
X.2 Defining modules 105
Flat collection of modules 106
Composition of modules: exporting information 107
Nested modules 108
Parametric modules 110
X.3 Inheritance and hierarchies 112
Evolving and conservative systems with dynamic or static configuration of modules 115

XI Fixed Point Semantics 119
XI.1 Immediate consequence transformation 119
Interpretations and weak satisfiability 119
T_P operator 120
List of Figures

III.1 Uniform notation for propositional signed modal formulae. 22
III.2 Tableau rules for propositional inclusion modal logics. 23
III.3 ρ-rule as rewriting rule. 25
III.4 ρ-rule as rewriting rule. 27
III.5 A systematic tableau procedure for propositional inclusion modal logics. 31
IV.1 Production grammar form for different classes of languages. 34
IV.2 The Kripke structure generated by proving $\varphi_T(q)$. 36
IV.3 A non-terminating construction of a Kripke \mathcal{A}-interpretation. . . . 43
V.1 Uniform notation for quantified formulae. 49
V.2 Tableau rules for quantified formulae. 50
VI.1 Some well-known axiom schemas included by the incestual axioms. . . 56
VI.2 a, b, c, d-incestual property. 57
VI.3 Tableau rules for propositional incestual modal logics. 60
VI.4 Some Kripke \mathcal{G}-interpretation constructions. 61
VI.5 Another Kripke \mathcal{G}-interpretation construction. 63
VII.1 ρ-rule as rewriting rule. 71
VII.2 ρ-rule as rewriting rule. 72
IX.1 The sequent calculus for the class of predicative inclusion modal logics. 90
IX.2 A partial schema of the results about NemoLOG. 94
IX.3 Procedure for translating NemoLOG programs into Horn clause logic. . 99
XI.1 Summary of the results about NemoLOG. 129
Preface

Modal logics have been intensively studied in the recent years [Stirling, 1992; Fitting, 1993; Hughes and Cresswell, 1996]. The reason is that while classical first-order logic can express relationships between terms representing members of a flat domain, modal logics are able to structure knowledge, represent beliefs of agents and deal with problems involving distributed reasoning [Konolige, 1986; Genesereth and Nilsson, 1987; Halpern and Moses, 1992] together with other attitudes in agent systems like, for instance, goals, intention and obligation. Furthermore, they are well suited for representing dynamic aspects and, in particular, to formalize reasoning about actions and time [Wooldridge and Jennings, 1995]. All these characteristics are achieved by the use of some additional connectives, called modal operators, which formalize in a more natural way reasoning about knowledge, beliefs, dynamic changes, time, and actions. For this reason the development of automated deduction methods has received a lot of attention (see, for instance, [Hughes and Cresswell, 1968; Fitting, 1983; Fitting, 1988; Enjalbert and Fariñas del Cerro, 1989; Wallen, 1990; Catach, 1991] and, more recently, [Ognjanović, 1994; Massacci, 1994; Fariñas del Cerro and Herzig, 1995; Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Goré, 1997; Baldoni et al., 1998a]).

On the other hand, logic programs, that use flat sets of Horn clauses for representing knowledge, enjoy some good properties, such as the notion of the least Herbrand model together with its fixpoint characterization and the possible use of goal directed proof procedures. These features make logic a real programming language with a clear and complete operational semantics with respect to its declarative semantics [Lloyd, 1984].

Modal extensions of logic programming join tools for formalizing and reasoning about temporal and epistemic knowledge with declarative features of logic programming languages. In particular, they support “context abstraction”, which allows to describe dynamic and context-dependent properties of certain problems in a natural and problem-oriented way [Orgun and Ma, 1994; Fisher and Owens, 1993a; Fariñas del Cerro and Penttonen, 1992]. All these desirable features are shown by some well-known proposals, such as TEMPLOG [Abadi and Manna, 1989; Baudinet, 1989], Temporal Prolog [Gabbay, 1987], MOLOG [Fariñas del Cerro, 1986; Balbiani et al., 1988], TIM [Balbiani et al., 1991], Modal Prolog [Sakakibara, 1986] and also by the proposals in [Akama, 1986; Debart et al., 1992; Nonnengart, 1994; Giordano and Martelli, 1994; De Giacomo and Lenzerini, 1995; Baldoni et al., 1997a; Baldoni et al., 1997b].
In this thesis we work on *normal multimodal logics*, that are general modal systems with an arbitrary set of normal modal operators, focusing on the class of *inclusion modal logics*. The multimodal systems which belong to this class, first introduced in [Fariñas del Cerro and Penttonen, 1988], are characterized by a set of logical axioms of the form:

\[
[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi \quad (n > 0, \ m \geq 0)
\]

that are called *inclusion axioms*. We deeply study this class of modal logics and, then, we propose a multimodal extension of logic programming, that we have called NemoLOG (which stands for New modal proLOG), based on this class of logics. Finally, some conclusions and open problems are drawn at the end of the thesis.

The thesis is organized in two parts. In Part One, we, first, introduce the syntax, the possible-worlds semantics, and the axiomatization of the class of inclusion modal logics. Afterwards, we define a proof theory based on an *analytic tableau calculus*. The main feature of this calculus is that it is able to deal with the whole class of logics in a modular way with respect to the set of inclusion axioms that determines the logic. It is an extension of the calculus presented in [Nerode, 1989] which, in turn, comes from the prefixed tableaux in [Fitting, 1983].

Prefixed tableaux make explicit the reference to accessibility relations. In particular, in our tableau method, differently than [Fitting, 1983] (where the accessibility relations are encoded in the structure of the name of the worlds), the accessibility relations are represented by means of an explicit and separate graph of named nodes, each of which is associated with a set of formulae (prefixed formulae) and choice allows any inclusion axiom to be interpreted as a “rewriting rule” into the path structure of the graph. This is at the basis of the proofs of some (un)decidability results. Despite the fact that this kind of representation works only for those multimodal systems whose frame structure is first-order axiomatizable, we think that it is more suitable to deal with multimodal logics with arbitrary interaction axiom than the one in [Fitting, 1993], as discussed in the Chapter VII. Moreover, our tableau method can easily be extended to deal with a wide class of normal multimodal logics that includes the class of inclusion modal logics and other ones characterized by serial, symmetric, and Euclidean accessibility relations, as shown in Chapter VI.

In Part Two, we propose the logic programming language NemoLOG. This language extends the Horn clauses logic allowing free occurrences of universal modal operators in front of goals, in front of clauses, and in front of clause heads. The considered multimodal systems are the ones of the class of inclusion modal logics and they are specified by means of a set of particular clauses that we have called *inclusion axiom clauses*.

The aim of our proposal is not only to extend logic languages in order to perform epistemic reasoning and reasoning about actions but especially to provide tools for software engineering retaining a declarative interpretation of the programs. In particular, we will show that inclusion modal logics are well suited, on one hand, to overcome the lack of structuring facilities aimed at enhancing the modularity of logic programs (a central problem in
the last years [Bugliesi et al., 1994]), and, on the other, to interpret some features typical of object-oriented paradigms in logic programming (such as hierarchical dependencies and inheritance among classes).

A proof theory is developed for NemoLOG and the soundness and completeness with respect to the model theory is shown by a fixed point construction. Though the construction is pretty standard, we believe that its advantage is the modularity of the approach, in the sense that both the completeness and soundness proofs are modular with respect to the underlying inclusion modal logics of the programs.

Last but not least, we show that, in the case of programs and goals of NemoLOG, we can restrict our attention to tableau proofs of a form that recalls the one of the uniform proof as presented in [Miller et al., 1991] and, moreover, we give a method for translating programs into standard Horn clauses, so that the translated programs can be executed by any Prolog interpreter or compiler.

Acknowledgment

I would like to thank my advisors, prof. Alberto Martelli and dr. Laura Giordano, for the help and support shown in all these years, the whole Logic Programming and Automated Reasoning group of the Department of Computer Science of University of Turin in which I worked and, in particular, dr. Maria Luisa Sapino. I would like to thank the reviewers, prof. Mariangiola Dezani (University of Turin), prof. Paola Mello (University of Ferrara), and prof. Camilla Schwind (Laboratoire d’Informatique de Marseille), for their precious advice.

I would like to thank also Cristina Baroglio, all my friends at the Department of Computer Science, especially Ferruccio Damiani and Davide Cavagnino, and all those persons that with their love and their support made this thesis possible, in particular, my family.

Turin, Italy
February 1998

M. B.
Part One

Inclusion Modal Logics
Chapter I

Introduction

Among true propositions, sometimes it is useful to distinguish between those that are
occasionally true and those that are necessarily true; for instance, a proposition could be
true in a particular scenario while another must be true in any possible scenario. Modal
logic extends classical logic allowing the occurrence of a new operator, usually denoted
by \Box, in front of formulae. Differently than the others such as negation or implication,
this operator is not intended to be truth-functional, i.e. its meaning does not depend only
on the truth-values of the subformulae. Indeed, the intended meaning of the formula $\Box \varphi$
is to qualify the truth value of φ: if φ is true then, $\Box \varphi$ specifies that φ is not only true
but necessarily true, i.e. φ is true independently from the scenario (or state, world, etc.)
[Hughes and Cresswell, 1996].

Multimodal logics generalize modal logics allowing more than one modal operator to
appear in front of formulae. In particular, a modal operator is named by means of a
label, for instance $[a]$, which identifies it. Multimodal logics are particularly suitable to
reason in a multiagent environment, to represent knowledge, beliefs and, then, also common
interpretation of a formula like $[a] \varphi$ is “φ is known by the agent a”, “φ is part of the
knowledge of a”, and “φ is believed by the agent a” but also “φ is true after executing the
action a” [Halpern and Moses, 1992].

The meaning of necessity is different depending on the properties that one ascribes
it. For example, one can say that everything that is necessarily true is also true while
another can think that everything that is necessary is necessarily necessary. Moreover, in
the multimodal case, modal operators do not represent only necessity but also knowledge,
beliefs, actions, etc. It is easy to express the properties which characterize a modal operator
by means of a set of axioms. Let us consider, for instance, the modal operator $[a]$. Then,
the axiom

$$T(a) : [a] \varphi \supset \varphi$$

(the knowledge axiom or reflexivity) can express the fact that everything that is necessarily
true is also true but also that what is known by the agent a must be true, while the axiom

$$4(a) : [a] \varphi \supset [a][a] \varphi$$
(the positive introspection axiom or transitivity) can express the fact that everything that is necessary is necessarily necessary, but also that if something is know by a then a knows that he knows it. Furthermore, by using more than one modal operator, we are also able to express what an agent knows (believes) about the knowledge (beliefs) of other agents. For example, the formula $[a][b] \alpha$ can be read as “the agent a knows (believes) that the agent b knows (believes) α”. Moreover, we can define modal systems characterized by means of interaction axioms, such as, for instance,

$$I(a, b) : [a] \varphi \supset [b] \varphi$$

that say that whatever the agent a knows (believes), the agent b knows (believes), the persistence axiom

$$P(a, always) : [a][always] \varphi \supset [always][a] \varphi$$

that says that the agent a knows (believes) that φ holds always then a will always know φ, and the mutual transitivity axiom

$$4M(always, a) : always \varphi \supset [a][always] \varphi$$

to express the fact, for instance, that if something always holds it always also holds after executing the action a.

As pointed out in [Catatch, 1988], the main feature of multimodal systems is their ability to express complex modalities, obtained by composing modal operators of different types. Thus, such systems allow one to design agent situations where the agents can have different ways of reasoning and different ways of interacting between them and, also, to simultaneously study several modal aspects (e.g., knowledge and time or knowledge and belief [Catatch, 1991]).

Let us consider the following example inspired by [Fariñas del Cerro and Herzig, 1995]. It shows a multimodal system with modalities representing actions and beliefs of agents and it is based on the fable “the fox and the raven”, in which the fox tries to capture the raven’s cheese. In order to do so the fox charms the raven.

Example I.0.1 (The fox and the raven) Let $[fox]$ be a modal operator axiomatized by only the axiom K and representing what the fox believes and let $[praise]$ and $[sing]$ be two action operators of type K representing the action in which the fox praises the raven and the raven sings, respectively. Moreover, we have an operator $[always]$ of type $KT4$:

$$(A_1) \quad T(always) : [always] \varphi \supset \varphi$$

$$(A_2) \quad 4(always) : [always] \varphi \supset [always][always] \varphi$$

for which we assume the mutual transitivity axioms:

$$(A_3) \quad 4M(always, praise) : [always] \varphi \supset [praise][always] \varphi,$$

$$(A_4) \quad 4M(always, sing) : [always] \varphi \supset [sing][always] \varphi,$$

in order to express the fact that if φ is always true then it is also always true after the actions praise and sing. We have the following:
(1) \[\text{fox} \rightarrow \text{praise} \rightarrow \text{charmed(raven)} \]
(2) \[\text{fox} \rightarrow \text{always} \rightarrow (\text{charmed(raven)} \supset (\text{sing} \rightarrow \text{dropped(cheese)}) \]

That is, (1) the fox believes that if the fox praises the raven, then the raven is charmed, and (2) the fox believes that in any moment if the raven is charmed then it is possible that the raven sings and so it drops the cheese. From (1) and (2), the formula:

(3) \[\text{fox} \rightarrow \text{praise} \rightarrow (\text{sing} \rightarrow \text{dropped(cheese)}) \]

can be proved; that is, the fox believes that after praising the raven may sing and so it drops the cheese.

In this thesis we work on normal multimodal logics, that are general modal systems with an arbitrary set of normal modal operators all characterized by the axiom

\[K(a) : [a]([\varphi \supset \psi]) \supset ([a][\varphi] \supset [a][\psi]) \]

focusing on the class of inclusion modal logics. This class of logics includes some well-known modal systems such as \(K_n, T_n, K4_n, \) and \(S4_n. \) However, differently than other proposals, such as [Halpern and Moses, 1992], these systems can be non-homogeneous (i.e., every modal operator is not restricted to the same system) and can contain some interaction axioms (i.e., every modal operator is not necessarily independent from the others).

In particular, inclusion modal logics are characterized by sets of logical axioms of the form:

\[[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi \ (n > 0, m \geq 0) \]

that we call inclusion axioms. The knowledge axiom, positive introspection axiom, the axiom \(I(a,b), \) the mutual transitivity axiom and the persistence axiom are examples of inclusion axiom schema. The syntax, the possible-world semantics, and the axiomatization of inclusion modal logics will be introduced in Chapter II.

Inclusion modal logics have interesting computational properties because they can be considered as rewriting rules. More precisely, inclusion modal logics have been introduced in [Fariñas del Cerro and Penttonen, 1988] with the name of grammar logics to the aim of simulating the behaviour of grammars by means of modal logics. Intuitively, given a formal grammar, we associate an axiom of a modal logic to each rule. The idea is quite simple. For each production of the form \(t_1 \ldots t_n \rightarrow s_1 \ldots s_m \) a new inclusion axiom \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \) is introduced. By this construction, verifying if a word is generated by a formal grammar is equivalent to proving a theorem in the logic. As a consequence, the authors of [Fariñas del Cerro and Penttonen, 1988] obtained a simple proof of undecidability for propositional modal logics. However, they neither prove any (un)decidability results for restricted classes nor they consider any proof method to deal with the whole class of logics (or its subclasses). More recently, in [Gasquet, 1994; Gasquet, 1993], an optimized functional translation method for translating formulae of the inclusion modal logics into formulæ of the classical first order logic is proposed when, however, the seriality is assumed for each operator.
In this part of the thesis, we answer to the open problems left in [Fariñas del Cerro and Penttonen, 1988]. We first develop an analytic tableau calculus for the class of inclusion modal logics and, then, we use it as a tool to prove some undecidability results for some subclasses of inclusion modal logics.

Although an axiom system is a calculus, it is not an appropriate choice for automation because, in general, it is hard to find a proof for a given formula, especially in an automatic way. The reason is that axiom systems make use of the modus ponens rule so that to prove a formula \(\varphi \) we have to look for a prove of \(\psi \) and \(\psi \supset \varphi \) and, generally, \(\psi \) may be an arbitrary formula without any relation with \(\varphi \). Other calculi, such as resolution, sequent calculus, and tableau calculus better work towards this purpose. The fact is that these methods use the “subformula principle”: everything you need to prove or disprove a given formula is contained in the formula itself.

Among the above mentioned calculi, we have chosen to develop a tableau method in order to supply a proof theory for the class of inclusion modal logics. A tableau calculus is a refutation method; given a formula, say \(\varphi \), the computation process is aimed at finding an interpretation which satisfies \(\varphi \). Consequently, to fail in finding an interpretation which satisfies the negation of \(\varphi \) (\(\neg \varphi \)) corresponds to prove that \(\varphi \) is true in every interpretation, i.e. \(\varphi \) is valid.

There are several reasons that have leaded to prefer developing a tableau calculus instead of a resolution calculus (sequent calculus can be seen as a notational variant of tableau calculus) to study inclusion modal logics. First of all, it does not require any normal forms, so the starting formula can use all connectives. Moreover, due to the strong relationship with the semantics issue, tableau calculi are easier and more natural to develop especially for non-classical logics for which, generally, the semantics is known better than the computational properties [Fitting, 1983]. Last but not least, tableau methods enjoy another important feature with respect to resolution: they can supply a return answer. Besides the success or the failure, the tableau method returns some more information. In the case of success, it returns an effective interpretation that satisfies the given formula while, in the case of failure, it shows why it is not possible to satisfy that formula by means of an effective contradictory interpretation.

The tableau calculus, presented in Chapter III, is an extension of the one proposed in [Nerode, 1989], which is closely related to the systems of prefixed tableaux presented in [Fitting, 1983].

Prefixed tableaux, differently than other tableau methods, make explicit reference to the possible-worlds of the underlying Kripke interpretation. However, as a difference with [Fitting, 1983], worlds are not represented by prefixes (which describe paths in the model from the initial world), instead, they are given an atomic name and the accessibility relationships among them are explicitly represented in a graph. The method is based on the idea of using the characterizing axioms of the logics as “rewrite rules” which create new paths among worlds in the counter-model construction.

We think that the tableau calculus is interesting, first, because it is modular with respect to the inclusion modal systems considered, that is it works for the whole class of inclusion modal logics. Then, it deals with non-homogeneous multimodal systems with
arbitrary interaction axioms in an uniform way.

The proposals in [Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Goré, 1997] address the problem of an efficient implementation of the tableau calculi for a wide class of modal logics. They generalize the prefixes by allowing occurrences of variables and they use unification to show that two prefixes are names for the same world. While a straightforward implementation of our calculus is unlikely to be efficient, the generality of the approach makes it suitable to study the properties of different classes of logics. In particular, our tableau calculus is at the basis of the undecidability results for inclusion modal logics presented in Chapter IV. Due to the fact that the accessibility relationships among the worlds are represented in a graph and that we use the axioms of the logics as rewrite rules to create new paths among worlds in the counter-model construction, our tableau method allows to draw some correspondences between logic and formal languages. These allow to reduce in a easy way some undecidability results of the formal languages to satisfiability problems in the logic.

A decidability result for a particular subclass of the inclusion modal logics is also given. This result is obtained by means of the filtration method, defining an extension of the Fischer-Ladner closure [Fischer and Ladner, 1979].

Finally, in Chapter V, the tableau method is extended in order to deal with the predicative case, while in Chapter VI, it is shown how our tableau calculus can be easily extended in order to deal with the class of normal multimodal logics generated by the interaction axiom schemas

\[G^{a,b,c,d} : \langle a \rangle [b] \varphi \supset [c] \langle d \rangle \varphi \]

proposed in [Catach, 1988], where \(\langle a \rangle \) is the modal operator defined as \(\neg [a] \neg \). This class includes the class on inclusion modal logics and most of the well-known modal logics studied in [Chellas, 1980; Hughes and Cresswell, 1996] and their multimodal version in [Halpern and Moses, 1992].
I. Introduction
Chapter II
Syntax and Semantics

In this chapter we introduce the class of inclusion modal logics. We use the world “inclusion” because the logics of this class are characterized by axiom systems whose axioms determine a set of inclusion relations between the accessibility relations of their possible-worlds semantics.

Many results reported in this chapter can be easily deduced from well-known works in literature. Nevertheless, for completeness, we will present them, avoiding to report the most trivial steps.

II.1 Syntax

Let us define a language for a propositional multimodal logic. Although we consider a number of different logics in the following, the syntax for all of them is essentially the same. The alphabet contains:

- a non-empty countable set VAR of propositional variables;
- a non-empty countable set MOD, named the modal alphabet. VAR and MOD are disjoint;
- the classical connectives “∧” (and), “∨” (or), “¬” (not), “⇒” (implies);
- a modal operator constructor “[.]”;
- left and right parentheses “(”, “)”.

The set FOR of formulae of a modal propositional language L is defined to be the least set that satisfies the following conditions:

- VAR \subseteq FOR;
- if $\varphi, \psi \in$ FOR then ($\neg\varphi$), ($\varphi \land \psi$), ($\varphi \lor \psi$), ($\varphi \supset \psi$) \in FOR;
- if $\varphi \in$ FOR and $t \in$ MOD then ($[t]\varphi$) \in FOR.
II. Syntax and Semantics

For readability, we omit parentheses if they are unnecessary: we give “∧” and “∨” the same precedence; lower than “¬” but higher than “⊃”. Moreover, we use the standard abbreviation \(\langle t \rangle \varphi \) for \(\neg [t] \neg \varphi \). \([t] \) is called universal modal operator or universal modality, while \(h t i \) is called existential modal operator or existential modality. By atomic formula we mean any propositional variables of VAR.

We call \(\mathcal{I}_L \) the propositional multimodal logic based on the language \(L \).

II.2 Possible-worlds semantics

Given a language \(L \), an ordered pair \((W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}) \), consisting of a non-empty set \(W \) of “possible worlds” and a set of binary relations \(\mathcal{R}_t \) (one for each \(t \in \text{MOD} \)) on \(W \), is called frame. Note that frames with an infinite number of possible worlds in \(W \) are allowed. We say that \(w' \) is accessible from \(w \) by means of \(\mathcal{R}_t \) if \((w, w') \in \mathcal{R}_t \), \(\mathcal{R}_t \) is the accessibility relation of the modality \([t] \). We denote with \(\mathcal{F}_L \) the class of all frames based on the language \(L \).

In order to define the meaning of a formula, we have to introduce the notion of Kripke interpretation.

Definition II.2.1 (Kripke interpretation) Given a language \(L \), a Kripke interpretation \(M \) is an ordered triple \((W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}, V) \), where:

- \((W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}) \) is a frame of \(\mathcal{F}_L \);
- \(V \) is a valuation function, a mapping from \(W \times \text{VAR} \) to the set \(\{ \text{T}, \text{F} \} \).

We say that \(M \) is based on the frame \((W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}) \).

We use \(\mathcal{M}_L \) to denote the class of Kripke interpretations with \(L \) as underlying language.

The meaning of a formula belonging to \(L \) is given by means of the satisfaction relation \(\models \). In particular, let \(M = (W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}, V) \) be a Kripke interpretation, \(w \) a world in \(W \) and \(\varphi \) a formula, then, we say that \(\varphi \) is satisfiable in the Kripke interpretation \(M \) at \(w \), denoted by \(M, w \models \varphi \), if the following conditions hold:

- \(M, w \models \varphi \) and \(\varphi \in \text{VAR} \) iff \(V(w, \varphi) = \text{T} \);
- \(M, w \models \neg \varphi \) iff \(M, w \not\models \varphi \);
- \(M, w \models \varphi \land \psi \) iff \(M, w \models \varphi \) and \(M, w \models \psi \);
- \(M, w \models \varphi \lor \psi \) iff \(M, w \models \varphi \) or \(M, w \models \psi \);
- \(M, w \models \varphi \supset \psi \) iff \(M, w \not\models \varphi \) or \(M, w \models \psi \);
- \(M, w \models [t] \varphi \) iff for all \(w' \in W \) such that \((w, w') \in \mathcal{R}_t \), \(M, w' \models \varphi \);
- \(M, w \models \langle t \rangle \varphi \) iff there exists a \(w' \in W \) such that \((w, w') \in \mathcal{R}_t \) and \(M, w' \models \varphi \).
II.3. Axiomatization

Given a Kripke interpretation $M = \langle W, \{R_t : t \in \text{MOD}\}, V \rangle$, we say that a formula φ is *satisfiable in* M if $M, w \models \varphi$ for some world $w \in W$. We say that φ is *valid in* M if $\neg \varphi$ is not satisfiable in M (or, equivalently, if $M, w \models \varphi$, for all worlds in W). Moreover, a formula φ is *satisfiable with respect to a class* \mathcal{M} of Kripke interpretations if φ is satisfiable in some Kripke interpretation in \mathcal{M}, and it is *valid with respect to* \mathcal{M} if it is valid in all Kripke interpretations in \mathcal{M}.

II.3 Axiomatization

It is possible to define an axiom system whose axioms and rules of inference characterizes a propositional multimodal logic I_L. In particular, this axiom system, that we call S_L, consists of:

- all axiom schemas for the propositional calculus;
- for each $t \in \text{MOD}$, the axiom schema:
 \[K(t) : [t](\varphi \supset \psi) \supset ([t]\varphi \supset [t]\psi) \]
- the *modus ponens* rule of inference: from $\vdash \varphi$ and $\vdash \varphi \supset \psi$ infer $\vdash \psi$;
- for each $t \in \text{MOD}$, the *necessitation* rule of inference: from $\vdash \varphi$ infer $\vdash [t]\varphi$.

Each modal system that contains the schema $K(t)$ for each its modal operator is called *normal*. In this thesis we deal with only normal modal logics and its extensions.

The axiomatization S_L of the propositional modal logic I_L is *sound* and *complete* with respect to its possible-worlds semantics M_L [Hughes and Cresswell, 1996; Halpern and Moses, 1992]. Every formula provable from S_L (S_L-provable) is valid with respect to M_L (soundness) and every formula that is valid with respect to M_L is provable from S_L (completeness). We say that a Kripke interpretation M is a *model of* I_L if every S_L-provable formula is valid in M, and F is a *frame for* I_L if every Kripke interpretation based on it is a model of I_L.

Inclusion axiom schemas

An axiom system S_L can be extended by adding one or more extra axiom schemas. In the following, we are interested in a particular class of such extensions, that is those ones that are obtained by adding only axiom schemas of the following form:

\[[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi \quad (n > 0, m \geq 0) \]

where $t_i, s_j \in \text{MOD}$. We call such an axiom schema *inclusion axiom schema* or *inclusion axiom* for simplicity.

1We write $\vdash \varphi$ to mean that φ is a theorem of S_L.
Example II.3.1 Some examples of inclusion axiom schemas are:

- the knowledge axiom $T(t) : [t] \varphi \supset \varphi$,
- the positive introspection axiom $4(t) : [t] \varphi \supset [t][t] \varphi$,
- the inclusion axiom $I(t, t') : [t] \varphi \supset [t'] [t] \varphi$,
- the mutual transitivity axiom $4M(t, t') : [t] \varphi \supset [t'] [t] \varphi$,
- the persistence axiom $P(t, t') : [t][t'] \varphi \supset [t'] [t] \varphi$ [Fariñas del Cerro and Herzig, 1995].

Given a set \mathcal{A} of inclusion axiom schemas, we show that if the accessibility relations in the Kripke interpretations are restricted in a suitable way, the axiom system $\mathcal{S}_{\mathcal{L}}$ extended with \mathcal{A}, denoted by $\mathcal{S}_{\mathcal{L}}^\mathcal{A}$, is sound and complete with respect to possible-worlds semantics. We use $\mathcal{I}_{\mathcal{L}}^\mathcal{A}$ to denote the inclusion propositional modal logic determined by means of $\mathcal{S}_{\mathcal{L}}^\mathcal{A}$.

Example II.3.2 Some examples of inclusion modal logics are the well-known modal systems K, T, $K4$, $S4$ [Hughes and Cresswell, 1996], their multimodal versions K_n, T_n, $K4_n$, $S4_n$ [Halpern and Moses, 1992], extensions of $S4_n$ with interaction axioms or with agent “any fool” [Genesereth and Nilsson, 1987; Enjalbert and Fariñas del Cerro, 1989].

Remark II.3.1 The class of propositional inclusion modal logics is included in the class of multimodal logics studied in [Catach, 1988]. There, the author generalizes to the multimodal case the k,l,m,n-insectuality axiom schema $G_{k,l,m,n} : \Diamond^k \Box^l \varphi \supset \Box^m \Diamond^n$ (see [Chellas, 1980, Section 3.3 and 5.5] and [Hughes and Cresswell, 1984, Chapter 3]). He characterizes the class of modal logics by considering systems axiomatized by any finite number of axiom schemas of the form $G^{a,b,c,d} : \langle a \rangle [b] \varphi \supset [c][d]$, where $\langle a \rangle$, $[b]$, $[c]$, $[d]$ can represent sequences of modalities of that type. Thus, when we take into account only axiom schemas of the form $G^{s_1,b,c,d}$ we have the class of inclusion modal logics (see Chapter VI for more details).

Some examples

In this section we give an idea of how to use inclusion modal logics to perform epistemic reasoning (Example II.3.3, II.3.4, and I.0.1) and to represent simple reasoning about actions (Example II.3.5).

In the Examples II.3.3, II.3.4, and I.0.1 we use modal operator to denote knowledge and belief of agents: a preposition $[t] \varphi$ is read as “agent t knows φ” or “agent t believes φ”. Inclusion axiom schemas are used to model the meaning of the operator, for example, a modal operator of belief is characterized by only the axiom K, while a modal operator of knowledge by $KT4$ (see [Genesereth and Nilsson, 1987, Chapter 9]). Inclusion axioms are also used to model interaction between knowledge or beliefs of different agents. For instance, the axiom $I(t, t') : [t] \varphi \supset [t'] \varphi$ can be interpreted as “everything which is known (believed) by agent t is also known (believed) by agent t'.”
Example II.3.3 (Epistemic reasoning: The friends puzzle) Peter is a friend of John, so if Peter
knows that John knows something then John knows that Peter knows the same thing. That is,
we assume the persistence axiom:

\[(A_1) \quad P(peter, john) : [peter][john] \varphi \supset [john][peter] \varphi,\]

where \([peter]\) and \([john]\) are modal operators of type \(S4\) (\(KT4\)):

\[(A_2) \quad T(peter) : [peter] \varphi \supset \varphi;\]
\[(A_3) \quad 4(peter) : [peter] \varphi \supset [peter][peter] \varphi;\]
\[(A_4) \quad T(john) : [john] \varphi \supset \varphi;\]
\[(A_5) \quad 4(john) : [john] \varphi \supset [john][john] \varphi;\]

and they are used to denote what is known by Peter and John, respectively. Peter is married, so
if Peter’s wife knows something, then Peter knows the same thing, that is the inclusion axiom:

\[(A_6) \quad I(wife(peter), peter) : [wife(peter)] \varphi \supset [peter] \varphi\]

holds, where \([wife(peter)]\) is a modality of type \(S4\) representing the knowledge of Peter’s wife:

\[(A_7) \quad T(wife(peter)) : [wife(peter)] \varphi \supset \varphi;\]
\[(A_8) \quad 4(wife(peter)) : [wife(peter)] \varphi \supset [wife(peter)][wife(peter)] \varphi.\]

Thus, we consider a modal language containing three modalities, \([peter]\), \([john]\), and \([wife(peter)]\),
and characterized by the set \(A = \{A_i \mid i = 1, \ldots, 8\}\) of inclusion axiom schemas.

John and Peter have an appointment, let us consider the following situation:

(1) \([peter] \text{time}\)
(2) \([peter][john] \text{place}\)
(3) \([wife(peter)][(peter) \text{time} \supset [john] \text{time}]\)
(4) \([peter][john][\text{place} \land \text{time} \supset \text{appointment}]\)

That is, (1) Peter knows the time of their appointment; (2) Peter also knows that John knows
the place of their appointment. Moreover, (3) Peter’s wife knows that if Peter knows the time
of their appointment, then John knows that too (since John and Peter are friends); and finally (4)
Peter knows that if John knows the place and the time of their appointment, then John knows
that he has an appointment. From this situation we will be able to prove:

(5) \([john][peter] \text{appointment} \land [peter][john] \text{appointment}\),

that is, each of the two friends knows that the other one knows that he has an appointment.

In the following example a particular modality is introduced as a certain kind of common
knowledge operator. Indeed, this modality can be taken as a slightly weaker version of the
common knowledge operator in [Halpern and Moses, 1992]. It is slightly weaker because the
induction axiom for the common knowledge does not hold [Genesereth and Nilsson, 1987]
(see also Remark VI.2.1). The common knowledge operator is achieved using a fictitious
knower, sometimes called any fool. What any fool knows is what all other agents know,
and all agents know that others know (and so on). In other words, instead of regarding
common knowledge as an operator over beliefs of agents, it is regarded as a new agent
which interacts with the others.
Example II.3.4 (Epistemic reasoning and common knowledge: The wise men puzzle) The problem is as follows: “Once upon a time, a king wanted to find the wisest out of his three wisest men. He arranged them in a circle and told them that he would put a white or a black spot on their foreheads and that one of the three spots would certainly be white. The three wise men could see and hear each other but, of course, they could not see their faces reflected anywhere. The king, then, asked to each of them to find out the colour of his own spot. After a while, the wisest correctly answered that his spot was white.”

Let us assume \(a \), \(b \), and \(c \) to denote the three wise men and by modalities \([a] \), \([b] \), and \([c] \) their beliefs. Moreover, we use \([\text{fool}] \) to denote which are known by all the others (the “any fool” agent). Thus, the set of inclusion axioms consists of:

\[
\begin{align*}
(A_1) & \quad T(\text{fool}) : [\text{fool}] \varphi \supset \varphi; \\
(A_2) & \quad 4(\text{fool}) : [\text{fool}] \varphi \supset [\text{fool}][\text{fool}] \varphi; \\
(A_3) & \quad I(\text{fool}, a) : [\text{fool}] \varphi \supset [a] \varphi; \\
(A_4) & \quad I(\text{fool}, b) : [\text{fool}] \varphi \supset [b] \varphi; \\
(A_5) & \quad I(\text{fool}, b) : [\text{fool}] \varphi \supset [c] \varphi.
\end{align*}
\]

The modal operators \([a] \), \([b] \), \([c] \), and \([\text{fool}] \) give a way to distinguish among information of the single agents and information common to all of them. The formulation is the following, however, in order to avoid introducing many variant of the same formulae for the different wise men, as a shorthand, we use the metavariables \(X \), \(Y \) and \(Z \), where \(X, Y, Z \in \{a, b, c\} \) and \(X \neq Y, Y \neq Z, \) and \(X \neq Z \):

\[
\begin{align*}
(1) & \quad [\text{fool}](\neg ws(X) \land \neg ws(Y) \supset ws(Z)) \\
(2) & \quad [\text{fool}](\neg ws(X) \supset [Y] \neg ws(X))
\end{align*}
\]

\(ws(X) \) means \(X \) has a white spot on his forehead. All the formulae preceded by the modal operator \([\text{fool}] \), correspond to information which is common to all wise men. The formula (1) says that at least one of the wise men has a white spot, whereas formula (2) means that whenever one of them has not a white spot, the others know this since the three wise men can see each other. From (1) and (2) we cannot prove \([X] ws(X) \) for any wise man.

Now, the king asks if someone knows if the color of his spot is white, but nobody says anything, therefore \(X \) knows that \(Y \) does not know the color of his own spot:

\[
(3) \quad [X] \neg [Y] ws(Y)
\]

From (1)-(3) we cannot yet prove \([X] ws(X) \) for any wise man. The king asks again if someone knows if the color of his spot is white, but nobody still say anything, therefore \(X \) knows that \(Y \) knows that \(Z \) does not know the color of his own spot:

\[
(4) \quad [X][Y] \neg [Z] ws(Z)
\]

\(^2\) This fact allows to refuse to believe there is only one white spot, otherwise the wise man who has that white spot could have answered (the king said there is at least one white spot).
II.3. Axiomatization

Now, from (1)-(4) we can prove \([X]ws(X)\) for any wise man: each of them has enough information for answering that he knows that the color of his spot is white\(^3\), but only the wisest will announce that his spot is white.

In the following example, inspired from [Fariñas del Cerro and Herzig, 1995], it is shown how modalities can be used to represent actions. Here the previous common knowledge operator \([\text{fool}]\) is used to represent something that holds in any moment, after any sequence of actions. For this reason, now, we call it \([\text{always}]\).

Example II.3.5 (Reasoning about actions: A simple version of the shooting problem) Assume that our language contains the modalities \([\text{load}]\) and \([\text{shoot}]\) which denote the actions of “loading a gun” and “shooting against a turkey”, respectively, and \([\text{always}]\) denoting an arbitrary sequence of actions, where \([\text{always}]\varphi\) means that \(\varphi\) always holds (i.e., after any sequence of actions). The set \(\mathcal{A}\) will contain the following axioms:

\[
\begin{align*}
(A_1) & \quad T([\text{always}]) : [\text{always}]\varphi \supset \varphi; \\
(A_2) & \quad 4([\text{always}]) : [\text{always}]\varphi \supset [\text{always}][\text{always}]\varphi; \\
(A_3) & \quad I([\text{always}, \text{load}]) : [\text{always}]\varphi \supset [\text{load}]\varphi; \\
(A_4) & \quad I([\text{always}, \text{shoot}]) : [\text{always}]\varphi \supset [\text{shoot}]\varphi;
\end{align*}
\]

Notice that \([\text{always}]\) is reflexive (axiom \(A_1\)), transitive (axiom \(A_2\)), and if \(\varphi\) is always true it is true after the action \(\text{load}\) or \(\text{shoot}\) (axioms \(A_3\) and \(A_4\), respectively), whereas the modalities representing actions do not have any property beside \(K\). Let us assume the situation:

\[
\begin{align*}
(1) & \quad [\text{always}][\text{load}]\text{loaded} \\
(2) & \quad [\text{always}][\text{loaded} \supset [\text{shoot}]\neg\text{alive})
\end{align*}
\]

That is, (1) after any sequence of actions ended by \(\text{load}\) the gun is \(\text{loaded}\), and (2) after any sequence of actions (possible empty) if the gun is \(\text{loaded}\) then after a \(\text{shoot}\) the turkey is not \(\text{alive}\). Form (1) and (2) we can prove:

\[
(3) \quad [\text{load}][\text{shoot}]\neg\text{alive}
\]

that is, after the actions of \(\text{load}\) and \(\text{shoot}\) the turkey is not \(\text{alive}\).

Inclusion frames and Kripke \(\mathcal{A}\)-interpretation

Definition II.3.1 (Inclusion frame) Let \(F = (W, \{R_t \mid t \in \text{MOD}\})\) be a frame of \(\mathcal{F}_L\) and let \(\mathcal{A}\) be a set of inclusion axiom schemas, \(F\) is an \(\mathcal{A}\)-inclusion frame if and only if for each axiom schema

\[
[t_1][t_2] \ldots [t_n]\varphi \supset [s_1][s_2] \ldots [s_m]\varphi
\]

\(^3\)Actually, if they did not answer twice, this is the only possible configuration. If there were a wise man who has a “not-white” spot, say \(a\), he could not have answered but \(b\) (or \(c\)) could have. They know that it is not possible to have two “not-white” spots and they can see one, then, they can deduce they have both a white spot. On the other hand, this is also the only fair configuration if the king would like to know the wisest.
in \mathcal{A}, the following inclusion property on the accessibility relation holds:
\[
\mathcal{R}_{t_1} \circ \mathcal{R}_{t_2} \circ \ldots \circ \mathcal{R}_{t_n} \supseteq \mathcal{R}_{s_1} \circ \mathcal{R}_{s_2} \circ \ldots \circ \mathcal{R}_{s_m}
\]
where \(\circ\) means the relation composition \(\mathcal{R}_i \circ \mathcal{R}_j = \{(w, w') \in W \times W \mid \exists w'' \in W \text{ such that } (w, w'') \in \mathcal{R}_i \text{ and } (w'', w') \in \mathcal{R}_j\}\). We call IP_A^L the set of inclusion properties of the form (II.1) determined by \mathcal{A}.

We denote with F^A_L the subset of F_L that consists of all \mathcal{A}-inclusion frames. A Kripke \mathcal{A}-interpretation is a Kripke interpretation based on an \mathcal{A}-inclusion frame. The set of all Kripke \mathcal{A}-interpretations is denoted by \mathcal{M}^A_L and it is a subset of \mathcal{M}_L. Moreover, we also say that a formula φ of \mathcal{L} is \mathcal{A}-satisfiable in M (\mathcal{A}-valid in M) if $M \in \mathcal{M}^A_L$ and it is satisfiable in M (valid in M). A formula is \mathcal{A}-satisfiable (\mathcal{A}-valid) if it is satisfiable (valid) with respect to the class \mathcal{M}^A_L of Kripke \mathcal{A}-interpretations and we use the notation $\models_\mathcal{A}$ for it.

For the class \mathcal{M}^A_L of modal Kripke \mathcal{A}-interpretations and the satisfiability relation $\models_\mathcal{A}$ the following important proposition holds.

Proposition II.3.1 Given a language \mathcal{L}, for all formulae $\varphi, \psi \in \text{FOR}$, all Kripke \mathcal{A}-interpretations $M = <W, \{\mathcal{R}_t \mid t \in \text{MOD}\}, V>$ of \mathcal{M}^A_L, and all worlds $w \in W$ the following properties hold:

1. if φ is an instance of a propositional tautology, then $M, w \models_\mathcal{A} \varphi$;
2. if $M, w \models_\mathcal{A} \varphi$ and $M, w \models_\mathcal{A} \varphi \supset \psi$, then $M, w \models_\mathcal{A} \psi$;
3. $M, w \models_\mathcal{A} [t](\varphi \land \psi) \supset ([t] \varphi \land [t] \psi)$;
4. for all inclusion axiom schemas $[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi$ in \mathcal{A}, $M, w \models_\mathcal{A} [t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi$.

Proof. We report only the proof for the property (4), for the others you can see [Halpern and Moses, 1992, page 325]. Let us assume that $M, w \models_\mathcal{A} [t_1][t_2] \ldots [t_n] \varphi$ but $M, w / \models_\mathcal{A} [s_1][s_2] \ldots [s_m] \varphi$. Then, $M, w \models_\mathcal{A} \neg [s_1][s_2] \ldots [s_m] \varphi$ and, therefore, there exist $w_1, w_2, \ldots, w_{m-1}, w'$ in W such that $(w, w_1) \in \mathcal{R}_{s_1}, (w_1, w_2) \in \mathcal{R}_{s_2}, \ldots, (w_{m-1}, w') \in \mathcal{R}_{s_m}$ (i.e., $(w, w') \in \mathcal{R}_{s_1} \circ \mathcal{R}_{s_2} \circ \ldots \circ \mathcal{R}_{s_m}$) and $M, w' \models_\mathcal{A} \neg \varphi$. Now, since $M \in \mathcal{M}^A_L$ by hypothesis and, therefore, the (II.1) holds, $(w', w_1) \in \mathcal{R}_{t_1} \circ \mathcal{R}_{t_2} \circ \ldots \circ \mathcal{R}_{t_n}$, thus, there exist $w'_1, w'_2, \ldots, w'_{n-1}$ in W such that $(w, w'_1) \in \mathcal{R}_{t_1}, (w'_1, w'_2) \in \mathcal{R}_{t_2}, \ldots, (w'_{n-1}, w') \in \mathcal{R}_{t_n}$ and $M, w' \models_\mathcal{A} \neg \varphi$, but this is contradictory with the initial hypothesis $M, w \models_\mathcal{A} [t_1][t_2] \ldots [t_n] \varphi$. \(\square\)

Remark II.3.2 It is worth noting that inclusion frames do not allow backward moves: neither symmetry nor euclideanness determine inclusion frames.

4If $m = 0$ then we assume $\mathcal{R}_{s_1} \circ \mathcal{R}_{s_2} \circ \ldots \circ \mathcal{R}_{s_m} = I$, where I is the identity relation on W.

II. Syntax and Semantics
II.3. Axiomatization

Soundness and completeness

The following theorem states that the axiom system S^A_L characterizes the class M^A_L of Kripke A-interpretations. The proof uses a well-known technique that shows the close correspondence between an axiom system and a particular interpretation, named canonical model [Hughes and Cresswell, 1996; Halpern and Moses, 1992]. It is very close to the one given in [Fariñas del Cerro and Penttonen, 1988] for a subclass of the inclusion modal logics, called Thue logics.

Theorem II.3.1 Let L be a modal language and let A be a set of inclusion axiom schemas, S^A_L is a sound and complete axiomatization with respect to M^A_L.

Before proving the above theorem, we need to give some definitions and lemmas. A formula φ is S^A_L-consistent if $\neg \varphi$ is not S^A_L-provable. A finite set of formulae is S^A_L-consistent if the conjunction of all them is S^A_L-consistent, and an infinite set of formulae is S^A_L-consistent if all of its finite subsets are S^A_L-consistent. A set S of formulae is maximal S^A_L-consistent, if it is S^A_L-consistent and for any formula φ, either $\varphi \in S$ or $\neg \varphi \in S$.

Lemma II.3.1 Any S^A_L-consistent set of formulae can be extended to a maximal S^A_L-consistent set. Moreover, let S be a maximal S^A_L-consistent set of formulae, then it satisfies the following properties:

1. for no formula φ we have $\varphi \in S$ and $\neg \varphi \in S$;
2. $\varphi \supset \psi \in S$ if and only if $\neg \varphi \in S$ or $\psi \in S$;
3. if $\varphi \in S$ and $\varphi \supset \psi \in S$, then $\psi \in S$;
4. if φ is S^A_L-provable, then $\varphi \in S$.

Proof. See, for a similar proof, [Hughes and Cresswell, 1996, Chapter 6] and [Halpern and Moses, 1992, page 327]. □

Definition II.3.2 (Canonical model) The canonical model is the ordered triple

$M^A_c = \langle W, \{R_t \mid t \in \text{MOD}\}, V \rangle$

where:

- $W = \{w \mid w$ is a maximal consistent set$\}$;
- for each $t \in \text{MOD}$, $R_t = \{(w, w') \in W \times W \mid w^t \subseteq w'\}$, where $w^t = \{\varphi \mid [t] \varphi \in w\}$

\[\text{We report the properties only for logical connective \textquoteright\textquoteright\textquotedblright\textquotedblright \textquoteright\textquotedblright\textquotedblleft at \\textquotedblright\textquotedblright \textquotedblleft, the properties for the others can be easily derived.} \]
II. Syntax and Semantics

- for each $p \in \text{VAR}$ and each $w \in W$, we set
 \[V(w, p) = \begin{cases}
 T & \text{if } p \in w \\
 F & \text{otherwise}
 \end{cases} \]

It is quite easy to see, by the definition of accessibility relations given above, that for any $t, s \in \text{MOD}$ $(w, w') \in \mathcal{R}_t \circ \mathcal{R}_s$ if and only if $(w')^s \subseteq w'$, where $(w')^s = \{ \varphi \mid [t][s]\varphi \in w \}.$

Proposition II.3.2 The canonical model \mathcal{M}^A_c given by Definition II.3.2 is a Kripke A-interpretation.

Proof. We have to prove that each inclusion property in IP^A_c is satisfied by \mathcal{M}^A_c. Let us suppose that $\mathcal{R}_{t_1} \circ \ldots \circ \mathcal{R}_{t_n} \supseteq \mathcal{R}_{s_1} \circ \ldots \circ \mathcal{R}_{s_m} \in IP^A_c$, and $(w, w') \in \mathcal{R}_{s_1} \circ \ldots \circ \mathcal{R}_{s_m}$, we have to show $(w, w') \in \mathcal{R}_{t_1} \circ \ldots \circ \mathcal{R}_{t_n}$, that is $(\ldots (w^{t_1}) \ldots)^{t_n} \subseteq w'$. Now, let us assume $[t_1] \ldots [t_n]\varphi \in w$ and let us show that $\varphi \in w'$. Since $[t_1] \ldots [t_n]\varphi \supseteq [s_1] \ldots [s_m]\varphi \in A$, by Lemma II.3.1(4), $M, w = A [t_1] \ldots [t_n]\varphi \supseteq [s_1] \ldots [s_m]\varphi$. Then, by Lemma II.3.1(2), $[s_1] \ldots [s_m]\varphi \in w$. Therefore, since by hypothesis $(\ldots (w^{t_1}) \ldots)^{t_n} \subseteq w'$, we have $\varphi \in w'$.

Proposition II.3.3 Let \mathcal{M}^A_c be the canonical model given by Definition II.3.2 then, for any formula φ and any world w, $\mathcal{M}^A_c, w \models A \varphi$ if and only if $\varphi \in w$.

Proof. The proof is by induction of the structure of the formula φ and it is similar to the ones given for the modal systems presented in [Farinas del Cerro and Penttonen, 1988, page 132], [Halpern and Moses, 1992, page 327], and [Hughes and Cresswell, 1996, Chapter 6].

Now, we are in the position to give the proof of the Theorem II.3.1.

Proof. (of Theorem II.3.1) Soundness. By Proposition II.3.1. Completeness. Assume that φ is A-valid and φ is not S^A_c-provable. Then, $\neg \varphi$ is not S^A_c-provable too and, hence, $\neg \varphi$ is S^A_c-consistent (see page 17). Now, by Lemma II.3.1, $\neg \varphi$ is contained in some maximal consistent set, say w. Thus, by Proposition II.3.3, $\mathcal{M}^A_c, w \models A \neg \varphi$. But this is a contradiction because we assumed by hypothesis that φ is A-valid.

Remark II.3.3 It is worth noting that it is not the case that every model for S^A_c satisfies IP^A_c, even though every Kripke A-interpretation is a model of S^A_c (Theorem II.3.1).

Example II.3.6 Let us suppose a modal language with MOD = \{t, s\}, VAR = \{p\} and let A be the set of inclusion axioms \[[t]\varphi \supseteq [s]\varphi\]. Now, let M be the Kripke interpretation $(W, \{R_t, R_s\}, V)$, where $W = \{w_1, w_2, w_3\}$, $R_t = \{(w_1, w_2)\}$, $R_s = \{(w_1, w_3)\}$, and $V(w_2, p) = V(w_3, p) = T$. Clearly, since M does not satisfy $IP^A_c = \{R_t \supseteq R_s\}$, M is not a Kripke A-interpretation, though it is possible to show that M is a model of T^A_c.\footnote{Before we show that each formula $\varphi \in \text{FOR}$, we have $M, w_2 \models A \varphi$ iff $M, w_3 \models A \varphi$ by induction on the structure of φ. Then, it easy to see that for all formula φ and all world $w \in W$, $M, w \models A [t]\varphi \supseteq [s]\varphi$ ([Hughes and Cresswell, 1996, Chapter 10]).}
Nevertheless, if we look at the level of frame rather than at the level of Kripke interpretation, we can state that I^A_L is characterized by the class of all frame that satisfy IP^A_L.

Theorem II.3.2 F is a frame for I^A_L if and only if $F \in F^A_L$.

Proof. (Only if) By Theorem II.3.1. *(If)* Let $F = (\langle W, \{R_t \mid t \in \text{MOD} \rangle)$ be a frame of I^A_L and $F \notin F^A_L$. Then, for some pair of worlds in W, say w and w', $(w, w') \in R_{s_1} \circ \ldots \circ R_{s_m}$ but $(w, w') \notin R_{t_1} \circ \ldots \circ R_{t_n}$, such that $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in A$. Let M be a Kripke A-interpretation based on F in which the valuation function V is defined on $p \in \text{VAR}$ so that $V(w', p) = T$ and, for all $w'' \in W$ such that $w'' \neq w'$, $V(w'', p) = F$. Now, since $(w, w') \notin R_{t_1} \circ \ldots \circ R_{t_n}$, it is easy to see that $M, w \models [t_1] \ldots [t_n]p$. Moreover, $M, w \models \neg[s_1] \ldots [s_m]p$, hence, $M, w \not\models [t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi$. This is a contradiction by Proposition II.3.1. □
II. Syntax and Semantics
Chapter III

Proof Theory

In this chapter we develop an analytic tableau calculus for the class of propositional inclusion modal logics. This calculus will be modular with respect to the set of inclusion axioms \(\mathcal{A} \). The method is based on the idea of using the characterizing axioms of the logic as “rewrite rules” which create new paths among worlds in the counter-model construction.

The calculus is an extension of the one proposed in [Nerode, 1989], which is closely related to the systems of prefixed tableaux presented in [Fitting, 1983]. As a difference with [Fitting, 1983], worlds are not represented by prefixes (which describe paths in the model from the initial world), but they are given an atomic name and the accessibility relationships among them are explicitly represented in a graph.

III.1 Preliminary notions

Before introducing our tableau calculus, we need to define some notions. First of all, we define a signed formula \(Z \) of a language \(\mathcal{L} \) as a formula prefixed by one of the two symbols \(\top \) and \(\bot \) (signs). For instance, if \(\varphi \) is a formula of \(\mathcal{L} \) then, \(\top \varphi \) and \(\bot \varphi \) are signed formulae of \(\mathcal{L} \).

Definition III.1.1 Let \(\mathcal{L} \) be a propositional modal language and let \(\mathcal{W}_C \) be a countable non-empty set of constant world symbols (or prefixes), a prefixed signed formula, \(w : Z \), is a prefix \(w \in \mathcal{W}_C \) followed by a signed formula \(Z \).

We assume \(\mathcal{W}_C \) contains always at least the prefix \(i \), that is interpreted as the initial world.

Definition III.1.2 Let \(\mathcal{L} \) be a propositional modal language, an accessibility relation formula \(w \rho_t w' \), where \(t \in \text{MOD} \), is a binary relation between constant world symbols of \(\mathcal{W}_C \).

We say that an accessibility relation formula \(w \rho_t w' \) is true in a tableau branch if it belongs to that branch. A tableau is a labeled tree where each node consists of a prefixed
signed formula or of an accessibility relation formula. Intuitively, each tableau branch corresponds to the construction of a Kripke interpretation that satisfies the formulae that belong to it. Intuitively, prefixes are used to name worlds; a formula \(w : T\varphi \) \((w : F\varphi)\) on a branch of a tableau means that the formula \(\varphi \) is true \((false)\) at the world \(w \), in the Kripke interpretation represented by that branch. Moreover, an accessible relation formula \(w \rho \ w' \) true in a tableau branch means that in the Kripke interpretation represented by that branch \(w' \) is accessible from \(w \) by means of the accessibility relation of \([t]\).

Remark III.1.1 Using prefixed formulae is very common in modal theorem proving (see [Goré, 1995] for an historical introduction on the topic). We would like to mention the well-known prefixed tableau systems in [Fitting, 1983] and the TABLEAUX system in [Cat cach, 1991]. In [Fitting, 1983], differently than our approach and the ones in [Nerode, 1989; Catach, 1991], a prefix is a sequence of integers which represents a world as a path from the initial world to it. As a result, instead of representing explicitly worlds and accessibility relations of a Kripke interpretation as a graph, by means of the accessibility relation formulae, [Fitting, 1983] represents them as a set of paths, which can be considered as a spanning tree of the graph. Similar ideas are also used by other authors, such as the proposals in [Massacci, 1994; Governatori, 1995; Cunningham and Pitt, 1996; De Giacomo and Massacci, 1996].

\[
\begin{array}{|c|c|c|}
\hline
\text{Conjunctive formulae} & \text{Disjunctive formulae} \\
\hline
\(\alpha \) & \(\alpha_1 \) & \(\alpha_2 \) & \(\beta \) & \(\beta_1 \) & \(\beta_2 \) \\
\hline
T(\varphi \land \psi) & T\varphi & T\psi & F(\varphi \land \psi) & F\varphi & F\psi \\
F(\varphi \lor \psi) & F\varphi & F\psi & T(\varphi \lor \psi) & T\varphi & T\psi \\
F(\varphi \supset \psi) & T\varphi & F\psi & T(\varphi \supset \psi) & F\varphi & T\psi \\
F(\neg\varphi) & T\varphi & T\varphi & T(\neg\varphi) & F\varphi & F\varphi \\
\hline
\text{Necessary formulae} & \text{Possible formulae} \\
\hline
\nu^t & \nu^t_0 & \pi^t & \pi^t_0 \\
T([t]\varphi) & T\varphi & F([t]\varphi) & F\varphi \\
F((t)\varphi) & F\varphi & T((t)\varphi) & T\varphi \\
\hline
\end{array}
\]

Figure III.1: Uniform notation for propositional signed modal formulae.

In order to simplify the presentation of the calculus and the proofs we use the well-known uniform notation for signed formulae. The uniform notation has been introduced by Smullyan in [Smullyan, 1968] and developed and extensively used for the modal logic by Fitting in [Fitting, 1973; Fitting, 1983]. It classifies non-atomic signed formulae according to their sign and main connective. **Figure III.1** reports the complete classification for propositional modal formulae of the Chapter II. In the following, we will often use \(\alpha, \beta, \nu^t, \) and \(\pi^t \) as formulae of the corresponding type.
III.2 A tableau calculus

A tableau is an attempt to build an interpretation in which a given formula is satisfiable. Starting from a formula \(\varphi \), the interpretation is progressively constructed applying a set of extension rules, which reflect the semantics of the considered logic. At any stage, a branch of a tableau is a partial description of an interpretation. Usually, the tableau methods are used as a refutation method. Proving that a formula \(\varphi \) is a theorem of a certain logic means to show that the attempt to satisfy \(\neg \varphi \) leads to contradictory interpretations.

In our case, the tableau method tries to build Kripke interpretations, one for each branch: the worlds are formed by the prefixes that appear on the branch, the accessibility relations for the modalities are given by means of the accessibility relation formulae, and the valuation function is given by means of the prefixed signed atomic formulae.

Now, we can present the set of extension rules. But, before doing this, we need to introduce some terminology. In particular, we say that a prefix \(w \) is used on a tableau branch if it occurs on the branch in some accessibility relation, otherwise we say that prefix \(w \) is new.

Definition III.2.1 (Extension rules) Let \(\mathcal{L} \) be a modal language and let \(A \) be a set of inclusion axioms, the extension rules (tableau rules) for \(\mathcal{I}_\mathcal{L}^A \) are given in Figure III.2.

\[
\begin{align*}
\frac{w : \alpha}{w : \alpha_1 | w : \alpha_2} & \quad \alpha\text{-rule} \\
\frac{w : \beta}{w : \beta_1 | w : \beta_2} & \quad \beta\text{-rule} \\
\frac{w : \nu^t}{w' : \nu_0^t} & \quad \nu\text{-rule} \\
\frac{w : \pi^t}{w' : \pi_0^t} & \quad \pi\text{-rule} \\
\frac{w \rho_1 w_1 \cdots w_{m-1} \rho_m w'}{w' \rho_1 w'_1} & \quad \rho\text{-rule}
\end{align*}
\]

where \(w' \) is new on the branch

\[
\begin{align*}
\frac{w \rho_1 w_1 \cdots w_{m-1} \rho_m w'}{w' \rho_1 w'_1} & \quad \rho\text{-rule}
\end{align*}
\]

where \(w'_1, \ldots, w'_{n-1} \) are new on the branch

and \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in A \)

Figure III.2: Tableau rules for propositional inclusion modal logics.

The interpretation of the different kinds of extension rules is rather easy taking into account the possible-worlds semantics (see Section II.2). The rules for the formula of type \(\alpha \) and \(\beta \) are the usual ones of classical calculus (a part from the prefixes).

A formula of type \(\nu^t \) is true at world \(w \) if \(\nu_0^t \) is true in all world \(w' \) accessible from \(w \) by means of \(t \). Therefore, if \(w : \nu^t \) occurs on an open branch, we can add \(w' : \nu_0^t \) at the end.
of that branch for any \(w' \) which is accessible from \(w \) by means of the accessible relation associated with the modal operator \([t]\) (i.e., \(w \rho_t w' \) is true in that branch).

A formula of type \(\pi^t \) is true at the world \(w \) by means of \(t \) if there exists a world \(w' \) accessible from \(w \) in which \(\pi^t_0 \) is true. Therefore, if \(w : \pi^t \) occurs on an open branch, we can add \(w' : \pi^t_0 \) to the end of that branch, provided \(w' \) is new and \(w \rho_t w' \) is true in it.

The intuition behind the \(\rho \)-rule is quite simple. Let us suppose, for instance, that \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in A \) is an axiom of our modal logic \(T^A_\varphi \). If \(w = w_0 \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w_m = w' \) are true in a tableau branch then, \(w_i \) is accessible from \(w_{i-1} \) by means of \(s_i \) in the Kripke interpretation represented by that branch. Since \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in A \) then, the corresponding inclusion property (II.1) must hold. Thus, there must exist a set of worlds \(w = w'_0, w'_1, \ldots, w'_{n-1}, w' = w' \) such that \(w'_i \) is accessible from \(w'_{i-1} \) by means of \(t_i \). Thus, we can add the formulae \(w \rho_{t_1} w'_1, \ldots, w'_{n-1} \rho_{t_n} w' \) to that branch provided that \(w'_1, \ldots, w'_{n-1} \) are new. Note that, in the case of \(m = 0 \) we can add the formulae \(w \rho_{t_1} w'_1, \ldots, w'_{n-1} \rho_{t_n} w' \).

Remark III.2.1 It is worth noting that the \(\rho \)-rule works for the whole class of inclusion modal logics as well as the proofs in the next section. This is the advantages of our approach. On the other hand, the proposed tableau calculus can also be thought as being modular with respect to different modal logics than inclusion modal logics. Indeed, it can be extended in order to deal a wider class of modal logics as we show in Chapter VI.

We say that a tableau branch is closed if it contains \(w : T \varphi \) and \(w : F \varphi \) for some formula \(\varphi \). A tableau is closed if every branch in it is closed. Now, we are in the position to define the meaning of proof.

Definition III.2.2 Let \(L \) be a modal language and let \(A \) a set of inclusion axioms. Then, given a formula \(\varphi \), we say that a closed tableau for \(i : F \varphi \), using the tableau rules of Figure III.2, is a proof of \(\varphi \) (we also say that \(\varphi \) is \(T^A_\varphi \)-provable).

Example III.2.1 *(The fox and the raven)* We give here the proof of formula (3) from (1) and (2) in Example I.0.1. We use the symbol “\(\times \)” to say that a tableau branch is closed.

1. \(i : T[fox][praise]charmed(raven) \)
2. \(i : T[fox][always](charmed(raven) \supset (sing)dropped(cheese)) \)
3. \(i : F[fox][praise](sing)dropped(cheese) \)
4. \(w_1 : F[praise](sing)dropped(cheese) \)
5. \(i \rho_{fox} w_1 \)
6. \(w_2 : F(sing)dropped(cheese) \)
7. \(w_1 \rho_{praise} w_2 \)
8. \(w_1 : T[praise]charmed(raven) \)
9. \(w_2 : Tcharmed(raven) \)
10. \(w_1 : T[always](charmed(raven) \supset (sing)dropped(cheese)) \)
11. \(w_1 \rho_{always} w_1 \)
12. \(w_1 \rho_{always} w_2 \)
13. \(w_2 : T(charmed(raven) \supset (sing)dropped(cheese)) \)
III.2. A tableau calculus

14a. \(w_2 : F_{\text{charmed}}(raven) \)

14b. \(w_2 : T(\text{sing})\text{dropped}(cheese) \)

15b. \(w_3 : T\text{dropped}(cheese) \)

16b. \(w_2 \rho_{\text{sing}} w_3 \)

17b. \(w_3 : F\text{dropped}(cheese) \)

We denote with “a” and “b” the two branches which are created by the application of \(\beta \)-rule to step 13. Explanation:

1. and 2.: formula (1) and (2) from Example I.0.1; 3.: goal, formula (3) from Example I.0.1; 4. and 5.: from 3., by application of \(\pi \)-rule; 6. and 7.: from 4., by \(\pi \)-rule; 8.: from 1. and 5., by \(\nu \)-rule; 9.: from 8. and 7., by \(\nu \)-rule; 10.: from 2. and 5., by \(\nu \)-rule; 11.: by \((A_1)\) and \(\rho \)-rule; 12.: from 7. and 11., by axiom \((A_3)\) and \(\rho \)-rule; 13.: from 10. and 12., by \(\nu \)-rule; 14a. and 14b.: from 13., by \(\beta \)-rule, branch “a” closes; 15b. and 16b.: from 14., by \(\pi \)-rule; 17b.: from 6 and 16b., by \(\nu \)-rule, branch “b” closes.

Figure III.3: \(\rho \)-rule as rewriting rule: counter-model construction of Example III.2.2.

Example III.2.2 (*The friends puzzle*) We prove the first conjunct of the formula (5) in Example II.3.3 (the proof for the second conjunct is similar) from the set of formulae (1)-(4).

1. \(i : T[peter]time \)
2. \(i : T[\text{wife}(peter)][(peter]time \supset [john]time) \)
3. \(i : T[peter][john]place \)
4. \(i : T[peter][john](place \land time \supset \text{apointment}) \)
5. \(i : F[john][peter]\text{appointment} \)
6. \(w_1 : F[peter]\text{appointment} \)
7. \(i \rho_{john} w_1 \)
8. \(w_2 : F\text{appointment} \)
9. \(w_1 \rho_{peter} w_2 \)
10. \(i \rho_{peter} w_3 \)
11. \(w_3 \rho_{john} w_2 \)
III. Proof Theory

12. \(w_3 : T[john](\text{place} \land \text{time} \supset \text{appointment}) \)
13. \(w_2 : T(\text{place} \land \text{time} \supset \text{appointment}) \)
14a. \(w_2 : T\text{appointment} \)
14b. \(w_2 : F(\text{place} \land \text{time}) \)
15ba. \(w_2 : F\text{place} \)
16ba. \(w_3 : T[john]\text{place} \)
17ba. \(w_2 : T\text{place} \)
15bb. \(w_2 : F\text{time} \)
16bb. \(i_{\text{wife}(peter)} w_4 \)
17bb. \(w_3 : T([\text{peter}]\text{time} \supset [\text{john}]\text{time}) \)
18baa. \(w_3 : T[\text{john}]\text{time} \)
19baa. \(w_2 : T\text{time} \)
18bbb. \(w_3 : F[\text{peter}]\text{time} \)
19bbb. \(w_4 : F\text{time} \)
20bbb. \(w_3 \rho_{\text{peter}} w_4 \)
21bbb. \(i_{\text{peter}} w_4 \)
22bbb. \(w_4 : T\text{time} \)

We denote with “\(a\)” and “\(b\)” the two branches which are created by the application of \(\beta\)-rule to step 13., “\(ba\)” and “\(bb\)” the two ones that are created by the \(\beta\)-rule to step 14b., “\(bba\)” and “\(bbb\)” the two one created by the \(\beta\)-rule to step 17d.

Explanation: 1., 2., 3., and 4.: formula (1), (2), (3), and (4) from Example II.3.3; 5.: goal, formula (5) from Example II.3.3; 6. and 7.: from 5., by application of \(\pi\)-rule; 8. and 9.: from 6., by \(\pi\)-rule; 10. and 11.: from 7. and 9., by axiom (\(A_1\)) and \(\rho\)-rule; 12.: from 4. and 10., by \(\nu\)-rule; 13.: from 12. and 11., by \(\nu\)-rule; 14a. and 14b: from 13, by \(\beta\)-rule, branch “\(a\)” closes; 15ba. and 15bb.: from 14b., by \(\beta\)-rule; 16ba.: from 3. and 10, by \(\nu\)-rule; 17ba.: from 16ba. and 11, by \(\nu\)-rule, branch “\(ba\)” closes; 16bb.: from 10., by axiom (\(A_6\)) and \(\pi\)-rule; 17bb.: from 2 and 16bb., by \(\nu\)-rule; 18bbba. and 18bbba: from 17bb., by \(\beta\)-rule; 19bbba: from 18bbba. and 11., by \(\nu\)-rule, branch “\(bba\)” closes; 19bbb.. and 20bbb.: from 18bbb., by \(\pi\)-rule; 21bbb: from 10. and 10bbb., by axiom (\(A_3\)) and \(\rho\)-rule; 22bbb: from 1. and 21bbb., by \(\nu\)-rule, branch “\(bbb\)” closes.

Remark III.2.2 Note that, the \(\rho\)-rule can be regarded as a \textit{rewriting} rule which creates new paths among worlds according to the inclusion properties of the modal logic. For instance, in Example III.2.2, in steps 10. and 11. a new path, represented by \(i_{\rho_{\text{peter}} w_3} \rho_{\text{john}} w_2\), is created rewriting the path \(i_{\rho_{\text{john}} w_1} w_1 \rho_{\text{peter}} w_2\) (steps 7. and 9.), according to the inclusion property \(\mathcal{R}_{\text{peter}} \circ \mathcal{R}_{\text{john}} \supseteq \mathcal{R}_{\text{john}} \circ \mathcal{R}_{\text{peter}}\). Moreover, the path \(i_{\rho_{\text{wife}(peter)}} w_3\) comes from \(i_{\rho_{\text{peter}} w_3}\) as well as the path \(i_{\rho_{\text{peter}} w_4}\) comes from \(i_{\rho_{\text{peter}} w_3}, w_3 \rho_{\text{peter}} w_4\) (see Figure III.3).

Example III.2.3 (The bungling chemist) Assume that a chemical compound “\(c\)” is made pouring the elements “\(a\)” and, then, “\(b\)” into the same beaker. The two elements “\(a\)” and “\(b\)” are
III.2. A tableau calculus

not acid. We use the modal operator \([\text{pour}(a)]\) and \([\text{pour}(b)]\) to represent the action of pouring the element “\(a\)” and “\(b\)” respectively, and the modal operator \([\text{make}(c)]\) to denote the action of making the element “\(c\)”. Thus, we have the following axiom schemas:

\[(A_1) \quad [\text{pour}(a)][\text{pour}(b)]\varphi \supset [\text{make}(c)]\varphi;\]
\[(A_2) \quad [\text{pour}(b)][\text{pour}(a)]\varphi \supset [\text{make}(c)]\varphi.\]

The compound “\(c\)” is not acid, unless the two different elements are not measured out carefully.

Since the two elements alone are not acid, after pouring one into an empty beaker:

\[(1) \quad [\text{pour}(a)]\neg \text{acid}\]

it remains not acid. Note that, however, from (1) we cannot prove the formula \(\langle \text{pour}(a)\rangle \neg \text{acid}\) because the modal operator \([\text{pour}(a)]\) were not serial. Now, we add the observation that it is possible that after making the compound “\(c\)” it results acid:

\[(2) \quad \langle \text{make}(c)\rangle \text{acid}\]

and so the formula \(\langle \text{pour}(a)\rangle \neg \text{acid}\) is provable. Since also the formula \(\langle \text{pour}(a)\rangle \langle \text{pour}(b)\rangle \text{acid}\) from (1) and (2), we can deduce that, when the compound “\(c\)” is acid, a wrong measure of element “\(b\)” with respect to the amount of element “\(a\)” already in the beaker happened. The proof is the following (see also Figure III.4):

1. \(i : T[\text{pour}(a)]\neg \text{acid}\)
2. \(i : T[\text{make}(c)]\text{acid}\)
3. \(i : F(\langle \text{pour}(a)\rangle \neg \text{acid} \land \langle \text{pour}(a)\rangle \langle \text{pour}(b)\rangle \text{acid})\)
4. \(w_1 : T\text{acid}\)
5. \(i \rho_{\text{make}(c)} w_1\)
6. \(i \rho_{\text{pour}(a)} w_2\)
7. \(w_2 \rho_{\text{pour}(b)} w_1\)
8a. \(i : F\langle \text{pour}(a)\rangle \neg \text{acid}\)
9a. \(w_2 : F\neg \text{acid}\)
10a. \(w_2 : T\neg \text{acid}\)
 \(\times\)
8b. \(i : F\langle \text{pour}(a)\rangle \langle \text{pour}(b)\rangle \text{acid}\)
9b. \(w_2 : F\langle \text{pour}(b)\rangle \text{acid}\)
10b. \(w_1 : F\text{acid}\)
 \(\times\)
III. Proof Theory

We denote with “a” and “b” the two branches which are created by the application of β-rule to step 3. Explanation: 1. and 2.: formula (1) and (2); 3.: goal; 4. and 5.: from 2., by application of π-rule; 6. and 7.: from 5., by axiom (A_1) and ρ-rule; 8a. and 8b.: from 3., by β-rule; 9a.: from 8a. and 6., by π-rule; 10a.: from 1. and 6., by β-rule, branch “a” closes; 9b.: from 8b. and 6., by ν-rule; 10b.: from 9b. and 7., by ν-rule, branch “b” closes. 15b. and 16b.: from 14., by π-rule.

III.3 Soundness and completeness

In this section we discuss the soundness and completeness of the tableau calculus presented in the previous section. The proof follows the guideline of [Fitting, 1983, Chapter 8], and [Goré, 1995, Section 6].

Soundness

In order to prove the soundness we first prove that the tableau rules preserve the satisfiability but, to do this, we have to give more formally its meaning. Let L be a modal language and let A be a set of inclusion axioms. Given a set of prefixed signed formulae and accessibility relation formulae S of L and a Kripke A-interpretation $M = \langle W, \{R_t \mid t \in \text{MOD}\}, V \rangle$, we say $v \in W$ is R_t-idealizable if there is some $v' \in W$ such that $(v, v') \in R_t$. Now, we name A-mapping a mapping \mathcal{I} from the subset of constant world symbols W_C that occur in some accessibility relation formula of S to W such that if $w \rho_t w' \in S$ and $I(w) \in R_t$-idealizable then $(I(w), I(w')) \in R_t$. We say S is A-satisfiable under the A-mapping \mathcal{I} in the Kripke A-interpretation M if, for each $w : T \varphi$, $M, I(w) \models_A \varphi$ and, for each $w : F \varphi$, $M, I(w) \not\models_A \varphi$. More generally, we call a set S of prefixed signed formulae and accessibility relation formulae A-satisfiable if S is A-satisfiable under some A-mapping.

Therefore, a branch of a tableau is A-satisfiable if the set of prefixed signed formulae on it is A-satisfiable, and a tableau is A-satisfiable if some its branch is A-satisfiable.

Proposition III.3.1 Let T be an A-satisfiable prefixed tableau and let T' be the tableau which is obtained from T by means of one of the extension rules given in Figure III.2. Then, T' is also A-satisfiable.

Proof. The proof is made by giving an A-mapping between prefixes which appear in a tableau and possible worlds of an appropriate Kripke A-interpretation, whose accessibility relation respects the structure imposed by the accessibility relation formulae of the tableau. In particular, since a tableau is A-satisfiable if one of its branches is, we can focus on application of the extension rules to that branch. The cases when the applied extension rule is either the α-rule or the β-rule are simple.

Let us assume that the branch S is A-satisfiable under the A-mapping \mathcal{I} in the Kripke A-interpretation $M = \langle W, \{R_t \mid t \in \text{MOD}\}, V \rangle$ and the applied extension rule is the ν-rule to obtain S'. Let us suppose $w : \nu^t \in S$ and $S' = S \cup \{w' : \nu_0^t\}$, where w' is used on S.
Thus, $M, I(w) \models_{\mathcal{A}} \nu^t$ and I is already defined for w' and $(I(w), I(w')) \in \mathcal{R}_t$. It follows that $M, I(w') \models_{\mathcal{A}} \nu^t_0$ by definition of satisfiability relation.

The applied extension rule is the π-rule to obtain S'. Let us suppose $w : \pi^t \in S$ and $S' = S \cup \{ w : \pi^t_0, w \rho_t w' \}$, where $w' \in \mathcal{W}_C$ is new on S and, therefore, I is not defined on w'. Now, $M, I(w) \models_{\mathcal{A}} \pi^t$, hence, by definition of satisfiability relation, there exists a $v \in W$ such that $(I(w), v) \in \mathcal{R}_t$ and $M, v \models_{\mathcal{A}} \pi^t_0$. This means that $I(w)$ is \mathcal{R}_t-idealizable and, hence, it is enough to extend the definition of I by setting $I(w') = v$.

The applied extension rule is the ρ-rule to obtain S'. Let us assume $w \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w' \in S$ and $S' = S \cup \{ w \rho_{t_1} w'_1, \ldots, w_{n-1} \rho_{t_n} w' \}$, where $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi$ is in \mathcal{A} and w'_1, \ldots, w'_n are new on S. Then, I is already defined for $w, w_1, \ldots, w_{m-1}, w'$ and $(I(w), I(w)) \in \mathcal{R}_{s_1}, \ldots, (I(w_{m-1}), I(w')) \in \mathcal{R}_{s_m}$. Since M is a Kripke \mathcal{A}-interpretation, there exist v_1, \ldots, v_{n-1} in W such that $(I(w), v_1) \in \mathcal{R}_{t_1}, \ldots, (v_{n-1}, I(w')) \in \mathcal{R}_{t_n}$. This means that $I(w)$ is \mathcal{R}_{t_l}-idealizable, therefore, we can extend the definition of I by setting $I(w'_1) = v_1$. Now, $I(w'_1)$ is \mathcal{R}_{t_2}-idealizable then, we can extend the definition of I by setting $I(w'_2) = v_2$ and so on until $I(w'_{n-1}) = v_{n-1}$. This concludes the proof. □

The soundness is stated by the following.

Theorem III.3.1 (Soundness) Let \mathcal{L} be a modal language and let \mathcal{A} be a set of inclusion axiom schemas, if a formula φ of \mathcal{L} is $\mathcal{T}_{\mathcal{A}}$-provable then, it is \mathcal{A}-valid.

Proof. By contradiction, let us assume that φ is $\mathcal{T}_{\mathcal{A}}$-provable and $M, w \not\models_{\mathcal{A}} \varphi$, for some Kripke \mathcal{A}-interpretation $M = \langle W, \{ \mathcal{R}_t \mid t \in \text{MOD} \}, V \rangle$. The tableau which starts with the formula $i : \mathsf{F}\varphi$ is \mathcal{A}-satisfiable by means of M by introducing an \mathcal{A}-mapping I and setting $I(i) = w$. By Proposition III.3.1, each possible tableau obtained from $i : \mathsf{F}\varphi$ is \mathcal{A}-satisfiable, but this is a contradiction because φ is $\mathcal{T}_{\mathcal{A}}$-provable. □

Completeness

Before showing the completeness result we describe a systematic tableau procedure that produces a tableau proof if one exists and, otherwise, it produces all information necessary to construct a counter-model. Note that, strong completeness is not considered in the following.

Following [Fitting, 1983, Chapter 8], in order to deal with the prefixed signed formulae of the form $w : \nu^t$ and, in particular, to make sure $w' : \nu^t_0$ has been introduced for each constant world symbol w' such that $w \rho_t w'$ belongs to the considered branch, whenever we apply ν-rule to a prefixed signed formula of type ν^t, we add a fresh occurrence of it at the end of that branch. Therefore, the systematic proof procedure may consider each formula only once. To remember this it labels that formula as finished. Moreover, in the systematic procedure, “updating a branch with a formula” means adding the formula to end of the branch if it does not already appear on it, but doing nothing if the formula already appears on that one.
III. Proof Theory

Definition III.3.1 (Systematic tableau procedure) Let \mathcal{L} be a model language and let \mathcal{A} be a set of inclusion axioms. Then, a systematic attempt to produce a proof of a formula φ of \mathcal{L} in the modal logic I^A_L is constructed by the systematic procedure shown in Figure III.5.

It is easy to see that the systematic procedure presented is fair: it considers each formula which may appear on the tableau (see [Goré, 1995, Section 6] for a similar argumentation). Hence, when we start with a formula $i : \Box \varphi$ either it terminates and every branch on it is closed proving φ or it must provide an open branch which contains “enough information” to construct a counter-model to φ, that is, a Kripke interpretation in which $\neg \varphi$ is satisfiable. Note that it is possible to show the Konig Lemma is applicable to tableau trees generated by means of our systematic procedure, hence if the attempt to find a proof for φ fails then, an open branch must be exhibit (either finite or infinite).

The meaning of “enough information” is specified by the following definition.

Definition III.3.2 Let \mathcal{L}, \mathcal{A}, and S be a modal language, a set of inclusion axiom schemas, and a set of prefixed signed and accessibility relation formulae in \mathcal{L}, respectively. Then, we say that S is \mathcal{A}-downward saturated if:

1. for no atomic formula φ and no prefix w, we have $w : T \varphi \in S$ and $w : \Box \varphi \in S$;
2. if $w : \alpha \in S$, then $w : \alpha_1 \in S$ and $w : \alpha_2 \in S$;
3. if $w : \beta \in S$, then $w : \beta_1 \in S$ or $w : \beta_2 \in S$;
4. if $w : \nu^i \in S$, then $w' : \nu^i_0 \in S$ for all w' such that $w \rho_i w' \in S$;
5. if $w : \pi^i \in S$, then $w' : \pi^j_0 \in S$ for some w' such that $w \rho_i w' \in S$;
6. if $w \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w' \in S$ and $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in \mathcal{A}$, then $w \rho_{t_1} w'_1, \ldots, w'_{n-1} \rho_{t_n} w' \in S$, for some w'_1, \ldots, w'_{n-1}.

Proposition III.3.2 Let φ be a formula of \mathcal{L} be a formula in the modal logic language I^A_L for which the systematic procedure of Figure III.5 produces an open branch S then, S is a \mathcal{A}-downward saturated set.

Proof. It is easy to verify that the systematic tableau procedure of Figure III.5 is closed with respect to every extension rule of the calculus. As a result we have the thesis. \Box

Intuitively, this proposition together with the systematic procedure play the same role of the maximal-consistent-set construction used in [Fitting, 1973]. Now, we are ready to construct our counter-model.

Definition III.3.3 (Canonical model) Given a modal language \mathcal{L}, let S be a set of prefixed signed formulae and accessibility relation formulae in \mathcal{L} that is \mathcal{A}-downward saturated. The canonical model \mathcal{M}^A_c is the ordered triple $(W, \{R_t \mid t \in \text{MOD}\}, V)$, where:
III.3. Soundness and completeness

begin
put $i : F \varphi$ at the origin;
while the tableau is open and some formula is not finished do begin

$z :=$ the closest to the root and leftmost not finished formula;
for each open branch S which passes through z do

case z of

$w : \alpha$:
update S with $w : \alpha_1$ and $w : \alpha_2$;
update S with $w : \alpha_2$

$w : \beta$:
split the end of S;
update the left fork with $w : \beta_1$;
update the right fork with $w : \beta_2$

$w : \nu^t$:
for each $w \rho_t w' \in S$ do
update S with $w' : \nu_0^t$;
add $w : \nu^t$ to the end of S

$w : \pi^t$:
choose w' new on the branch S;
update S with $w' : \pi_0^t$;
update S with $w \rho_s w'$

$w : \rho_s \, w'$.
for each $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_i] \ldots [s_m] \varphi \in \mathcal{A}$ do
for each set
$\{ w_0 \rho_s, w_1, \ldots, w \rho_s, w', \ldots, w_{m-1} \rho_s w_m \} \subseteq S$
such that $w_{j-1} \rho_s w_j$ precedes $w \rho_s w'$ along S,
where $1 \leq j \leq m$, ($i \neq j$), do begin

choose $\{ w'_1, \ldots, w'_{n-1} \}$ new on the branch S;
update S with $w_0 \rho_{i_1} w'_1, \ldots, w'_{n-1} \mathcal{R}_{i_o} w_m$

end

end
label z finished
end

end.

Figure III.5: A systematic tableau procedure for propositional inclusion modal logics.
III. Proof Theory

- $W = \{ w \mid w \text{ is used on } S \}$;
- for each $t \in \text{MOD}$, $R_t = \{(w, w') \in W \times W \mid w \rho_t w' \in S\}$;
- for each $p \in \text{VAR}$ and each $w \in W$, we set
 $$V(w, p) = \begin{cases} T & \text{if } w : Tp \in S \\ F & \text{otherwise} \end{cases}$$

Proposition III.3.3 The canonical model \mathcal{M}^A_c given by Definition III.3.3 is a Kripke A-interpretation.

Proof. We have to prove that each inclusion properties in IP^A_L is satisfied by \mathcal{M}^A_c. Let us suppose that $R_{t_1} \circ \ldots \circ R_{t_m} \supseteq R_{s_1} \circ \ldots \circ R_{s_m} \in IP^A_L$, and $(w, w') \in R_{t_1} \circ \ldots \circ R_{t_m}$, we have to show $(w, w') \in R_{t_1} \circ \ldots \circ R_{t_m}$. If $(w, w') \in R_{s_1} \circ \ldots \circ R_{s_m}$ then, by Definition III.3.3, there exist $w_1, \ldots, w_{m-1} \in W_C$ such that $w \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w'$ belong to S. Now, since by hypothesis S is A-downward saturated, by point (6) of Definition III.3.2, $w, \rho_{t_1} w'_1, \ldots, w'_{m-1} \rho_{t_m} w' \in S$, for some w'_1, \ldots, w'_{m-1} used in S, from which our thesis.

The following lemma states that the canonical model which is build from an open branch obtained from the systematic attempt to prove a formula φ is a counter-model of φ, that is it satisfies $\neg \varphi$ (model existence theorem).

Lemma III.3.1 Given a modal language L, if S is a set of prefixed signed formulae and accessibility relation formulae of L that is A-downward saturated then S is A-satisfiable.

Proof. Suppose S is A-downward saturated. For every formula φ and every prefix w, we have that if $w : T\varphi \in S$ then $\mathcal{M}^A_c, w \models_A \varphi$ and if $w : F\varphi \in S$ then $\mathcal{M}^A_c, w \not\models_A \varphi$. That is, the identity mapping $I(w) = w$ is an A-mapping for S in the Kripke A-interpretation \mathcal{M}^A_c. The proof is by induction on the structure of φ but, for simplicity, we use the uniform notation of Smullyan already introduced. The case of formulae of type α and β are trivial. Let us suppose $w : \nu^t \in S$. Then, since S is A-downward saturated, $w' : \nu^0 \in S$ for all w' such that $w \rho_t w' \in S$. By inductive hypothesis, we have that $\mathcal{M}^A_c, w' \models_A \nu^0$, for each world w' such that $(w, w') \in R_t$ and, hence, $\mathcal{M}^A_c, w \models_A \nu^t$ by definition of satisfiable relation. Now, let us assume, now, $w : \pi^t \in S$. Then, since S is A-downward saturated, $w' : \pi^0 \in S$ for some w' such that $w \rho_t w' \in S$. By inductive hypothesis, we have that $\mathcal{M}^A_c, w' \models_A \pi^0$, for some world w' such that $(w, w') \in R_t$ and, hence, $\mathcal{M}^A_c, w \models_A \pi^t$ by definition of satisfiable relation.

Now, we are in the position to prove the completeness of the presented tableau calculus.

Theorem III.3.2 (Completeness) Let L be a modal language and let A be a set of inclusion axiom schemas, if a formula φ of L is A-valid then, φ is T^A_L-provable.

Proof. We prove the contrapositive, by making use of the previous results. Let us assume that φ is not T^A_L-provable. Then, the tableau for φ must contain some open branch S. By Proposition III.3.2, S is A-downward saturated and, therefore, we can build a Kripke A-interpretation in which $\neg \varphi$ is satisfied by Lemma III.3.1. Thus, φ is not A-valid.
Chapter IV
Decidability

In the previous chapter we have defined a tableau method for the class of inclusion modal logics. The completeness result was obtained by means of a systematic tableau procedure that always finds a counter-model for a given formula if there exists one. As a result, the completeness establishes the semi-decidability of the inclusion modal logics. On the other hand, we wonder if this class of logics is also decidable, that is if it is possible to define a decision procedure which works for the whole class of propositional inclusion modal logics. This procedure should halt both if a counter-model exists and if a counter-model does not exist. Unfortunately, a such algorithm does not exist [Fariñas del Cerro and Penttonen, 1988]. Nevertheless, if more restricted classes of inclusion modal logics are considered, a decidability result can be established.

In this chapter, we show some undecidability and decidability results about inclusion modal logics. In particular, in order to show our undecidability results, we use the Fariñas del Cerro and Penttonen’s technique for associating an inclusion modal logic to a formal grammar, while we use the Fischer and Ladner’s filtration method in order to show our decidability result. It is interesting to note that our results about (un)decidability are in the line of the ones established in [Fischer and Ladner, 1979; Harel et al., 1983; Harel and Paterson, 1984] for the Propositional Dynamic Logic [Harel, 1984; Kozen and Tiuryn, 1990].

IV.1 Grammars, languages and modal logics

In the line of [Fariñas del Cerro and Penttonen, 1988], in this section we give a method for associating with an inclusion modal logic to a formal grammar. This allows to prove some results about undecidability and decidability of inclusion modal logics.

A grammar is a quadruple $G = (V, T, P, S)$, where V and T are disjoint finite sets of variables and terminals, respectively. P is a finite set of productions, each production is of the form $\alpha \rightarrow \beta$, where the form of α and β depends on the type of grammar as reported in Figure IV.1. Finally, $S \in V$ is a special variable called the start symbol [Hopcroft and Ullman, 1979].
IV. Decidability

<table>
<thead>
<tr>
<th>Class of language</th>
<th>Form of production</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-0</td>
<td>$\alpha \in (V \cup T)^V(V \cup T)^$ $\beta \in (V \cup T)^*$</td>
</tr>
<tr>
<td>type-1</td>
<td>$\alpha \in (V \cup T)^V(V \cup T)^$ $\beta \in (V \cup T)^+$ $</td>
</tr>
<tr>
<td>type-2</td>
<td>$\alpha \in V$ $\beta \in (V \cup T)^*$</td>
</tr>
<tr>
<td>type-3</td>
<td>$\alpha \in V$ $\beta = \sigma A$ or $\beta = \sigma$ $\sigma \in T^*$, $A \in V$</td>
</tr>
</tbody>
</table>

Figure IV.1: Production grammar form for different classes of languages. We denote by “L^*” the Kleene closure of the language L (i.e. it denotes zero or more concatenation of L) and by “$+” the positive closure of L (i.e. it denotes one or more concatenation of L) [Hopcroft and Ullman, 1979].

We say that the production $\alpha \rightarrow \beta$ is applied to the string $\gamma \alpha \delta$ to directly derive $\alpha \beta \delta$ in grammar G, written $\gamma \alpha \delta \Rightarrow_G \gamma \beta \delta$. The relation derives, \Rightarrow_G^*, is the reflexive, transitive closure of \Rightarrow_G. The language generated by a grammar G, denoted by $L(G)$ is the set of words $\{w \in T^* \mid S \Rightarrow_G^* \}$.

Given a tableau branch S, let w_0 and w_n two prefixes used on S, a path $\xi(w_0, w_n)$ is a collection $\{w_0 \rho_{i_1} w_1, w_1 \rho_{i_2} w_2, \ldots, w_{n-1} \rho_{i_n} w_n\}$ of accessibility relation formulae in S. We say that the path $\xi(w_0, w_n)$ directly ρ-derives the path $\xi'(w_0, w_n)$ if the path $\xi'(w_0, w_m)$ is obtained from $\xi(w_0, w_n)$ by means of the application of the ρ-rule to a sub-path of $\xi(w_0, w_n)$. The relation ρ-derive is the reflexive, transitive closure of the relation directly ρ-derive.

Example IV.1.1 Let us consider the structure of Figure III.3. Then, for instance, the path $\xi_1(i, w_2) = \{i \rho_{\text{john}} w_1, w_1 \rho_{\text{peter}} w_2\}$ directly ρ-derives the path $\xi_2(i, w_2) = \{i \rho_{\text{peter}} w_3, w_3 \rho_{\text{john}} w_2\}$, the path $\xi_3(i, w_4) = \{i \rho_{\text{peter}} w_3, w_3 \rho_{\text{peter}} w_4\}$ directly ρ-derives the path $\xi_4(i, w_4) = \{i \rho_{\text{wife}(\text{peter})} w_3, w_3 \rho_{\text{peter}} w_4\}$, and the path $\xi_1(i, w_2)$ ρ-derives the path $\xi_5(i, w_2) = i \rho_{\text{wife}(\text{peter})} w_3, w_3 \rho_{\text{john}} w_2$.

Due to the similarity between inclusion modal axioms and the production rules in a grammar, we can associate to a given grammar a corresponding inclusion modal logic. More precisely, following [Fariñas del Cerro and Penttonen, 1988], given a formal grammar $G = (V, T, P, S)$, we define an inclusion modal logic \mathcal{I}_G^A based on G as follows:

- the set MOD is $(V \cup T)$;
- the set \mathcal{A} of inclusion axioms contains a schema $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi$ for each production $t_1 \cdots t_n \rightarrow s_1 \cdots s_m \in P$.

IV.1. Grammars, languages and modal logics

We call *unrestricted*, *context sensitive*, *context-free*, and *right-regular* modal logic an inclusion modal logic based on a type-0, type-1, type-2, and type-3 grammar, respectively.

Example IV.1.2 Consider, for instance, the grammar G, where:

- $V = \{A\}$;
- $T = \{b\}$;
- $P = \{A \to \varepsilon, A \to AA, A \to bA\}$;
- $S = A$.

Then, the inclusion modal logic \mathcal{I}_A^L based on G contains the inclusion axioms:

- $[A] \varphi \supset \varphi$,
- $[A] \varphi \supset [A][A] \varphi$, and
- $[A] \varphi \supset [b][A] \varphi$

(i.e., \mathcal{I}_A^L is axiomatized by $KT4(A) + 4M(A, b)$).

Remark IV.1.1 Note that, the class of unrestricted inclusion modal logics is equivalent to the class of inclusion modal logics.

If $\xi(w_0, w_n)$ is the path $\{w_0, \rho_{t_1}, w_1, \ldots, w_{n-1}, \rho_{t_n}, w_n\}$, we denote by $\xi^*(w_0, w_n)$ the sequence of labels $t_1 \cdots t_n$ (called word). It is easy to verify the following proposition.

Proposition IV.1.1 If $\xi(w_0, w_n)$ is a path in a tableau branch starting from a formula of an inclusion modal logic \mathcal{I}_A^L based on a grammar G then, $\xi(w_0, w_n)$ ρ-derives a path $\xi^*(w_0, w_n)$ if and only if $\xi^*(w_0, w_n) \Rightarrow_G \xi^*(w_0, w_n)$.

An interesting case (that will be used later on) is the following. Consider the type-3 grammar $G = (\{S\}, T, P, S)$, where the set P contains the productions $S \to t$ and $S \to St$ for each $t \in T$, then $L(G) = T^*$. Let \mathcal{I}_A^L be the inclusion modal logic based on G and let us consider the formula

$$\varphi_T(q) = \bigwedge_{t \in T} ((t)q \land [S](t)q)$$

where $q \in VAR$. Then, a tableau starting from $i : T \varphi_T(q)$ is formed by only one branch that goes on forever. The interesting is that for each word $x \in T^*$ the tableau branch contains a path $\xi(i, w)$ such that $\xi(i, w) = x$ (see Figure IV.2).
IV. Decidability

IV.2 Undecidability results for inclusion modal logics

The tableau method developed in the previous chapter allows to generalize the Fariñas del Cerro and Penttonen’s observations about the correspondence between the membership problem and the validity problem of inclusion logics as stated by the following theorem.

Theorem IV.2.1 Given a grammar $G = (V, T, P, S)$, let \mathcal{L}_G^A be the inclusion modal logic based on G. Then, for any propositional variable p of L, $\models_A [S]p \supset [s_1] \ldots [s_m]p$ if and only if $S \Rightarrow_G s_1 \ldots s_m$, where the s_i’s are in $V \cup T$.

Proof.

(*If* part) Let us suppose that $\models_A [S]p \supset [s_1] \ldots [s_m]p$, then, the tableau starting from:

1. $i: F([S]p \supset [s_1] \ldots [s_m]p)$

closes by Theorem III.3.2. Now, by applying the β-rule we obtain:

2. $i: T[S]p$
3. $i: F[s_1] \ldots [s_m]p$

and applying m times the π-rule:

4. $w_1 : F[s_2] \ldots [s_m]p$
5. $i \rho_{s_1} w_1$

\ldots

$2m + 3. w_m : Fp$

$2m + 4. w_{m-1} \rho_{s_m} w_m$

Since, by hypothesis, the above tableau closes, the only way for this to happen is that after a finite number of applications of the ρ-rule we have the prefixed signed formula $w_m : Tp$ in the branch. This happens if the path $\xi(i, w_m) = \{ i \ \rho_{s_1} w_1, \ldots, w_{m-1} \ \rho_{s_m} w_m \} \ \rho$-derives the path $\xi'(i, w_m) = \{ i \ \rho_{s} w_m \}$, that is, if there exits a derivation $\overline{\xi}(i, w_m) = S \Rightarrow_G \xi(i, w_m) = s_1 \ldots s_m$ by Proposition IV.1.1.

(*Only if* part) Assume that there
exists a derivation $S \Rightarrow_G s_1 \cdots s_m$. Since a systematic attempt to prove the formula $i : F([S]p \supset [s_1] \ldots [s_m]p)$ generates a path $\xi(i, w_m) = \{i \rho s_1 w_1, \ldots, w_{m-1} \rho s_m w_m\}$ and $\xi(i, w_m) \rho$-derives the path $\xi'(i, w_m) = \{i \rho w_m\}$, after a finite number of steps, the only branch of the tableau closes by $w_m : Tp$ and $w_m : Fp$. □

Thus, taking into account that it is undecidable to establish if a word belongs to the language generated by an arbitrary type-0 grammar [Hopcroft and Ullman, 1979], we have the following corollary.

Corollary IV.2.1 The validity problem for the class of inclusion modal logics is undecidable.

Indeed, this result has already been shown in [Fariñas del Cerro and Penttonen, 1988]. However, Fariñas del Cerro and Penttonen were not able to prove Theorem IV.2.1 for the modal logics based on type-0 grammars. This is why they focused on a subclass of the inclusion modal logics, that they call Thue logics, proving the undecidability of inclusion modal logics by showing that the Thue logics are undecidable. A Thue logic is an inclusion modal logic based on a Thue system [Book, 1987], that is a type-0 grammar whose productions are symmetric. Thus, the Thue logics are inclusion modal logics characterized by axiom schemas where the implication is replaced by the bimimplication. Since the word problem for the Thue systems is proved undecidable (see [Book, 1987]), proving that a formula is a theorem of a Thue logic will be undecidable.¹

In [Fariñas del Cerro and Penttonen, 1988] some problems are left open. We wonder if more restricted classes of logics (e.g. modal logics based on context sensitive, context-free, regular grammars) are decidable. In the following, we show that also the class of context sensitive and context-free inclusion modal logics are undecidable by reducing the solvability of the problem $L_1 \cap L_2 \neq \emptyset$ (where L_1 and L_2 are languages generated by either type-1 or type-2 grammars) to the satisfiability of formulas of context sensitive and context-free inclusion modal logics.

Theorem IV.2.2 Let $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$ be two grammars such that $V_1 \cap V_2 = \emptyset$ and $T_1 \neq T_2 \neq \emptyset$. Then, there exists an inclusion modal logic \mathcal{L}_E^A and a formula φ of \mathcal{L} such that $\models \varphi$ if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.

Proof. Let us define the grammar $G = (V, T, P, S)$, where:

- $V = V_1 \cup V_2 \cup \{S\}$;
- $T = T_1 = T_2$;
- $P = P_1 \cup P_2 \cup \{S \rightarrow t, S \rightarrow S t \mid t \in T\}$;

¹The Thue systems have also been used in [Kranacht, 1995] to define logics similar to those studied in [Fariñas del Cerro and Penttonen, 1988], which, however, are not in the class of inclusion modal logics because modal operators enjoy some further properties like seriality and determinism. In [Kranacht, 1995] undecidability results are proved for this class of logics.
• $S \not\in V_1$ and $S \not\in V_2$.

Then, we assume as I^A the inclusion modal logic based on G and

$$\varphi = \varphi_T(q) \supset ([S_1]p \supset \langle S_2 \rangle p)$$

where $p, q \in \text{VAR}$ and $p \neq q$. (If part) Suppose that $\models_A \varphi$ then, the tableau starting from:

1. $i : F(\varphi_T(q) \supset ([S_1]p \supset \langle S_2 \rangle p))$

must close. Now, by applying twice the β-rule we obtain:

2. $i : T(\varphi_T(q))$
3. $i : T[S_1]p$
4. $i : F[S_2]p$

Since, by hypothesis, the above tableau closes, the only way for this to happen is that after a finite number of steps we must have a prefixed signed formula $w : Tp$ and a prefixed signed formula $w : Fp$ for some prefix w such that $\xi(i, w) = y$, for any $y \in T^*$, after a finite number of steps we have a path $\xi'(i, w')$ such that $\xi'(i, w') = x$. Thus, we have also a path $\xi'_1(i, w') = \{i \rho_{S_1} w'\}$ and a path $\xi'_2(i, w') = \{i \rho_{S_2} w'\}$ by application of a finite number of the ρ-rule. This is enough to close the only branch of the tableau by $w' : Tp$ and $w' : Fp$. □

Thus, taking into account that if G_1 and G_2 are two arbitrary type-1 (type-2) grammars then it is undecidable if $L(G_1) \cap L(G_2) \neq \emptyset$ [Hopcroft and Ullman, 1979], we have the following corollary.

Corollary IV.2.2 The validity problem for the class of context-free inclusion modal logic is undecidable.

Remark IV.2.1 Since the problem if $L_1 \cap L_2 \neq \emptyset$ is undecidable also for the class of deterministic type-2 grammars, the validity problem for the inclusion modal logics based on this kind of grammars is undecidable.
IV.3 A decidability result for inclusion modal logics

In the previous section we have shown that it is not possible to supply a general decision procedure for the class of inclusion modal logics based on unrestricted, context sensitive and context-free grammars. In this section, instead, we give a decidability result for the inclusion modal logics based on right type-3 formal grammars, that is, those ones based on grammars whose productions are of the form \(A \rightarrow \sigma \) or \(A \rightarrow \sigma A' \), where \(A \) and \(A' \) are variables and \(\sigma \) a string of terminals. In order to do this, we modify the filtration method for dynamic logic extending the definition of Fisher-Ladner closure [Fischer and Ladner, 1979].

Remark IV.3.1 Let \(G = (V, T, P, S) \) be a right type-3 grammar and let \(A \) be a variable. Then, every sentential form derived from \(A \) has the form \(\sigma X \), where \(\sigma \in T^* \) and either \(X \in T \) or \(X \in V \).

Definition IV.3.1 Let \(G = (V, T, P, S) \) be a right type-3 grammar and let \(A \) be a variable. Then, a derivation of a sentential form \(\sigma X \) from \(A \) is said to be non-recursive if and only if each variable of \(V \) appears in the derivation, apart from \(\sigma X \), at most once.

Some useful properties about non-recursive derivations of right type-3 grammars are the following.

Proposition IV.3.1 Let \(G = (V, T, P, S) \) be a right type-3 grammar, let \(A_0 \) be a variable and let \(A_0 \Rightarrow_G^* \sigma_1 \cdots \sigma_n A_n \Rightarrow_G \sigma_1 \cdots \sigma_n \sigma_{n+1} A_{n+1} \) be a derivation, where either \(A_{n+1} \in V \) or \(A_{n+1} \in T \) and \(A_i \rightarrow \sigma_{i+1} A_{i+1} \in P \), for \(i = 0, \ldots, n \). Then, there exists a non-recursive derivation \(A_0 \Rightarrow_G^* \sigma_1 \cdots \sigma_i \sigma_{n+1} A_{n+1} \), \(0 \leq i \leq n \).

Proof. If the derivation \(A_0 \Rightarrow_G^* \sigma_1 \cdots \sigma_n A_n \Rightarrow_G \sigma_1 \cdots \sigma_n \sigma_{n+1} A_{n+1} \) is not non-recursive then, there are \(A_i \) and \(A_j \), with \(0 \leq i < j \leq n \), such that \(A_i = A_j \). That is, \(A_0 \Rightarrow_G^* \sigma_1 \cdots \sigma_i A_i \Rightarrow_G^* \sigma_1 \cdots \sigma_i \cdots \sigma_j A_j \Rightarrow_G^* \sigma_1 \cdots \sigma_i \sigma_{n+1} A_{n+1} \). Thus, there exists a derivation \(A_j \Rightarrow_G^* \sigma_{j+1} \cdots \sigma_{n+1} A_{n+1} \) and, therefore, a derivation \(A_0 \Rightarrow_G^* \sigma_1 \cdots \sigma_i A_j \Rightarrow_G^* \sigma_1 \cdots \sigma_i \sigma_{j+1} \cdots \sigma_{n+1} A_{n+1} \). Now, if this derivation is non-recursive we have our thesis otherwise we repeat the above transformation on the new derivation just obtained. Now, the number of variables that appear on the original derivation is finite and it decreases at any stage of the transformation, moreover, the cardinality of the set of variables is also finite. Thus, the process always terminates leading to a non-recursive derivation. \(\square \)

Proposition IV.3.2 Let \(G = (V, T, P, S) \) be a right type-3 grammar. Then, the number of non-recursive derivations that start with a variable of \(G \) is bounded.

Proof. The maximum length (number of directly derivation steps) of a non-recursive derivation is equal to the cardinality \(|V|\) of the set of variables \(V \). Then, let \(n \) be the maximum number of productions associated to a variable of \(V \), a bound of the number of different non-recursive derivations starting from a fixed variables is \(\sum_{i=1}^{|V|} n^i \). Therefore, the number of different non-recursive derivations that start with a variable of \(G \) is bounded by \(\operatorname{der}_G = |V| \cdot \sum_{i=1}^{|V|} n^i \). \(\square \)
Let $G = (V, T, P, S)$ be a right type-3 grammar and I^A_L the regular inclusion modal logic based on G. Then, we define the Fischer-Ladner closure $FL(\varphi)$ of a formula φ of L (that uses only existential modal operators, or, and negation\(^2\)) as follows:

- if $\psi \lor \psi' \in FL(\varphi)$ then $\psi \in FL(\varphi)$ and $\psi' \in FL(\varphi)$;
- if $\neg \psi \in FL(\varphi)$ then $\psi \in FL(\varphi)$;
- if $(t)\psi \in FL(\varphi)$ and $t \in T$ then $\psi \in FL(\varphi)$;
- if $(A)\psi \in FL(\varphi)$, $A \in V$, and there is a non-recursive derivation $A \Rightarrow^*_G t_1 \cdots t_n X$, where $t_1, \ldots, t_n \in T$ and either $X \in T$ or $X \in V$, then $(t_1) \cdots (t_n)(X) \psi \in FL(\varphi)$.

It is worth noting that the Fischer-Ladner closure is finite for any formula of a right regular inclusion modal logic because the number of non-recursive derivations is finite if the length of the formula φ is finite. In particular, let $|\varphi|$ be the length (number of symbols) of φ then, $|FL(\varphi)| \leq |\varphi| \cdot m \cdot |V| \cdot \text{der}_G$, where m is the maximum length of a production of the grammar.\(^3\)

Let I^A_L be the inclusion modal logic based on a type-3 grammar $G = (V, T, P, S)$ and consider a Kripke A-interpretation $M = (W, \{R_t \mid t \in \text{MOD}\}, V)$ and a formula φ of L. Then, we define an equivalence relation \equiv on state of W by

$$w \equiv w' \text{ iff } \forall \psi \in FL(\varphi), M, w \models_A \psi \iff M, w' \models_A \psi$$
we use the notation \bar{w} for this equivalence class. The quotient Kripke A-interpretation

$$M^{FL(\varphi)} = \langle W^{FL(\varphi)}, \{R_t^{FL(\varphi)} \mid t \in \text{MOD}\}, V^{FL(\varphi)} \rangle$$

(the filtration of M through $FL(\varphi)$) is defined as follows:

- $W^{FL(\varphi)} = \{\bar{w} \mid w \in W\}$;
- $V^{FL(\varphi)}(\bar{w}, p) = V(w, p)$, for any $p \in \text{VAR}$ and $\bar{w} \in W^{FL(\varphi)}$;
- $R_t^{FL(\varphi)} \supseteq \{(\bar{w}_0, \bar{w}_m) \in W^{FL(\varphi)} \times W^{FL(\varphi)} \mid (w, w') \in R_t\}$.

Moreover, $R_t^{FL(\varphi)}$ is closed with respect to the inclusion axioms, that is, for each inclusion axiom schema $[t] \alpha \supset [s_1] \cdots [s_m] \alpha$ if $(\bar{w}_0, \bar{w}_m) \in R_t^{FL(\varphi)}$, \ldots, $(\bar{w}_{m-1}, \bar{w}_m) \in R_t^{FL(\varphi)}$ then the pair (\bar{w}_0, \bar{w}_m) belongs to the accessibility relation $R_t^{FL(\varphi)}$.

The following lemma states that when we insert any extra binary relation between \bar{w} and \bar{w}' in a accessibility relation $R_t^{FL(\varphi)}$ of $M^{FL(\varphi)}$, in order to satisfy the relative set of inclusion properties IP^A_L, it is not the case that there was any $(t)\psi \in FL(\varphi)$ which was true at w while ψ itself was false at w' (see [Hughes and Cresswell, 1984, page 137]).

\(^2\)Since all other connectives can be defined in terms of these, this is not a restrictive condition.

\(^3\)In fact, each subformulae of φ could be introduced in $FL(\varphi)$. Every subformulae with associated every possible sequence of modalities that comes from a non-recursive derivation whose length is at the maximum m times $|V|$.\m
IV.3. A decidability result for inclusion modal logics

Lemma IV.3.1 For all $\psi = \langle t \rangle \psi' \in FL(\varphi)$, if $(\overline{w}, \overline{w'}) \in R^{FL(\varphi)}_t$ and $M, w' \models_A \psi'$ then $M, w \models_A \langle t \rangle \psi'$.

Proof. Assume that $\psi = \langle t \rangle \psi' \in FL(\varphi)$ then, $\psi' \in FL(\varphi)$ by definition of Fischer-Ladner closure. Now, there are two cases, which depend on whether $(\overline{w}, \overline{w'}) \in R^{FL(\varphi)}_t$ has been added to initial definition of filtration because an inclusion axiom schema of the form $[t]\alpha \supset [s_1] \ldots [s_m] \alpha \in A$ or not.

Assume that $(\overline{w}, \overline{w'}) \in R^{FL(\varphi)}_t$ has not been added. Then, by definition of $R^{FL(\varphi)}_t$, there exist $w_1, w'_1 \in W$ such that $(w_1, w'_1) \in R_t, w_1 \equiv w$, and $w'_1 \equiv w'$. Since $M, w' \models_A \psi'$, $M, w'_1 \models_A \psi'$ because $\psi' \in FL(\varphi)$ and $w' \equiv w'_1$. Hence, $M, w_1 \models_A \langle t \rangle \psi'$ because $(w_1, w'_1) \in R_t$. Finally, $M, w \models_A \langle t \rangle \psi'$, because $\langle t \rangle \psi' \models_A (FL(\varphi)$ and $w \equiv w'$.

Assume that $(\overline{w}, \overline{w'}) \in R^{FL(\varphi)}_t$ but $(w, w') \not\in R_t$. The pair $(\overline{w}, \overline{w'})$ has been added in $R^{FL(\varphi)}_t$ by the closure operation in order to satisfy an inclusion property of an inclusion axiom of the form $[t]\alpha \supset [s_1] \ldots [s_m] \alpha \in A$. Then, there exist $\overline{w}_1, \ldots, \overline{w}_{m-1}$ such that $(\overline{w}_0, \overline{w}_1) \in R^{FL(\varphi)}_{s_1}, \ldots, (\overline{w}_{m-1}, \overline{w}_m) \in R^{FL(\varphi)}_{s_m}$, where w_0 is w and w_m is w'. Now, in turn, for each pair $(\overline{w}_{i-1}, \overline{w}_i) \in R^{FL(\varphi)}_{s_i}$, for $i = 1, \ldots, n$, either $(\overline{w}_{i-1}, \overline{w}_i)$ has been added by the closure operation or not. Going on this way, we have $(\overline{w}, \overline{w'}) \in R^{FL(\varphi)}_t$, and $(w, w') \in \mathcal{R}_t$.

Assume that $t \models_G t_1 \cdots t_h$ is the derivation $A_0 \Rightarrow_G \sigma_1A_1 \Rightarrow_G \sigma_2 \cdots \Rightarrow_G \sigma_nA_n \Rightarrow_G \sigma_1 \cdots \sigma_n\alpha$, where A_0 is t and $A_n \rightarrow \sigma_n\alpha$ and $A_{i-1} \rightarrow \sigma_iA_i$, for $i = 1, \ldots, n$, are in P, and that $\sigma_n\alpha$ is $d_1 \cdots d_r$ $(\equiv \overline{t}_{h-r+1} \cdots \overline{t}_h)$. We know that $M, v_h \models_A \psi'$ and we have to prove that $M, v_{h-r+1} \models_A \langle d_1 \rangle \cdots \langle d_r \rangle \psi'$. Assuming that $\langle d_1 \rangle \cdots \langle d_r \rangle \psi' \in FL(\varphi)$ then, we have that $M, v'_{h-r+1} \models A \psi'$ since $v_{h-r+1} \equiv v'_{h-r+1}$ and $\psi' \in FL(\varphi)$. Since $(\overline{w}_{h-r+1}, \overline{w}_{h-r+1}) \in R_t$ and $M, v'_{h-r+1} \models A \psi'$ then, $M, v'_{h-r+1} \models A \langle d_r \rangle \psi'$ and, since $\langle d_r \rangle \psi' \in FL(\varphi)$ and $v'_{h-r+1} \equiv v'_{h-r+1}$, we have that $M, v_{h-r+1} \models A \langle d_r \rangle \psi'$. We can proceed so on until $M, v'_{h-r+1} \models A \langle d_r \rangle \psi'$ and $M, v_{h-r+1} \models A \langle d_1 \rangle \cdots \langle d_r \rangle \psi'$ since $v_{h-r+1} \equiv v'_{h-r+1}$. Now, since the inclusion axiom $[A_n] \alpha \supset [d_1] \ldots [d_r] \alpha \in A$, $M, v_{h-r+1} \models A \langle A_n \rangle \psi'$.

Lemma IV.3.2 (Filtration Lemma) For all $\psi \in FL(\varphi),$

$$M, w \models_A \psi \text{ if and only if } M^{FL(\varphi)}, \overline{w} \models_A \psi.$$

Proof. The proof is by induction on the structure of ψ. (Base step) For $\psi \in \text{VAR}$ the thesis holds trivially. (Induction step) The cases $\psi = \psi' \lor \psi''$ and $\psi = \neg \psi'$ are immediate
from the definitions. Assume that $\psi = (t)\psi'$. (If part) If $M, w \models_A (t)\psi'$ then there exists w' such that $M, w' \models_A \psi'$ and $(w, w') \in R_t$. By definition, we have $(\overline{w}, \overline{w'}) \in R_{t}^{FL(\varphi)}$ and, by induction hypothesis, $M^{FL(\varphi)}, \overline{w} \models_A \psi'$. Hence $M^{FL(\varphi)}, \overline{w} \models_A (t)\psi'$. (Only if part) If $M^{FL(\varphi)}, \overline{w} \models_A (t)\psi'$ then, there exists $w' \in W^{FL(\varphi)}$ such that $M^{FL(\varphi)}, \overline{w} \models_A \psi'$ and $(\overline{w}, \overline{w'}) \in R_{t}^{FL(\varphi)}$. By inductive hypothesis, we have that $M, w' \models_A \psi'$ and, by Lemma IV.3.1 since $(\overline{w}, \overline{w'}) \in R_{t}^{FL(\varphi)}$, $M, w \models_A (t)\psi'$. □

Theorem IV.3.1 (Small Model Theorem) Let φ be a satisfiable formula of an inclusion modal logic \mathcal{I}_A^G based on a type-3 grammar G. Then, φ is satisfied in a Kripke A-interpretation with no more that $2^{|FL(\varphi)|}$ states.

Proof. If φ is satisfiable, then there is a Kripke A-interpretation M and a state w in M such that $M, w \models_A \varphi$. Let $FL(\varphi)$ be the Fischer-Ladner closure of φ. By Lemma IV.3.2, $M^{FL(\varphi)}, \overline{w} \models_A \varphi$. Moreover, since $|FL(\varphi)|$ is bounded by Proposition IV.3.2, then the filtration through $FL(\varphi)$ is a Kripke interpretation having at most $2^{|FL(\varphi)|}$ worlds (equivalence classes of worlds in the initial model), that being the maximum number of ways that worlds can disagree on sentences in $FL(\varphi)$. □

Remark IV.3.2 A modal logic is decidable if it has the finite model property (i.e., if and only if each non-theorem of the modal logic is false in some finite Kripke interpretation of the logic) and it is axiomatizable by a finite number of axiom schemas. In fact, in this case there is both a positive and negative test for theorem-hood in the logic. The positive test is given by generating all the proofs of theorems in some definite order (this is possible because the axiomatization is finite, in our case also by the completeness of the tableau calculus), while for the negative test we can give a complete enumeration of the finite Kripke interpretations (models) since each Kripke interpretation is finite. Then, if a formula is a non-theorem of the logic it is false in some finite Kripke interpretation and to find this one we can examine each Kripke interpretation of the logic (a finite task since the Kripke interpretation is finite and the logic is finitely axiomatized) checking if the selected Kripke interpretation falsify the formula (a finite task since the model is finite) [Hughes and Cresswell, 1984; Chellas, 1980].

As a corollary, since each inclusion modal logic based on a right regular grammar is axiomatizable by a finite number of axiom schemas and, by Theorem IV.3.1, it is determined by a class of finite standard Kripke interpretations and, hence, it has the finite model property (see [Hughes and Cresswell, 1984, Chapter 8] and [Chellas, 1980, Chapter 5]), we have the following corollary.

Corollary IV.3.1 The validity problem for the class of right-regular inclusion modal logics is decidable.

As a final remark, it is worth noting that the systematic procedure given in the previous chapter is not a decision procedure: it goes on forever also when it deals with a decidable logic.
IV.3. A decidability result for inclusion modal logics

Figure IV.3: Non-terminating Kripke \mathcal{A}-interpretation construction of Example IV.3.1.

Example IV.3.1 Let us consider the modal logic whose set \mathcal{A} of inclusion axioms consists of:

$$(A_1) \quad [a] \varphi \supset [b][a] \varphi$$
$$(A_2) \quad [a] \varphi \supset [b] \varphi$$

Despite the fact $\mathcal{L}^\mathcal{A}_p$ is decidable (it belongs to the class of right regular inclusion modal logics), the systematic attempt to prove the formula $\langle b \rangle p \supset \langle a \rangle [b] p$ runs forever (see also Figure IV.3):

1. $i : \mathbf{F}(\langle b \rangle p \supset \langle a \rangle [b] p)$
2. $i : \mathbf{T}(b) p$
3. $i : \mathbf{F}(\langle a \rangle [b] p)$
4. $w_1 : \mathbf{T} p$
5. $i \rho_b w_1$
6. $i \rho_a w_1$
7. $w_1 : \mathbf{F} [b] p$
8. $w_2 : \mathbf{F} p$
9. $w_1 \rho_b w_2$
10. $w_1 \rho_a w_2$
11. $i \rho_a w_2$
12. $w_2 : \mathbf{F} [b] p$
13. $w_3 : \mathbf{F} p$
14. $w_2 \rho_b w_3$
15. $w_2 \rho_a w_3$
16. $w_1 \rho_a w_3$
17. $i \rho_a w_3$
18. $w_3 : \mathbf{F} [b] p$

There is no hope to close the branch continuing the computation: an infinite sequence of worlds is introduced.
Chapter V

First-Order

In this chapter we extend the propositional modal languages in order to deal with the predicative case. First of all, we introduce the syntax and, then, the possible-worlds semantics. With regard to model theory, we associate with each possible world a domain of individuals and we have chosen to impose a monotonicity condition on them with respect to the accessibility relations. Afterwards, we update the tableau calculus presented in Chapter III in order to deal with quantifiers.

V.1 Syntax

The alphabet of a first-order multimodal language \mathcal{L}_{FO} contains:

- a countable set VAR of individual variables (variable for short);
- for each $n \geq 0$, a countable set FUNC^n of n-place function symbols;
- for each $n \geq 0$, a nonempty countable set PRED^n of n-place predicate symbols;
- the classical connectives “\land” (and), “\lor” (or), “\neg” (not), “\supset” (implies);
- the universal quantifier “\forall” and existential quantifier “\exists”;
- a modal operator constructor “\square”;
- left and right parentheses “(”, “)”, and a comma “,”.

The set TERM of terms is defined to be the least set that satisfies the following conditions:

- $\text{VAR} \subseteq \text{TERM}$;
- if $t_1, \ldots, t_n \in \text{TERM}$ and $f \in \text{FUNC}^n$ then $f(t_1, \ldots, t_n) \in \text{TERM}$.

45
A 0-place function symbol is a constant symbol; the term \(c() \) is written as \(c \). We will assume that \(\mathcal{L}_{FO} \) contains at least one constant symbol. A term is a ground if it does not contain any variable.

The set \(\text{FOR} \) of formulae of a modal language \(\mathcal{L}_{FO} \) is defined to be the least set that satisfies the following conditions:

- if \(t_1, \ldots, t_n \in \text{TERM} \) and \(p \in \text{PRED}^n \) then \(p(t_1, \ldots, t_n) \in \text{FOR} \);
- if \(\varphi, \psi \in \text{FOR} \) then \((\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \supset \psi) \in \text{FOR} \);
- if \(x \in \text{VAR} \) and \(\varphi \in \text{FOR} \) then \((\forall x)\varphi), ((\exists x)\varphi) \in \text{FOR} \);
- if \(\varphi \in \text{FOR} \) and \(t \in \text{TERM} \) then \(([t]\varphi) \in \text{FOR} \).

A formula of the form \(p(t_1, \ldots, t_n) \) is called atomic formula.

We omit the parentheses if they are unnecessary: we use the already defined precedence but where the quantifiers have the highest.

The meaning of free and bound occurrence of variables are the usual ones. A statement is a formula in which all occurrences of all variables are bound. The substitution of a term \(t \) for a free variable \(x \) in the formula \(\varphi \), denoted by \(\varphi[t/x] \), is defined as usual: all free occurrences of \(x \) in \(\varphi \) are substituted by \(t \) with the proviso that free variables in \(t \) are not bound after the substitution. Observe that the term \(t \) replaces also the free variables \(x \) belonging to the terms of the modalities.\(^1\)

V.2 Possible-worlds semantics

In a first-order Kripke interpretation each world is associated with a domain of quantification. We will not assume that domains are constant. The only restriction we put on them is that the domain of a world \(w \) is contained in the domain of all worlds reachable from \(w \), i.e. domains are increasing (or monotone).\(^2\) In each Kripke interpretation we will fix a non-empty set \(D \) of possible objects. The domain of each world will be a subset of \(D \).

Definition V.2.1 (First-order Kripke interpretation) Given a modal language \(\mathcal{L}_{FO} \), a first-order Kripke interpretation \(M \) is an ordered tuple \(\langle W, R, D, J, V \rangle \), where:

- \(W \) is a non-empty set of worlds;
- \(D \) is a non-empty set of objects;
- \(J \) is a function from \(W \) to non-empty subsets of \(D \) (it associates a domain with each world), satisfying the following condition: for all \(w, w' \in W \), if \((w, w') \in R \) then \(J(w) \subseteq J(w') \);

\(^1\) For instance, \((\forall x)[t(y)p(x,y)][a/y] \) is the formula \(((\forall x)[t(a)p(x,a)]). \)

\(^2\) In particular, the Barcan formula \(BF(t) : (\forall x)[t][\varphi] \supset [t](\forall x)\varphi \) does not hold.

\(^3\) That is, if there exists a parameter \(d \in D \) such that \((w, w') \in R_d \).
V.2. Possible-worlds semantics

- V is an assignment function, such that:
 - for each variable $x \in \text{VAR}$ of \mathcal{L}_{FO}, $V(x) \in D$;
 - for each function symbol $f \in \text{FUNC}^n$ of \mathcal{L}_{FO}, $V(f) \in D^n \rightarrow D$ and, for each world $w \in W$, the domain $\mathcal{J}(w)$ is closed with respect to the interpretation of f;\footnote{That is, for each n-ary function f and for $d_1, \ldots, d_n \in \mathcal{J}(w)$, $V(f)(d_1, \ldots, d_n) \in \mathcal{J}(w)$.}
 - for each predicate symbol $p \in \text{PRED}^n$ of \mathcal{L}_{FO} and each world $w \in W$, $V(p, w) \subseteq D^n$, i.e., $V(p, w)$ is a set of n-tuples (d_1, \ldots, d_n), where each d_i is an element in D;

- \mathcal{R} is the accessibility relation. It is parameterized with respect to domain elements, i.e. for each domain element $d \in D$ the accessibility relation \mathcal{R}_d is a binary relation on W.

Interpretation for terms in the domain is defined as usual from the interpretation of variables and function symbols. We say that M is based on the frame (W, \mathcal{R}).

We use $\mathcal{F}_{\mathcal{L}_{FO}}$ and $\mathcal{M}_{\mathcal{L}_{FO}}$ to denote the class of frame and the class of Kripke interpretations with \mathcal{L}_{FO} as underlying language.

Let M be a Kripke interpretation, let $w \in W$ be a world, and let V be an assignment function. Then, we say that a formula φ of \mathcal{L}_{FO} is satisfied by V in the Kripke interpretation M at w, denoted by $M;w \models V \varphi$, if the following conditions hold:

- $M, w \models V p(t_1, \ldots, t_n)$ iff $(V(t_1), \ldots, V(t_n)) \in V(p, w)$;
- $M, w \models V \neg \varphi$ iff $M, w \not\models V \varphi$;
- $M, w \models V \varphi \land \psi$ iff $M, w \models V \varphi$ and $M, w \models V \psi$;
- $M, w \models V \varphi \lor \psi$ iff $M, w \models V \varphi$ or $M, w \models V \psi$;
- $M, w \models V \varphi \supset \psi$ iff $M, w \not\models V \varphi$ or $M, w \models V \psi$;
- $M, w \models V (\forall x)\varphi$ iff for every variable assignment V' that agrees with V everywhere except on x, and such that $V'(x) \in \mathcal{J}(w)$, $M, w \models V' \varphi$;
- $M, w \models V (\exists x)\varphi$ iff for some variable assignment V' that agrees with V everywhere except on x, and such that $V'(x) \in \mathcal{J}(w)$, $M, w \models V' \varphi$;
- $M, w \models V [t]\varphi$ iff for all $w' \in W$ such that $(w, w') \in \mathcal{R}_{V(t)}$, $M, w' \models V \varphi$;
- $M, w \models V (t)\varphi$ iff there is a $w' \in W$ such that $(w, w') \in \mathcal{R}_{V(t)}$, $M, w' \models V \varphi$.

\footnote{That is, for each n-ary function f and for $d_1, \ldots, d_n \in \mathcal{J}(w)$, $V(f)(d_1, \ldots, d_n) \in \mathcal{J}(w)$.}
A formula φ of a language \mathcal{L}_{FO} is *satisfiable in* a Kripke interpretation $M = \langle W, R, D, J, V \rangle$ if $M, w \models^V \varphi$ for some $w \in W$ with every term of φ interpreted in $J(w)$. We say that φ is *valid in* M if $\neg \varphi$ is not satisfiable. Moreover, a formula φ is *satisfiable with respect to a class* \mathcal{M} of Kripke interpretations if φ is satisfiable in some Kripke interpretation in \mathcal{M}, and it is *valid with respect to* \mathcal{M} if it is valid in all Kripke interpretations in \mathcal{M}.

Remark V.2.1 Notice that, since the domain may change from a world to another, there is the problem of defining the satisfiability at a world w of a formula $\varphi(t)$ containing a term t whose interpretation is not in $J(w)$. As mentioned by Fitting in [Fitting, 1983, pages 341-342], there are three intuitive choices to deal with this problem:

1. always take $\varphi(t)$ to be false in w;
2. leave the truth undetermined in w;
3. make no special restriction whatsoever.

Concerning choice 1), as Fitting mentions, Kripke has observed that imposing this requirement on atomic formulae leads to a modal logic in which the rule of substitution does not apply (see also [Hughes and Cresswell, 1996, pages 275-276]). Choice 2) has been made in [Hughes and Cresswell, 1968, Chapter 10]. In this case interpretations are three valued: the truth value of any formula in a world can be either true or false or undefined. Finally, choice 3) is the simplest one: first it does not put any special requirement on the valuation of formulae, provided that in defining validity and satisfiability of a formula, for each interpretation, only those worlds are considered such that the constants of the formulae have their interpretation in the domain of the world. Indeed, choice 2) and choice 3) are equivalent [Fitting, 1983; Hughes and Cresswell, 1996].

With regard to this we adopt choice 3 and we do not make any special restriction. However, when we define satisfiability and validity of a formula we look at the truth value of the formula in an interpretation at a certain world only if the interpretation of each term in the formula is in the domain of that world. Moreover, we require that functions map elements of a domain to elements of the same domain of that world.

Remark V.2.2 In general, when function symbols are present, each function symbol could be given a different interpretation at each different world. In the Kripke semantics above, however, function symbols are given the same interpretation in all possible worlds. As a consequence, closed terms have the same interpretation in all possible worlds (*rigid designators*). On the contrary, predicate symbols may have a different interpretation in each possible world. For a survey of the different systems for quantified modal logic see [Garson, 1984], while for more details on the characterization of first-order inclusion modal logics see [Gasquet, 1994].

As for the propositional case, we are interested in a particular subclass of Kripke interpretations. Given a predicative modal language \mathcal{L}_{FO} and a set of inclusion axiom schemas \mathcal{A}, we are interested in first-order Kripke \mathcal{A}-interpretations, that is, first-order Kripke
interpretations based on \mathcal{A}-inclusion frames as defined in Section II.3. We denote with \mathcal{F}_{LF} the subset of \mathcal{F}_{LF} that consists of all \mathcal{A}-inclusion frames, with \mathcal{M}_{LF} the subset of \mathcal{M}_{LF} of all Kripke \mathcal{A}-interpretations, and with IP_{LF} the set of inclusion properties that a Kripke \mathcal{A}-interpretation must verify. We will use the already introduced notation of satisfiability and validity. Finally, we denote with I_{LF} the first-order inclusion modal logic determined by means of the set of axiom \mathcal{A}.

V.3 A predicate tableau calculus

In this section we extend the tableau calculus presented in Chapter III in order to deal with predicate case. However, for simplicity, in the following we will be concerned with a language containing:

- only constant symbols and no function symbols (we will call C its collection);
- the modalities are labeled as in the propositional case (with constant symbols) and not with terms.

Given a first-order modal language L_{FO}, since the proofs in the tableau calculus have to deal with free variables, we extend the L_{FO} with countably many new constant, called parameters [Fitting, 1983, Chapter 7, Section 2]. These parameters are used, as in tableaux for classical predicate logic, as witnesses for existential quantifiers. We call the extended language $\overline{L_{FO}}$. In particular, in order to deal with increasing domains, for each world constant symbol $w \in W_C$, we extend L_{FO} with a countable list P_w of new individual constant symbols, disjoint from those of L_{FO}, and such that for each pair of distinct prefixes w and w' we have that P_w and $P_{w'}$ do not overlap [Fitting, 1993, Section 2.4].

We say $a_w \in P_w$ a w-parameter. Note that a proof of a formula of L_{FO} can make use of formulae of $\overline{L_{FO}}$.

<table>
<thead>
<tr>
<th>Universal formulae</th>
<th>Existential formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>δ</td>
</tr>
<tr>
<td>$T(\forall x)\varphi$</td>
<td>$F(\forall x)\varphi$</td>
</tr>
<tr>
<td>$F(\exists x)\varphi$</td>
<td>$F\varphi[c/x]$</td>
</tr>
<tr>
<td>$\gamma_0(c)$</td>
<td>$\delta_0(c)$</td>
</tr>
<tr>
<td>$T\varphi[c/x]$</td>
<td>$F\varphi[c/x]$</td>
</tr>
</tbody>
</table>

Figure V.1: Uniform notation for quantified formulae.

Now, we can add the extension rules for predicate logic quantifiers to those of propositional modal logic. The meaning of proof (T_{LF}^A-provability) is trivially updated. We make use of the uniform notation for the quantified signed formulae given in Figure V.1.

5This is necessary because we deal with modal tableau system with explicit accessibility. Other methods, such as the cut-free sequent calculus in [Wallen, 1990, Section 2.1] and in [Baldoni et al., 1997a, Section 6.1] or the tableau method in [Fitting, 1983, Chapter 7], do not need this trick because at any stage of a proof only the formulae of the current world are present.
V. First-Order

Definition V.3.1 (Extension rules) Let \(L_{FO} \) be a modal language and let \(A \) be a set of inclusion axiom schemas, the extension rules (tableau rules) for \(L_{FO}^A \) are given in Figure III.2 and Figure V.2.

\[
\frac{w : \gamma}{w : \gamma_0(c)} \quad \gamma\text{-rule}
\]
\[c \text{ is a } w\text{-available world constant symbol}\]

\[
\frac{w : \delta}{w : \delta_0(a_w)} \quad \delta\text{-rule}
\]
\[\text{Engenvariable condition: } a_w \text{ is a } w\text{-parameter that does not occur on the branch.}\]

Figure V.2: Tableau rules for quantified formulae.

A formula of type \(\gamma \) is true at world \(w \) if \(\gamma_0(c) \) is true for all constant symbols of the domain of \(w \). Therefore, if \(w : \gamma \) occurs on an open branch \(S \), we can add \(w : \gamma_0(c) \) to the end of that branch for any constant \(c \) which belongs to the domain of \(w \). Now, since the domains are increasing, if \(w \) is reachable from a world \(w' \), that is there is a path \(\xi(w', w) \) in \(S \), then the constant \(c \) used in \(w : \gamma_0(c) \) can be either a constant symbol of \(C \) or it is a \(w \)-parameter or \(w' \)-parameter in \(S \). We say a such constant \(w\text{-available}.\)

The interpretation of the extension rule for formulae of type \(\delta \) is the usual one. In order to express the meaning of a formula of type \(\delta \), there should be something making \(\delta \) true, we use a parameter never used before on the branch to substitute the existential quantified variable.

Example V.3.1 (Barcan formula) In \(L_{FO}^A \), with \(A \) any set of inclusion axioms, the following instance of the Barcan formula \(BF(t) : ([\forall x][t]p(x)) \supset ([\forall x][t]\forall x)p(x) \) is not provable:

1. \(i : F(([\forall x][t]p(x)) \supset [t](\forall x)p(x)) \)
2. \(i : T([\forall x][t]p(x)) \)
3. \(i : F([t](\forall x)p(x)) \)
4. \(w_1 : F(\forall x)p(x) \)
5. \(i_{\rho_1} w_1 \)
6. \(w_1 : F_p(a_{w_1}) \)

Explanation: 1.: an instance of the Barcan formula; 2. and 3.: from 1., by \(\alpha \)-rule; 4. and 5.: from 3., by application of \(\pi \)-rule; 6.: form 4., by application of \(\delta \)-rule. Since the constant symbol \(a_{w_1} \) is not \(i \)-available the branch remains open.

Example V.3.2 (Converse of Barcan formula) In \(L_{FO}^A \), with \(A \) any set of inclusion axioms, the following instance of the converse of Barcan formula \(BF_c(t) : [t](\forall x)p(x) \supset ([\forall x][t]\forall x)p(x) \) is provable:

1. \(i : F([t](\forall x)p(x)) \supset ((\forall x)[t]p(x)) \)
2. \(i : T([t](\forall x)p(x)) \)
3. \(i : F(\forall x)[t]p(x) \)
4. $i : F[t]p(a_i)$
5. $w_1 : Fp(a_i)$
6. $i \models w_1$
7. $w_1 : T(\forall x)p(x)$
8. $w_1 : Tp(a_i)$

Explanation: 1.: an instance of the converse Barcan formula; 2. and 3.: from 1., by α-rule; 4.: from 3., by application of δ-rule; 5. and 6.: form 4., by application of π-rule; 7.: from 2. and 6., by application of ν-rule; 8.: from 7., by application of γ-rule, branch closes.

Theorem V.3.1 (Soundness and Completeness) Let L_{FO} be a predicative modal language and let A be a set of inclusion axiom schemas, a formula φ of L_{FO} is A-valid if and only if φ is $T^A_{L_{FO}}$-provable.

Proof. Both the proofs of the soundness and completeness are based on the same technique used for the ones for propositional case given in Chapter III. In particular, we can note that:

- An A-mapping I (see page 28) must map both prefixes and constant symbols of the language to the worlds and constants of some first-order Kripke A-interpretation.

- In the systematic tableau procedure, in order to deal with the prefixed signed formulae of form $w : \gamma$ and to make sure $w : \gamma_0(c)$ has been introduced for each constant symbol c that occurs on the considered branch, we use the same trick adopted for formulae of type ν^f. Then, whenever we apply γ-rule to a formula of type γ, we add a fresh occurrence of it at the end of that branch.

- In the line of [Fitting, 1983], we can update the Definition III.3.2 of set of prefixed signed and accessibility relation formulae A-downward saturated as follows:

 7. if $w : \gamma \in S$, then $w : \gamma_0(c) \in S$ for all $c \in C$ and all $c \in \bigcup_{w' \in S} P_{w'}$ such that there exists a path $\xi(w, w')$ in S;

 8. if $w : \delta \in S$, then $w : \delta_0(c) \in S$ for some w-parameter $c \in P_w$.

- From an open A-downward-satured branch S we define a first-order canonical model \mathcal{M}_c^A as follows. The set of worlds and the set of accessibility relations are defined as we did in the propositional case. D is C added to $\bigcup_{w \in S} P_w$, the domain on S is $C \cup P_w$ together $\bigcup_{w' \in S} P_{w'}$ such that w is reachable by w'. Each constant symbol and parameter is interpreted as naming itself. Finally, for each predicative symbol $p \in \text{PRED}^n$ and world w used in S, we define $V(p, w) = \{ p(c_1, \ldots, c_n) \mid w : p(c_1, \ldots, c_n) \in S \}$.

\square
V. First-Order
Chapter VI

Towards a wider class of logics

In this chapter, we extend the tableau calculus of Chapter III in order to deal with the class of normal multimodal logics proposed in [Catach, 1988]. This class is determined by the interaction axiom $G^{a,b,c,d}$, called a,b,c,d-incestuality axiom. It includes most of the modal and multimodal systems studied in the literature. Moreover, modal operator can be labeled by complex parameters, i.e. built from atomic ones, using an operator of composition and an operator of union.

VI.1 Syntax and possible-worlds semantics

Syntax

Let us extend the alphabet of the language for propositional multimodal logics of Section II.1 adding the following symbols:

- a binary operator “\cup” (union);
- a binary operator “;” (composition);
- the symbol “ε” (the neutral element w.r.t. the composition).

The operators “\cup” and “;” allow to built up new labels for modal operators starting from the atomic ones in MOD. More formally, we define the set LABELS as the least set that satisfies the following conditions:

- $\varepsilon \in$ LABELS;
- MOD \subseteq LABELS;
- if $t, t' \in$ LABELS then $(t; t')$ and $(t \cup t')$ are in LABELS.1

1For readability, we omit parentheses if they are unnecessary: we give “\cup” lower precedence than “;”.

53
The set \(\text{FOR} \) of formulae of a modal propositional language \(\mathcal{L} \) is defined to be the least set that satisfies the following conditions:

- \(\text{VAR} \subseteq \text{FOR} \);
- if \(\varphi, \psi \in \text{FOR} \) then \((\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \supset \psi) \in \text{FOR} \);
- if \(\varphi \in \text{FOR} \) and \(t \in \text{LABELS} \) then \(([t] \varphi) \in \text{FOR} \).

Therefore, we allow modal operators labeled with expressions built by the operators union and composition on the atomic labels \(\text{MOD} \) together with the empty label \(\varepsilon \). As usual, \(\langle t \rangle \varphi \) stands for \(\neg [t] \neg \varphi \). Examples of modalized formulae are \([t; t] \varphi \), \([t; \varepsilon] \varphi \), \([t; t^\prime] \varphi \), and \(\langle t; t^\prime \rangle \varphi \). Indeed, the empty label, union, and composition can be thought of as shorthand, as stated by the following definitions:

- \([\varepsilon] \varphi = \text{Def} \varphi \);
- \([t \cup t^\prime] \varphi = \text{Def} [t]\varphi \land [t^\prime] \varphi \);
- \([t; t^\prime] \varphi = \text{Def} [t][t^\prime] \varphi \).

For instance, the above modalized formulae are equivalent to \([t][t^\prime] \varphi \land [t^\prime] \varphi \land \varphi \) and \(\langle t \rangle \langle t^\prime \rangle \varphi \), respectively.

Possible-worlds semantics

In order to define the meaning of a formula, we have introduced in the previous chapter the notion of Kripke interpretation. Formally, a Kripke interpretation \(M \) is a triple \((W, \mathcal{R}, \mathcal{V})\), consisting of a non-empty set \(W \) of “possible worlds”, a mapping \(\mathcal{R} \) from \(\text{MOD} \) to the powerset of \(W \times W \) (it assigns to each atomic label of \(\text{MOD} \) some binary relation on \(W \)), and a valuation function \(\mathcal{V} \), that is a mapping from \(W \times \text{VAR} \) to the set \(\{T, F\} \). Here, in order to deal with any label \(t \in \text{LABELS} \), we extend the mapping \(\mathcal{R} \) inductively as follows:

- \(\mathcal{R}_\varepsilon = I \), where \(I = \{(w, w) \mid w \in W\} \) (the identity relation);
- \(\mathcal{R}_{t,t^\prime} = \mathcal{R}_t \circ \mathcal{R}_{t^\prime} \), where “\(\circ \)” denotes the composition of binary relations;
- \(\mathcal{R}_{t,t^\prime} = \mathcal{R}_t \cup \mathcal{R}_{t^\prime} \), where “\(\cup \)” denotes the union of binary relations.

We say that \(\mathcal{R}_t \) is the accessibility relation of the modality \([t] \) and \(w^\prime \) is accessible from \(w \) by means of \(\mathcal{R}_t \text{ if } (w, w^\prime) \in \mathcal{R}_t \).

The meaning of a formula is given by means of a satisfiability relation, denoted by \(\models \), as already seen.
VI.2 Incestual modal logics

In [Catich, 1988] *incestual modal logics* the class of normal modal logics obtained by taking axiom systems containing:

\[[\varepsilon] \varphi \iff \varphi \]
\[[t; t'] \varphi \iff [t][t'] \varphi \]
\[[t \cup t'] \varphi \iff [t] \varphi \land [t'] \varphi \]

where \(t, t' \in \text{LABELS} \), and a finite set of \(a, b, c, d \)-incestual axiom schemas, that is axiom schemas of the form:

\[G^{a,b,c,d} : \langle a \rangle [b] \varphi \supset [c \langle d \rangle \varphi \]

where \(a, b, c, \) and \(d \) belong to \(\text{LABELS} \). Given a modal language \(\mathcal{L} \) and a set \(\mathcal{G} \) of incestual axiom schemas, we denote with \(S^{G} \) the axiom system \(S^{G} \) extended with \(\mathcal{G} \) together the axioms (VI.1), (VI.2), and (VI.3). We use \(I^{G} \) to denote the incestual modal logics determined by \(S^{G} \). As we will see, the incestual axioms also determine inclusion properties on the accessibility relations.

As it is remarked in [Catich, 1988], the fact that \(a, b, c, \) and \(d \) of an incestual axiom schema may be arbitrary expressions built from atomic labels using the composition and union operators, makes axiom \(G^{a,b,c,d} \) very general. In particular, it covers the axiom [Chellas, 1980; Hughes and Cresswell, 1984]:

\[G^{k,l,m,n} : \diamondsuit^{k} \square^{l} \varphi \supset \square^{m} \diamondsuit^{n} \varphi \]

where \(k, l, m, n \geq 0 \), and, therefore, it covers the traditional axiom schemas. Furthermore, it captures many axiom schemas which can express *interaction* between different modal operators (see Figure VI.1). Note that, the inclusion axiom schema \([t_{1}] \ldots [t_{n}] \varphi \supset [s_{1}] \ldots [s_{m}] \varphi \)

is an instance of the \(a, b, c, d \)-incestual axiom schema too. In fact, it is enough to take \(a = \varepsilon, b = t_{1}; \ldots; t_{n}, c = s_{1}; \ldots; s_{m}, \) and \(d = \varepsilon \).

All the fifteen modal systems obtained combining the axioms \(T, D, B, 4, \) and \(5 \) [Chellas, 1980; Hughes and Cresswell, 1996] and their multimodal versions [Halpern and Moses, 1992] are incestual modal logics, as well as the extensions of \(K_{n} \) and \(S4_{n} \) with interaction axioms of with agent “any fool” [Enjalbert and Fariñas del Cerro, 1989].

Example VI.2.1 (The wise men puzzle) The problem is again the well-known *three wise men puzzle* already presented in Example II.3.4. We call back briefly the formulation. Note that, in order to avoid introducing many variants of the same formulae and axioms for the different wise men, as a shorthand, we use the metavariables \(X, Y, \) and \(Z, \) where \(X, Y, Z \in \{ a, b, c \} \) and \(X \neq Y, Y \neq Z, \) and \(X \neq Z \):

1. \(\text{fool}(ws(a) \lor ws(b) \lor ws(c)) \)
2. \(\text{fool}(ws(X) \supset [Y] ws(X)) \)
3. \(\text{fool}(!ws(X) \supset [Y] !ws(X)) \)

\(^{2} \)See Chapter II.
<table>
<thead>
<tr>
<th>axiom name</th>
<th>axiom schema</th>
<th>incestual schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflexivity</td>
<td>$T(t)$</td>
<td>$G^{e,t,t,e}$</td>
</tr>
<tr>
<td>seriality</td>
<td>$D(t)$</td>
<td>$G^{e,t,e,e}$</td>
</tr>
<tr>
<td>symmetry</td>
<td>$B(t)$</td>
<td>$G^{e,t,t,e}$</td>
</tr>
<tr>
<td>transitivity</td>
<td>$4(t)$</td>
<td>$G^{e,t,(t,t),e}$</td>
</tr>
<tr>
<td>euclideanity</td>
<td>$5(t)$</td>
<td>$G^{t,e,t,t}$</td>
</tr>
<tr>
<td>determinism</td>
<td>$\delta(t)$</td>
<td>$G^{t,e,t,t,e}$</td>
</tr>
<tr>
<td>inclusion</td>
<td>$I(t,t')$</td>
<td>$G^{e,t,t',e}$</td>
</tr>
<tr>
<td>mutual transitivity</td>
<td>$4M(t,t')$</td>
<td>$G^{e,t,(t',t),e}$</td>
</tr>
<tr>
<td>persistence</td>
<td>$P(t,t')$</td>
<td>$G^{e,(t',t'),e}$</td>
</tr>
<tr>
<td>relative inclusion</td>
<td>$I_{t}(t,t',t''')$</td>
<td>$G^{e,(t',t'''',t'''),e}$</td>
</tr>
<tr>
<td>semi-adjunction</td>
<td>$B(t,t')$</td>
<td>$G^{e,e,t,t'}$</td>
</tr>
<tr>
<td>mutual seriality</td>
<td>$D(t,t')$</td>
<td>$G^{e,t,t',e}$</td>
</tr>
<tr>
<td>union</td>
<td>$[t][\varphi \lor [t'][\varphi \land [t'''][\varphi]]$</td>
<td>$G^{e,(t',t''),e}$</td>
</tr>
<tr>
<td>composition</td>
<td>$[t][\varphi \lor [t'][\varphi \land [t'''][\varphi]]$</td>
<td>$G^{e,(t',t''),e}$</td>
</tr>
</tbody>
</table>

Figure VI.1: Some well-known axiom schemas included by the incestual axioms.

where $ws(X)$ means that the wise man X has a white spot on his forehead and $[X]$ is a modal operator of type K. The formulae above are all preceded by the modal operator $[\text{fool}]$ of type $S4$ which captures the information common to all wise men. That is, it is axiomatized by the axioms:

- (A_1) $T(\text{fool}) : [\text{fool}]\varphi \supset \varphi$
- (A_2) $4(\text{fool}) : [\text{fool}]\varphi \supset [\text{fool}][\text{fool}]\varphi$
- (A_3) $I(\text{fool}, a) : [\text{fool}]\varphi \supset [a]\varphi$
- (A_4) $I(\text{fool}, b) : [\text{fool}]\varphi \supset [b]\varphi$
- (A_5) $I(\text{fool}, c) : [\text{fool}]\varphi \supset [c]\varphi$

The formulae (1) says that at least one of the wise men has a white spot, whereas formulae (2) and (3) means that whenever one of them has (not) a white spot, the others know this fact. Moreover, whenever a wise man does (not) know something the others know that he does not know this. That is, the following axiom is assumed:

- (A_6) $[X]\varphi \supset [Y] [\neg [X] \varphi]$ (i.e. $(X)\varphi[e] \supset [Y](X)\varphi$)
- (A_7) $[X]\varphi \supset [Y][X] \varphi$ (i.e. $(\varepsilon)[X] \varphi \supset [Y; X](\varepsilon)\varphi$

From this formalization and the fact that neither a nor b know if they have a white spot on their forehead:

- (4) $\neg [a]ws(a)$
- (5) $\neg [b]ws(b)$
VI.2. Incestual modal logics

follows that c knows that he has a white spot:

\[(6) \quad [c]ws(b)\]

Note that, differently than the formulation of Example II.3.4, here we do not need to express directly the information that if someone does not know if his spot is white then the others knows that he does not know it (formulae (3) and (4) of Example II.3.4) but they are inferred by the axiom (A_6).

Definition VI.2.1 (Incestual frame) Let \mathcal{L} be a propositional modal language and let \mathcal{G} be a set of incestual axiom schemas. Then, a frame $F \in \mathcal{F}_\mathcal{L}$ is a \mathcal{G}-incestual frame if and only if for each axiom $G^{a,b,c,d} \in \mathcal{G}$ the following inclusion property (called in [Catach, 1988] a,b,c,d-incestual property) on the accessibility relations holds:

\[R_b \circ R_d^{-1} \supseteq R_a^{-1} \circ R_c\] (VI.4)

where R is the mapping defined at page 54 and R^{-1} is the inverse relation of R. We call $IP^G_\mathcal{L}$ the set of incestual properties determined by \mathcal{G}.

In other worlds: “if $(w, w') \in R_a$ and $(w, w'') \in R_c$ then there exists w^* such that $(w', w^*) \in R_b$ and $(w'', w^*) \in R_d$”:

\[
\forall w, w', w'' \in W \ (w, w') \in R_a \land (w, w'') \in R_c \\
\exists w^* \in W \ (w', w^*) \in R_b \land (w'', w^*) \in R_d
\] (VI.5)

Figure VI.2: a,b,c,d-incestual property. This property is named *incestual* because the offspring of a common parent have themselves an offspring in common [Chellas, 1980].

Figure VI.2 shows pictorially the a,b,c,d-incestual property.

We denote with $\mathcal{F}_\mathcal{L}^G$ the set of \mathcal{G}-frame and with $\mathcal{M}_\mathcal{L}^G$ the set of Kripke interpretations based on a \mathcal{G}-frame (Kripke \mathcal{G}-interpretations). The definitions of satisfiability relation “\models_G”, \mathcal{G}-satisfiability, \mathcal{G}-validity are the usual ones.

Catach proved that a multimodal logic $\mathcal{I}_\mathcal{L}^G$ is determined by the class of Kripke \mathcal{G}-interpretations (the completeness proof uses the standard canonical model construction).
VI. Towards a wider class of logics

Theorem VI.2.1 ([Catach, 1988]) Let \(\mathcal{L} \) be a propositional modal language and let \(\mathcal{G} \) be a finite set of incestual axiom schemas. Then, \(\mathcal{S}_G^0 \) is a sound and complete axiomatization with respect to \(\mathcal{M}_G^0 \).

Remark VI.2.1 Despite the fact that the class of incestual modal logics includes a wide class of multimodal systems, it is worth noting that no set of inclusion properties of the form (VI.4) can characterize the induction axiom that define both the iteration operator "\(\ast \)" of dynamic logic [Harel, 1984] and the common knowledge operator "\(C \)" [Genesereth and Nilsson, 1987; Halpern and Moses, 1992]. In fact, let us consider the axioms:

\[
\begin{align*}
[b] \varphi & \supset \varphi \land [a][b] \varphi & \text{(VI.6)} \\
\varphi \land [b](\varphi \supset [a] \varphi) & \supset [b] \varphi & \text{(VI.7)}
\end{align*}
\]

then, it is easy to see that the modal operator \([b] \) represents both \([a] \) of dynamic logic and the common knowledge operator (when \(a \) is the only agent). Axiom (VI.6) is an incestual axiom (it is equal to \(\langle \varepsilon \rangle[b] \varphi \supset [\varepsilon \cup a; b] \langle \varepsilon \rangle \varphi \) but axiom (VI.7), the induction axiom, is not (see also [Catach, 1988]). From a semantics point of view, the axioms (VI.6) and (VI.7) are characterized by the class of Kripke interpretations in which the relation \(R_b \) is equal to \(R_a^* \) [Kozen and Tiuryn, 1990; Halpern and Moses, 1992] (i.e. the reflexive and transitive closure of \(R_a \)). On the contrary, incestual axioms are not strong enough to capture \(R_a^* \).

Indeed, axiom (VI.6) can be characterized by the inclusion properties \(R_b \supset I \cup R_a \circ R_b \), from which, by some easy transformations, we have \(R_b \supseteq R_a^* \). Unfortunately, the converse of axiom (VI.6), that is

\[
\varphi \land [a][b] \varphi \supset [b] \varphi
\]

(VI.8)

does not capture the converse inclusion relation \(R_a^* \supset R_b \) [Catach, 1988]. The modal systems which contain the axioms (VI.6) and (VI.8) are sound and complete with respect to the class of Kripke interpretations for which the relation

\[
R_b = I \cup R_a \circ R_b
\]

holds but this does not mean that \(R_b \) is equal to \(R_a^* \). In fact, let us define the function

\[
F(X) = I \cup R_a \circ X
\]

then, \(R_b \) is equal to a fixpoint of \(F \). Now, \(F \) is monotone and continuous and, then, the least fixed point of \(F \) exists and it is equal to \(\cup_{k \in \mathbb{N}} F^k(\emptyset) \), that corresponds to \(R_a^* \). However, in general, this is not the only fixpoint of \(F \).\(^3\)

\(^3\)Let us consider, for instance, \(W = \{w_1, w_2\} \) and, then, \(I = \{(w_1, w_1), (w_2, w_2)\} \). Assume that \(R_a = I \), the least fixpoint of \(F \) is \(R_a^{\ast} \), that is \(I \) itself. Now, consider the set \(B = \{(w_1, w_1), (w_2, w_2), (w_1, w_2)\} \), then, \(F(B) = I \cup R_a \circ B \) and, since we have assumed \(R_a = I \), \(F(B) = I \cup I \circ B \). Since \(I \circ B = B \) and \(I \cup B = B \), we have that \(F(B) = B \), that is \(B \) is a fixpoint of \(F \) but \(B \neq I \) (indeed, \(R_a^{\ast} = R_a \not\subseteq B \)).
VI.3 A tableau calculus

The tableau calculus for incestual modal logics extends the one presented in Chapter III. A tableau is a labeled tree where each node consists of a prefixed signed formula or of an accessibility relation formula. Intuitively, each tableau branch corresponds to the construction of a Kripke interpretation that satisfies the formulae that belong to it. However, in order to deal with arbitrary expressions as labels of modal operators, we need to extend the notion of accessibility relation formula.

Definition VI.3.1 Let \mathcal{L} be a propositional modal language, an accessibility relation formula $w \rho_t w'$, where $t \in \text{LABELS}$, is a binary relation between prefixes of \mathcal{W}_C.

We say that an accessibility relation formula $w \rho_t w'$ is true in a tableau branch if it belongs to that branch. Moreover, the relation ρ_e on a branch defines an equivalence relation among prefixes: when $w \rho_e w'$ holds, w and w' can be regarded as representing the same worlds. By taking the reflexive, transitive and symmetric closure of the relation ρ_e, we define an equivalence relation among worlds. We denote by \overline{w} the equivalence class of w with respect to this equivalence relation. A formula $w : T \varphi (w : F \varphi)$ on a branch of a tableau means that the formula φ is true (false) at the world \overline{w} in the Kripke interpretation associated with that branch.

We say that a prefix w is used on a tableau branch if it occurs on the branch in some accessibility relation formula, otherwise we say that the prefix w is new. Moreover, given a label t, we say that an accessibility relation formula $w \rho_t w'$ is available on a branch S of a tableau if one of the following conditions hold:

1. $t = \varepsilon$ and $w = w'$;
2. $w_1 \in \overline{w}$, $w_2 \in \overline{w'}$ and $w_1 \rho_t w_2$ is true in S;
3. $t = t'; t''$ and both $w \rho_{t'} w''$ and $w'' \rho_{t''} w'$ are available on S, for some w'' used on the branch S;
4. $t = t' \cup t''$ and either $w \rho_{t'} w'$ is available on S or $w \rho_{t''} w'$ is available on S.

Note that, if an accessibility relation formula is true in a tableau branch, it is also available on it (as a special case of the condition 2 above). Moreover, for any world w on a given branch, $w \rho_e w$ is always available (condition 1). Intuitively, $w \rho_t w'$ available on a branch of a tableau means that, in the Kripke interpretation associated with that branch, $(\overline{w}, \overline{w'}) \in \mathcal{R}_t$.

Definition VI.3.2 (Extension rules) Let \mathcal{L} be a propositional modal language and let \mathcal{G} be a set of incestual axioms, the extension rules (tableau rules) for $I^G_\mathcal{L}$ are given in Figure VI.3.
VI. Towards a wider class of logics

\[\frac{w : \alpha}{w : \alpha} \frac{w : \beta}{w : \beta_1 | w : \beta_2} \]

\[\frac{w : \nu^t \ w \rho_t w'}{w' : \nu'_0} \]

where \(w \rho_t w' \) is available on the branch

\[\frac{w \rho_t w' w''}{w' \rho_t w''} \frac{w'' \rho_t w'}{w'' \rho_t w'} \]

where \(w'' \) is new on the branch

\[\frac{w \rho_a w' w \rho_e w''}{w' \rho_b w''} \frac{w'' \rho_e w''}{w'' \rho_b w''} \]

where \(w \rho_a w' \) and \(w \rho_e w'' \) are available on the branch,

\[\text{w}^* \text{ is new on the branch, and } \langle a \rangle \langle b \rangle \varphi \supset \langle c \rangle \langle d \rangle \varphi \in \mathcal{G} \]

Figure VI.3: Tableau rules for propositional incestual modal logics.

The interpretation of the \(\alpha, \beta, \nu, \) and \(\pi \) rule is the same already seen in the previous chapters, the only remark is that, now, the label \(t \) of a formula \(\nu^t \) or \(\pi^t \) can be an arbitrarily complex expression.

Case \(\rho_\alpha \)-rule. If an accessibility relation formula \(w \rho_{t} \ w' \) is true in a tableau branch then, \((w, w') \in \mathcal{R}_t \) holds in the Kripke interpretation represented by that branch. Therefore, \((w, w') \in \mathcal{R}_t \) or \(\mathcal{R}_{t}' \) and, hence, there exists a world \(w'' \) such that \((w, w'') \in \mathcal{R}_t \) and \((w'', w') \in \mathcal{R}_{t}' \). That is, \(w \rho_t w'' \) and \(w'' \rho_t w' \) are true in that branch.

Case \(\rho_\beta \)-rule. If an accessibility relation formula \(w \rho_{t} \ w' \) is true in a tableau branch then, \((w, w') \in \mathcal{R}_t \cup \mathcal{R}_{t}' \) holds in the Kripke interpretation represented by that branch. Therefore, \((w, w') \in \mathcal{R}_t \) or \(\mathcal{R}_{t}' \) and, hence, \((w, w') \in \mathcal{R}_t \) or \((w, w') \in \mathcal{R}_{t}' \). That is, \(w \rho_t w' \) or \(w \rho_{t} \ w' \) is true in that branch.

Finally, the intuitive meaning of the \(\rho \)-rule is similar to the one of the calculus for inclusion modal logics and it allows us to deal with any incestual axiom in an uniform way. Let us suppose, for instance, that \(\langle a \rangle \langle b \rangle \varphi \supset \langle c \rangle \langle d \rangle \varphi \in \mathcal{G} \) in our modal logic \(\mathcal{I}_c \). If \(w \rho_a w' \) and \(w \rho_c w'' \) are available on a tableau branch then, \((w, w') \in \mathcal{R}_a \) and \((w, w'') \in \mathcal{R}_c \) in the Kripke interpretation associated to that branch. Since the incestual axiom \(\langle a \rangle \langle b \rangle \varphi \supset \langle c \rangle \langle d \rangle \varphi \in \mathcal{G} \) then, the corresponding \(a, b, c, d \)-incestual property (VI.5) must hold, that is, there exists a world \(w^* \) such that \((w', w^*) \in \mathcal{R}_b \) and \((w'', w^*) \in \mathcal{R}_d \). Hence, \(w' \rho_b w^* \) and \(w'' \rho_d w^* \) are true in that Kripke interpretation for some new prefix \(w^* \) (see

\[4\text{Instead of MOD!} \]
VI.3. A tableau calculus

Figure VI.2). Again the \(\rho \)-rule can be regarded as a *rewriting* rule which creates new paths among worlds according to the inclusion properties of the incestual modal logic.

We say that a tableau branch is *closed* if it contains \(w : T \varphi \) and \(w' : F \varphi \) for some formula \(\varphi \) such that \(w = w' \). A tableau is *closed* if every branch in it is closed.

Definition VI.3.3 Let \(\mathcal{L} \) be a modal language and let \(\mathcal{G} \) a set of incestual axioms. Then, given a formula \(\varphi \) of \(\mathcal{L} \), we say that a closed tableau for \(i : F \varphi \), using the tableau rules of Figure VI.3, is a proof of \(\varphi \) (\(\varphi \) is \(T^g_{\mathcal{L}} \)-provable).

Let us see some examples of derivations.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Kripke \(\mathcal{G} \)-interpretation constructions of Example VI.3.1, VI.3.2, and VI.3.3.}
\end{figure}

Example VI.3.1 Let us consider the incestual modal logic \(T^g_{\mathcal{L}} \) where \(\mathcal{G} \) that consists of the axiom schema \((\varepsilon)[b] \supset (\varepsilon)[d] \). Then, the formula \([b]p \supset (d)p \) has a tableau proof (see also Figure VI.4(a)):

1. \(i : F([b]p \supset (d)p) \)
2. \(i : T[b]p \)
3. \(i : F(d)p \)
4. \(i \rho_b w_1 \)
5. \(i \rho_d w_1 \)
6. \(w_1 : Tp \)
7. \(w_1 : Fp \)

Explanation: 1.: the goal; 2. and 3.: from 1., by \(\alpha \)-rule; 4. and 5.: since \(i \rho_e i \) is available from axiom \(G^{e,b,c,d} \), by \(\rho \)-rule; 6.: from 2. and 4., by \(\nu \)-rule; 7.: from 3. and 5., by \(\nu \)-rule, the branch closes due to steps 6. and 7.
VI. Towards a wider class of logics

Example VI.3.2 Let us consider the incestual modal logic \mathcal{I}_G^φ where G that consists of the axiom schema $(\varepsilon)[b';b'']\varphi \supset (\varepsilon)(d)\varphi$. Then, the formula $[b'][b'']p \supset (d)p$ has a tableau proof (see also Figure VI.4(b)):

1. $i : \mathbf{F}([b'][b''])p \supset (d)p$
2. $i : \mathbf{T}[b'][b''])p$
3. $i : \mathbf{F}(d)p$
4. $i \rho_d w_1$
5. $i \rho_{v',\delta'} w_1$
6. $i \rho_{v'} w_2$
7. $w_2 \rho_{v'} w_1$
8. $w_2 : \mathbf{T}[b'']p$
9. $w_1 : \mathbf{T}p$
10. $w_1 : \mathbf{F}p$

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: by ρ-rule from axiom $(\varepsilon)[b';b'']\varphi \supset (\varepsilon)(d)\varphi$ since $i \rho_\varepsilon i$ is available; 6. and 7.: from 5., by ρ_α-rule; 8.: from 2. and 6., by ν-rule; 9.: from 8. and 7., by ν-rule; 10.: from 3. and 4., by ν-rule. The branch close due to steps 9. and 10.

Example VI.3.3 Let us consider the incestual modal logic \mathcal{I}_G^φ where G that consists of the axiom schema $(a)[b' \cup b'']\varphi \supset [c](\varepsilon)\varphi$. Then, the formula $(a)([b']p \land [b'']p) \supset [c]p$ has a tableau proof (see also Figure VI.4(c)) We denote with “a” and “b” the two branches which are created by the application of ρ_{β}-rule to step 10.

1. $i : \mathbf{F}(a)([b']p \land [b'']p) \supset [c]p$
2. $i : \mathbf{T}(a)([b']p \land [b'']p)$
3. $i : \mathbf{F}[c]p$
4. $w_1 : \mathbf{T}([b']p \land [b'']p)$
5. $i \rho_a w_1$
6. $w_1 : \mathbf{T}[b']p$
7. $w_1 : \mathbf{T}[b'']p$
8. $w_2 : \mathbf{F}p$
9. $i \rho_{\varepsilon} w_2$
10. $w_1 \rho_{\psi,\delta'} w_3$
11. $w_2 \rho_{\varepsilon} w_3$
12a. $w_1 \rho_{\psi'} w_3$
13a. $w_3 : \mathbf{T}p$
12b. $w_1 \rho_{\psi'} w_3$
13b. $w_3 : \mathbf{T}p$

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by π-rule; 6. and 7.: from 4., by α-rule; 8. and 9.: from 3., by π-rule; 10. and 11.: by ρ-rule from axiom $(a)([b' \cup b'']\varphi \supset [c](\varepsilon)\varphi$ since $i \rho_a w_1$ and $i \rho_{\varepsilon} w_2$ are available; 12a. and 12b.: from 10., by ρ_{β}-rule;
VI.3. A tableau calculus

13a.: from 6. and 12a., by \(\nu \)-rule, 13b.: from 7. and 12b., by \(\nu \)-rule. Since \(w_2 = w_5 \) \((w_2 \rho_s w_3 \) belongs to the branch at step 11.) the branches “a” and “b” close due to step 8. and steps 13a. and 13b., respectively.

![Figure VI.5: Kripke \(\mathcal{G} \)-interpretation construction of Example VI.3.4.](image)

Example VI.3.4 *(The wise men puzzle)* We prove the formula (6) in Example VI.2.1 from the set of formulae (1)-(5). Figure VI.5 shows pictorially the counter-model construction.

1. \(i : T[fool](ws(a) \lor ws(b) \lor ws(c)) \)
2. \(i : T[fool](\neg ws(b) \supset [a]\neg ws(b)) \)
3. \(i : T[fool](\neg ws(c) \supset [a]\neg ws(c)) \)
4. \(i : T[fool](\neg ws(c) \supset [b]\neg ws(c)) \)
5. \(i : T[\neg a] ws(a) \)
6. \(i : T[\neg b] ws(b) \)
7. \(i : F[c] ws(c) \)
8. \(i : F[a] ws(a) \)
9. \(i : F[b] ws(b) \)
10. \(w_1 : F ws(a) \)
11. \(i \rho_a w_1 \)
12. \(w_2 : F ws(b) \)
13. \(i \rho_b w_2 \)
14. \(w_3 : F ws(c) \)
15. \(i \rho_c w_3 \)
16. \(w_1 \rho_e w_4 \)
17. \(w_2 \rho_a w_4 \)
18. \(w_2 \rho_e w_5 \)
19. \(w_3 \rho_b w_5 \)
20. \(i \rho_{fool} w_2 \)
21. \(w_2 \rho_{fool} w_4 \)
We denote with “a”, “b”, and “c” the three branches which are created by the application of β-rule twice to step 23. “ba” and “bb” the two ones that are created by the β-rule to step 25b. “ca” and “cb” the ones that are created by the β-rule to step 28c. and, finally, “caa” and “cab” the two ones which are created from step 31f. Explanation: 1.: formula (1) from Example VI.2.1; 2., 3., and 4.: instances of formula (3) from Example VI.2.1; 5. and 6.: formulae (4) and (5) from Example VI.2.1; 7.: the goal; 8.: from 5., by α-rule; 9.: from 6., by α-rule; 10. and 11.: from 8., by π-rule; 12. and 13.: from 9., by π-rule; 14. and 15.: from 7., by π-rule; 16. and 17.: from 11. and 13., by axiom (A₆), when X = a and Y = b, and ρ-rule; 18. and 19.: from 13. and 15., by axiom (A₆), when X = b and Y = c, and ρ-rule; 20.: from 13., by axiom (A₄) and ρ-rule; 21.: from 17., by axiom (A₃) and ρ-rule; 22.: from 20. and 21., by axiom (A₂) and ρ-rule; 23.: from 1. and 22., by ν-rule; 24a., 24b., and 24c.: from 23., by β-rule, the branch “a” closes due to steps 24a. and 10. since w₄ = w₁; 25b.: from 2. and 20., by ν-rule; 26ba. and 26bb.: from 25b., by β-rule; 27ba.: from 26ba., by α-rule, the branch “ba” closes due to 27ba. and 12.;
VI.3. A tableau calculus

27bb.: from 26bb. and 17., by \(\nu \)-rule; 28bb.: from 27bb., by \(\alpha \)-rule, the branch “bb” closes due to 28bb. and 24b.; 25c.: from 15., by axiom \((A_3)\) and \(\rho \)-rule; 26c.: from 19., by axiom \((A_4)\) and \(\rho \)-rule; 27c.: from 25c. and 26c., by axiom \((A_2)\) and \(\rho \)-rule; 28c.: from 3. and 27c., by \(\nu \)-rule; 29ca. and 29cb.: from 28c., by \(\beta \)-rule; 27ca.: from 29ca., by \(\alpha \)-rule, 31ca.: from 4. and 25c., by \(\nu \)-rule; 32ca., and 32cab.: from 31ca., by \(\beta \)-rule; 33ca.: from 32ca., by \(\alpha \)-rule, the branch “ca” closes due to 33ca. and 14.; 33cab.: from 32cab. and 19., by \(\nu \)-rule; 34cab.: from 33cab., by \(\alpha \)-rule, the branch “cb” closes due to 34cab. and 30ca.; 30cb.: from 29cb., 17., and 18. (i.e. \(w_5 \rho_a w_4 \) is available), by \(\nu \)-rule; 31cb.: from 30cb., by \(\alpha \)-rule, the branch “cb” closes due to 31cb. and 24c.

Remark VI.3.1 Though we have focused on a propositional language, the tableau calculus we have proposed in this chapter can be extended to the first-order case by introducing the rules for quantifiers already seen in Chapter V in the case of the calculus for the class of inclusion modal logics.

Soundness and completeness

In order to prove the soundness and completeness we follow the same guideline of Section III.3. We first prove that the tableau rules preserve the satisfiability.

Let \(L \) be a modal language and let \(\mathcal{G} \) be a set of incestual axioms. Given a set of prefixed signed formulae and accessibility relation formulae \(S \) of \(L \) and a Kripke \(\mathcal{G} \)-interpretation \(M = (W, \mathcal{R}_t, V) \), we say \(v \in W \) is \(\mathcal{R}_t \)-idealizable if there is some \(v' \in W \) such that \((v, v') \in \mathcal{R}_t \). A \(\mathcal{G} \)-mapping \(I \) is a mapping \(I \) from the subset of equivalences classes of the prefixes that occur in some accessibility relation formula of \(S \) to \(W \) such that if \(w \rho_1 w' \in S \) and \(I(w) \) is \(\mathcal{R}_t \)-idealizable then \((I(w), I(w')) \in \mathcal{R}_t \). We say \(S \) is \(\mathcal{G} \)-satisfiable under the \(\mathcal{G} \)-mapping \(I \) in the Kripke \(\mathcal{G} \)-interpretation \(M \) if, for each \(w : T \varphi, M, I(w) \models_g \varphi \), for each \(w : F \varphi, M, I(w) \not\models_A \varphi \), and for each \(w \rho_1 w', (I(w), I(w')) \in \mathcal{R}_t \). Finally, we say a set \(S \) of prefixed signed formulae and accessibility relation formulae \(\mathcal{G} \)-satisfiable if \(S \) is \(\mathcal{G} \)-satisfiable under some \(\mathcal{G} \)-mapping.

A branch of a tableau is \(\mathcal{G} \)-satisfiable if the set of formulae on it is \(\mathcal{G} \)-satisfiable and a tableau is \(\mathcal{G} \)-satisfiable if some its branch is \(\mathcal{G} \)-satisfiable.

Proposition VI.3.1 Let \(T \) be a \(\mathcal{G} \)-satisfiable prefixed tableau and let \(T' \) be the tableau which is obtained from \(T \) by means of one of the extension rules given in Figure VI.3. Then, \(T' \) is also \(\mathcal{G} \)-satisfiable.

Proof. As in the proof of the Proposition III.3.1, we can focus on application of the extension rules to a branch. The cases when the applied extension rule is the \(\alpha \)-rule, \(\beta \)-rule, \(\nu \)-rule, and \(\pi \)-rule are similar to Proposition III.3.1.

Assume that the applied extension rule is the \(\rho \)-rule to obtain \(S' \). Let us suppose \(w \rho_a w' \), and \(w \rho_c w'' \) are available in \(S \) and that \(S' = S \cup \{w' \rho_b w^*, w'' \rho_d w^*\} \), where \((a)[b] \varphi \supset [c][d] \varphi \in \mathcal{G} \) and \(w^* \) is new on \(S \). Then, \(I \) is already defined for \(w, w' \), and \(w'' \) and \((I(w), I(w')) \in \mathcal{R}_a, (I(w), I(w'')) \in \mathcal{R}_c \). Since \(M \) is a Kripke \(\mathcal{G} \)-interpretation, by (VI.5), there exist \(v^* \) in \(W \) such that \((I(w'), v^*) \in \mathcal{R}_b \) and \((v^*, I(w'')) \in \mathcal{R}_d \). This means
Proof. and a set of pre-fixed signed and accessibility relation formulae in order to do this we first extend in a suitably way the definition of I by setting $I(w^\bar{v}) = v^\bar{v}$.

Assume that the applied extension rule to obtain S' is the ρ_α-rule. Then, an accessibility relation formula of the form $w \rho_{t,\alpha'} w'$ is in S and $S' = S \cup \{w \rho_t w'', w'' \rho_v w'\}$, where $w'' \in \mathcal{W}_C$ is new on S and, therefore, I is not defined on w''. Since $w \rho_{t,\alpha'} w' \in S$ we have that $(I(\bar{w}), I(\bar{w}^\bar{v})) \in \mathcal{R}_t$ and, therefore, there exists a world $v \in W$ such that $(I(\bar{w}), v) \in \mathcal{R}_t$ and $(v, I(\bar{w}^\bar{v})) \in \mathcal{R}_c$. Then, it is enough to extend the definition of I by setting $I(\bar{w}^\bar{v}) = v$.

Assume that the applied extension rule to obtain S' is the ρ_β-rule. Then, an accessibility relation formula of the form $w \rho_{t,\beta'} w'$ is in S and either $S' = S \cup \{w \rho_v w'\}$ or $S' = S \cup \{w \rho_{t'} w'\}$. But, since $w \rho_{t,\beta'} w' \in S$, we have that $(I(\bar{w}), I(\bar{w}^\bar{v})) \in \mathcal{R}_t$ and, therefore, either $(I(\bar{w}), \bar{w}) \in \mathcal{R}_t$ or $(I(\bar{w}), I(\bar{w}^\bar{v})) \in \mathcal{R}_c$. □

Theorem VI.3.1 (Soundness) Let \mathcal{L} be a modal language and let \mathcal{G} be a set of incestual axiom schemas, if a formula φ of \mathcal{L} is $T^0_\mathcal{G}$-provable then, it is \mathcal{G}-valid.

Proof. The proof is similar to the one of Theorem III.3.1. □

The completeness is proved by means of the usual counter-model construction. In order to do this we first extend in a suitably way the definition of downward saturated set of formulae.

Definition VI.3.4 Let \mathcal{L}, \mathcal{G}, and S be a modal language, a set of incestual axiom schemas, and a set of prefixed signed and accessibility relation formulae in \mathcal{L}, respectively. Then, we say that S is \mathcal{G}-downward saturated if:

1. for no atomic formula φ, we have $w : T\varphi \in S$, $w' : F\varphi \in S$ and $\bar{w} = \bar{w}^\bar{v}$;
2. if $w : \alpha \in S$, then $w : \alpha_1 \in S$ and $w : \alpha_2 \in S$;
3. if $w : \beta \in S$, then $w : \beta_1 \in S$ or $w : \beta_2 \in S$;
4. if $w : \nu^t \in S$, then $w' : \nu^t_0$ is available on S for all w' such that $w \rho_t w'$ is available on S;
5. if $w : \pi^t \in S$, then $w' : \pi^t_0$ is available on S for some w' such that $w \rho_t w'$ is available on S;
6. if $w \rho_{t,\nu'} w'$ is available on S then $w \rho_t w''$ and $w'' \rho_v w'$ are available on S, for some w'';
7. if $w \rho_{t,\nu'} w'$ is in S then $w \rho_{t,\nu'} w'$ is available on S;
8. if $w \rho_{\nu} w'$ and $w \rho_{\nu} w''$ are available in S and $⟨a⟩[b]ϕ ⊃ [c]⟨d⟩ϕ \in \mathcal{G}$, then $w' \rho_b w^*$ and $w'' \rho_d w^*$ are available in S, for some w^*.
Now, we can note that it is quite easy to extend the fair systematic tableau procedure of Figure III.5 for the case of new extension rules presented here, in a such a way to built a G-downward saturated set when it produces an open branch.

Definition VI.3.5 (Canonical model) Given a modal language L, let S be a set of pre-fixed signed formulae and accessibility relation formulae in L that is G-downward saturated. The canonical model M^G_c is the ordered triple (W, R, V), where:

- $W = \{ \overline{w} \mid w \text{ is used on } S \}$;
- for each $t \in \text{MOD}$, $R_t = \{(\overline{w}, \overline{w'}) \in W \times W \mid w \rho_t w' \text{ is available on } S\}$;
- for each $p \in \text{VAR}$ and each $w \in W$, we set $V(\overline{w}, p) = \begin{cases} T & \text{if } w : Tp \in S \\ F & \text{otherwise} \end{cases}$

Proposition VI.3.2 Let M^G_c be the canonical model built by a G-downward saturated set of formulae S. Then, $w \rho_t w'$ is available on S if and only if $(\overline{w}, \overline{w'}) \in R_t$.

Proof. The proof is by an easy induction on the structure of the label. (If part) If $t = \varepsilon$ and $w \rho_t w'$ then $\overline{w} = \overline{w'}$ and, therefore, $(\overline{w}, \overline{w'}) \in I$. If $t \in \text{MOD}$ and $w \rho_t w'$ then $(\overline{w}, \overline{w'}) \in R_t$ by definition of M^G_c. If $t = t'; t''$ and $w \rho_{t'; t''} w'$ is available on S then, since S is G-downward saturated, there are $w \rho_{t'} w''$ and $w'' \rho_{t''} w'$ available on S, for some w''. By inductive hypothesis, $(\overline{w}, \overline{w''}) \in R_{t'}$ and $(\overline{w''}, \overline{w'}) \in R_{t''}$ and, therefore, $(\overline{w}, \overline{w'}) \in R_{t'; t''}$. If $t = t' \cup t''$ and $w \rho_{t' \cup t''} w'$ is available on S then, since S is G-downward saturated, there is $w \rho_{t'} w'$ or $w \rho_{t''} w'$ available on S. By inductive hypothesis, $(\overline{w}, \overline{w'}) \in R_{t'}$ or $(\overline{w}, \overline{w'}) \in R_{t''}$ and, therefore, $(\overline{w}, \overline{w'}) \in R_{t' \cup t''}$. (Only if part) If $t = \varepsilon$ and $(\overline{w}, \overline{w'}) \in I$ then $\overline{w} = \overline{w'}$ and, therefore, $w \rho_{\varepsilon} w'$ is available on S by definition of reflexive, transitive, and symmetric closure of ρ_c relation. If $t \in \text{MOD}$ and $(\overline{w}, \overline{w'}) \in R_t$ then $w \rho_t w'$ is available on S by construction of M^G_c. If $t = t'; t''$ and $(\overline{w}, \overline{w''}) \in R_{t'; t''}$ then $(\overline{w}, \overline{w''}) \in R_{t'}$ and $(\overline{w''}, \overline{w'}) \in R_{t''}$, for some w''. By inductive hypothesis, $w \rho_{t'} w''$ and $w'' \rho_{t''} w'$ are available on S and, therefore, by definition, $w \rho_{t'} w'$ is available on S too. Finally, If $t = t' \cup t''$ and $(\overline{w}, \overline{w'}) \in R_{t' \cup t''}$ then $(\overline{w}, \overline{w'}) \in R_{t'}$ or $(\overline{w}, \overline{w'}) \in R_{t''}$. By inductive hypothesis, either $w \rho_{t'} w''$ or $w'' \rho_{t''} w'$ is available on S and, therefore, by definition, $w \rho_{t'} w'$ is available on S too. □

Proposition VI.3.3 The canonical model M^G_c given by Definition VI.3.5 is a Kripke G-interpretation.

Proof. We prove that each inclusion properties in IP^G_c is satisfied by M^G_c. Let us suppose that $R_b \circ R_d^{-1} \supseteq R_a^{-1} \circ R_c \subseteq IP^G_c$, and $(\overline{w'}, \overline{w'}) \in R_a$ and $(\overline{w}, \overline{w}) \in R_c$ then, we have to show $(\overline{w'}, \overline{w''}) \in R_b$ and $(\overline{w'}, \overline{w''}) \in R_d$. If $(\overline{w'}, \overline{w''}) \in R_a$ and $(\overline{w}, \overline{w}) \in R_c$ then, by Proposition VI.3.2, $w \rho_a w'$ and $w \rho_c w''$ are available on S. Now, since by hypothesis S is G-downward saturated, by point (8) of Definition VI.3.4, $w' \rho_b w^*$ and $w'' \rho_d w^*$ are available on S, for some w^*. Thus, by Proposition VI.3.2, $(\overline{w'}, \overline{w^*}) \in R_b$ and $(\overline{w''}, \overline{w^*}) \in R_d$. □
Now, we can prove the key lemma (the model existence) to proving the completeness.

Lemma VI.3.1 Given a modal language \mathcal{L}, if S is a set of prefixed signed formulae and accessibility relation formulae of \mathcal{L} that is G-downward saturated then, S is G-satisfiable.

Proof. Suppose S is G-downward saturated. For every formula φ and every prefix w, we have that if $w : T\varphi \in S$ then $M^G_c, w \models_G \varphi$ and if $w : F\varphi \in S$ then $M^G_c, w \not\models_G \varphi$. That is, the mapping $I(w) = \overline{w}$ is an G-mapping for S in the Kripke A-interpretation M^G_c. The proof is by induction on the structure of φ. The case of formulae of type α and β are trivial. Let us suppose $w : \nu^t \in S$ then, since S is G-downward saturated, $w' : \nu^t_0 \in S$ for all w' such that $w \rho_t w'$ is available on S. By inductive hypothesis, we have that $M^G_c, \overline{w'} \models_G \nu^t_0$, for each world $\overline{w'}$ such that $(\overline{w}, \overline{w'}) \in R_t$, hence, by definition of satisfiable relation, $M^G_c, \overline{w} \models_G \nu^t$.

Let us assume, now, $w : \pi^t \in S$ then, since S is G-downward saturated, $w' : \pi^t_0 \in S$ for some w' such that $w \rho_t w'$ is available on S. By inductive hypothesis, we have that $M^G_c, \overline{w'} \models_G \pi^t_0$, for some world $\overline{w'}$ such that $(\overline{w}, \overline{w'}) \in R_t$, hence, by definition of satisfiable relation, $M^G_c, \overline{w} \models_G \pi^t$. \qed

Theorem VI.3.2 (Completeness) Let \mathcal{L} be a modal language and let G be a set of incestual axiom schemas, if a formula φ of \mathcal{L} is G-valid then, φ is T^G_c-provable.

Proof. The proof is similar to the one of Theorem III.3.2. \qed
Chapter VII

Related work

In this part of the thesis, we have presented the class of inclusion modal logics. This class includes some well-known modal systems such as K_n, T_n, $K4_n$, $S4_n$. However, differently than other proposals, these systems can be non-homogeneous and can contain arbitrarily complex interaction axioms: features particularly suitable for modal systems modeling, for instance, knowledge and beliefs in multiagent situation.

An analytic tableau calculus for this class of logics has been developed. In order to have a general framework able to cope with any kind of inclusion axioms, we have chosen the simplest way of representing models: prefixes are worlds, and relations between them are built step by step by the rules of the calculus. In particular, axioms are used as rewrite rules which create new paths among worlds.

The calculus is then extended in order to deal with the class of incestual modal logics as defined in [Catach, 1988]. This allows to deal also with multimodal logics characterized, among other things, by serial, symmetric, and Euclidean accessibility relations. Furthermore, some (un)decidability results for the class of inclusion modal logics are given.

VII.1 Prefixed tableau systems

Our approach to prefixed tableaux and, in particular, to represent accessibility relations by means of a graph is closely related to the approaches based on prefixes used in [Fitting, 1983] and by other authors for classical modal (though no multimodal) systems [Massacci, 1994; Goré, 1995] and for dynamic logic [De Giacomo and Massacci, 1996]. In these works, prefixes are sequences of integers which represent a world as a path in the model, that connects the initial world to the one at hand. Thus, instead of representing a model as a graph, as in the our approach, a model is represented as a set of paths which can be considered a spanning tree of the same graph. Although this representation may be more efficient, the disadvantage is that it requires a specific ν-rule for each logic. These rules code the properties of accessibility relations. Depending on the logic, the ν-rules may express complex relations between prefixes, which instead in our case are explicitly available from the representation. In particular, Massacci has proposed a “single step
calculus” where ν-rules make use only of immediately accessible prefixes [Massacci, 1994].

His approach works for all the distinct basic normal logics obtainable from K by addition on any combination of the axiom T, D, 4, 5, and B in a modular way but it still requires the definition of specific ν-rules. On the contrary, our calculus deals with all modal logic considered by [Fitting, 1983; Massacci, 1994; Gore, 1995] and many others by means of the only ρ-rule. Moreover, it is modular with respect to the characterizing axioms of the multimodal logic, i.e., it is enough to know the axioms to get the calculus.

Besides the disadvantage of requiring specific ν-rules and the fact that they do not work with multimodal systems, we think that it is difficult to extend the approach based on prefixes as sequences to the whole class even though it might be adapted for some subclasses of inclusion and incestual axioms. In particular, it can be shown that a “generation lemma” ([Massacci, 1994, page 732] [Gore, 1995, Section 6.2]) does not hold, i.e. it is not true that, for any prefix occurring on a branch, all intermediate prefixes occur too. This property is at the basis of the completeness proof for the calculus in [Massacci, 1994; Gore, 1995]. Let us consider the following example.

Example VII.1.1 Assume that the multimodal logic \mathcal{I}_L^3 is characterized by the inclusion axiom $[a][b] \varphi \supset [c] \varphi$. Then, the formula $[a]p \land \langle c \rangle q \supset \langle a \rangle p$ is provable:

1. $i : F([a]p \land \langle c \rangle q \supset \langle a \rangle p)$
2. $i : T[a]p \land \langle c \rangle q$
3. $i : F(a)p$
4. $i : T[a]p$
5. $i : T\langle c \rangle q$
6. $w_1 : Tq$
7. $i \rho_c w_1$
8. $i \rho_a w_2$
9. $w_2 \rho_b w_1$
10. $w_2 : Fp$
11. $w_2 : Tp$

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by α-rule; 6. and 7.: from 5., by π-rule; 8. and 9.: from 7., by ρ-rule from axiom $[a][b] \varphi \supset [c] \varphi$; 10.: from 3. and 8., by ν-rule; 11.: from 4. and 8., by ν-rule; The branch close due to steps 10. and 11.

By applying π-rule to the prefixed formula at step 5., we get a new world w_1 (step 6. and step 7.). We can imaging to use the prefix “1.1c.” to represent the world w_1 (see Figure VII.1):

1. $1.1c. : F([a]p \land \langle c \rangle q \supset \langle a \rangle p)$
2. $1.1c. : T[a]p \land \langle c \rangle q$
3. $1.1c. : F(a)p$
4. $1.1c. : T[a]p$
5. $1.1c. : T\langle c \rangle q$
6. $1.1c. : Tq$
VII.1. Prefixed tableau systems

Figure VII.1: ρ-rule as rewriting rule: counter-model construction of Example VII.1.1.

Now, by applying axiom \([a]\mid [b]φ \supset [c]φ\), the same world can also be represented by the sequence “1.1.a.1.b” (accessibility relation formulae at steps 8. and 9. in Example VII.1.1):

6. \(1.1.a.1.b : Tq\)

whose subprefix “1.1.a” (world \(w_2\) in Figure VII.1) does not occur on the branch. On the other hand, this subprefix (world) is needed to apply the \(ν\)-rule to the formula at step 3. and 4. in order to close branch.

Moreover, adding explicitly subprefixes, as the one above, is not enough to solve the problem, since all prefixes representing the same world have to be identified.

Example VII.1.2 Assume that the multimodal logic \(T^A\) is characterized by the inclusion axioms \([a]φ \supset [c]φ\) and \([b]φ \supset [c]φ\). Then, the formula \([a]p \land (c)q \supset (b)p\) is provable:

1. \(i : F([a]p \land (c)q \supset (b)p)\)
2. \(i : T[a]p \land (c)q\)
3. \(i : F(b)p\)
4. \(i : T[a]p\)
5. \(i : T(c)q\)
6. \(w_1 : Tq\)
7. \(i_r c \ w_1\)
8. \(i p_a \ w_1\)
9. \(i p_b \ w_1\)
10. \(w_1 : Fp\)
11. \(w_1 :Tp\)

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by α-rule; 6. and 7.: from 5., by π-rule; 8.: from 7., by ρ-rule from axiom \([a]φ \supset [c]φ\); 9.: from 7., by ρ-rule from axiom \([b]φ \supset [c]φ\); 10.: from 3. and 9., by ν-rule; 11.: from 4. and 8., by ν-rule; The branch close due to steps 10. and 11.

Using prefixes \(à la\) Fitting we can represent the world \(w_1\) by means of the prefix 1.1.c, that is:
VII. Related work

Figure VII.2: ρ-rule as rewriting rule: counter-model construction of Example VII.1.2.

\begin{align*}
1. & \quad 1. : F(\llbracket a \rrbracket q \land \llbracket c \rrbracket q \supset \llbracket b \rrbracket p) \\
2. & \quad 1. : T(\llbracket a \rrbracket q \land \llbracket c \rrbracket q) \\
3. & \quad 1. : F(\llbracket b \rrbracket p) \\
4. & \quad 1. : T(\llbracket a \rrbracket p) \\
5. & \quad 1. : T(\llbracket c \rrbracket q) \\
6. & \quad 1.1_c : Tq \\
7. & \quad 1.1_a : Tq \\
8. & \quad 1.1_b : Tq \\
\end{align*}

and, then, applying twice the ν-rule to the formulae at steps 3. and 4. we have:

\begin{align*}
9. & \quad 1.1_b : Fp \\
10. & \quad 1.1_a : Tp \\
\end{align*}

but the branch does not close because we cannot identify 1.1_b and 1.1_a which are the same world (see Figure VII.2), whereas our calculus does (see Example VII.1.2).

Other tableau methods for propositional modal logics which make use of prefixed formulae are presented in [Governatori, 1995; Cunningham and Pitt, 1996]. The system in [Cunningham and Pitt, 1996] deals with all the fifteen propositional normal modal logics obtained by combining the axioms T, D, 4, 5, and B, while the system in [Governatori, 1995] considers the propositional modal logics $K45$, $D45$, and $S5$ and the propositional modal logics $S5A$ and $S5P(n)$. It has subsequently been extended to deal with the above mentioned fifteen modal systems and the predicative case in [Artosi et al., 1996; Governatori, 1997]. These proof systems extend the calculus KE, a combination of tableau and natural deduction inference rules which allows for a suitably restricted use of the cut rule [D’Agostino and Modadori, 1994]. In order to have a more efficient proof search, they generalize the prefix both allowing the occurrence of variables and using unification to
show that two prefixes can name the same world. The main difference between the system in [Governatori, 1995; Artosi et al., 1996; Governatori, 1997] and the one in [Cunningham and Pitt, 1996] is that the former uses only one type of path variable (single worlds) while the latter allows variables over single as well as sequences of worlds. Furthermore, in [Governatori, 1995], only one ν-rule is used and unification is logic-dependent while, in [Cunningham and Pitt, 1996], unification is independent of the logic but there is a different ν-rule for each logic.

One of the main features of these systems is the full permutability of the application of their rules. Unfortunately, our tableau method does not enjoy this property. In fact, similarly to the problem of applying the existential rules before the universal ones in the proof systems for classical logic, we need to apply the π-rules (or the ρ-rules) before the ν-rules. On the other hand, we deal with a wider class of logics. In particular, we think that it is hard to extend the unification method of prefixes so to deal with all the classes of logics that we considered for the same reasons given above in the case of classical prefixed systems.

In [Catach, 1991] a general theorem prover for propositional modal logics is presented. This system, named TABLEAUX, uses a representation for the accessibility relations that is close to ours. In fact, in that work a tableau is a pair (Γ, R), where Γ is a set of prefixed formulae and R is a set of relations between worlds. Prefixes are constant symbols.

TABLEAUX can deal with all the already mentioned fifteen modal systems, and also with their multimodal versions. However, it does not deal with any interaction axiom while our does. This system uses three classes of tableau rules: the first is made of simplification rules, that are world independent and whose aim is to simplify the proof search; the second consists of the transformation rules and allows to introduce new operators in terms of the existing ones; finally, the third class of rules deals with formulae belonging to different worlds and can introduce modifications in the set R of relations.

VII.2 Translation methods

Instead of developing specific theorem proving techniques and tools for modal logics, many authors have proposed the alternative approach of translating modal logics into classical first order logic, so that standard theorem provers can be used without the need to built new ones [Ohlbach, 1993b]. The translation methods are based on the idea of making explicit reference to the worlds by adding to all predicates an argument representing the world where the predicate holds, so that the modal operators can be transformed into quantifiers of classical logic.

The relational translation is based on the direct simulation of the Kripke semantics by introducing a distinguished predicate symbol to represent the accessibility relation [Moore, 1980]. This method has strong relationships with our approach. Indeed, we deal with inclusion properties of the accessibility relations, which are first-order axiomatizable, hence, the relational translation method can cope with them. On the other hand, as a drawback, the relational translation method destroys the structure of the formulae and it may cause
an exponential growth of translated formulae.

An alternative method is the functional translation [Ohlbach, 1991; Auffray and Enjalbert, 1992]. It is based on the idea of representing paths in the possible worlds structure by means of compositions of functions, which map worlds to accessible worlds. The most common properties, such as transitivity or reflexivity, are taken into account by an equational unification algorithm. An advantage of this approach is that it keeps the structure of the original formula.

In [Ohlbach, 1993a; Gasquet, 1993] various optimizations of the functional translation method are investigated. In particular, a substantial simplification can be obtained for the case that all accessibility relations are serial. However, even in this case equational unification cannot be avoided. In particular, an optimization method for the class of inclusion logics has been presented in [Gasquet, 1993]. Gasquet shows that it is possible to get rid of the sort denoting possible worlds, used in [Ohlbach, 1991], when we deal with inclusion modal logics. Nevertheless, the seriality is assumed for each accessibility relation and, hence, this approach cannot be adopted, for instance, to deal with the logic we have introduced in Example III.2.3 at page 26.

A way to avoid the use of equational unification algorithms, retaining the advantages of the functional translation, has been developed in [Nonnengart, 1993], where a mixed approach based on a relational and functional translation is defined. One of the aims of the author was to obtain Prolog programs starting from Horn clauses extended with modal operators [Nonnengart, 1994]. This method requires that accessibility relation properties are first-order predicate logic definable. In particular, he can provide a translation for the modal systems (all requiring seriality) $K D$, $K T$, $K D 4$, $S 4$, but he can deal also with axioms like $(B) : \varphi \supset \Box \Diamond \varphi$, and, then, with logics like $K D B$, $K D 4 5$, $S 5$ and the multimodal system $K D 4 5 n$.
Part Two

Inclusion Modal Logics for Programming
Introduction

The problem of extending logic programming languages with modal operators has raised a lot of attention in the last years. Several researchers have proposed extensions of logic programming with temporal logics and with modal logics (see [Orgun and Ma, 1994; Fisher and Owens, 1993b] for detailed overviews) providing tools for formalizing temporal and epistemic knowledge and reasoning, that retain the characterizing properties of logic programming languages, such as, for instance, goal directed proof procedures, fixed point semantics and the notion of minimal Herbrand model.

In this part of the thesis, we define a logic programming language, called NemoLOG (which stands for New modal proLOG), that is based on the class of first-order inclusion modal logics introduced in the previous part. It extends the language of Horn clauses with modal operators which, in particular, can occur in front of clauses, in front of clause heads and in front of goals.

NemoLOG is parametric with respect to the properties of modal operators determined by means of the set of inclusion axiom schemas which, in turn, determine the underlying inclusion modal logic. We show that this extension is well suited for structuring knowledge and, in particular, for defining module constructs within programs, for representing agents beliefs and performing epistemic reasoning, simple forms of reasoning about actions, and for interpreting some features of object-oriented paradigms in logic programming, such as hierarchical dependencies and inheritance among classes.

One of the aims in defining NemoLOG comes from the need of defining structuring facilities to enhance modularity, readability, and reusability of logic programs. Logic languages use flat collections of Horn clauses and they lack mechanisms for structuring programs, which are instead available in other programming paradigms. This problem has attracted a lot of interest and many different approaches have been proposed (see [Bugliesi et al., 1994] for a detailed survey). In this thesis, in the line of some previous languages, such as those defined in [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni et al., 1997a], we address this topic by means of the modal logic, using universal modal operators to define modules. The key idea is to associate a modal operator with each module in order to label its clauses. Module composition is obtained by allowing modules to export clauses or derived facts. To achieve this purpose, we use again a modal operator which makes it
possible to distinguish among clauses local to module, clauses that are fully exported from a module, and those whose consequences only are exported. As we will see, NemoLOG allows to model different kinds of modules presented in the literature (such as [Monteiro and Porto, 1989; Brogi et al., 1990a; Brogi et al., 1990b]).

Another important problem related to providing support for software engineering is the integration of logic programming and object-oriented paradigms [Turini, 1995]. A significant proposal to tackle this problem is the one by McCabe in [McCabe, 1992], where the idea of representing an object as a first-order logic theory is exploited. From a different perspective, in this thesis, we show how modal logics and, in particular, inclusion modal logics can be used to interpret the object-oriented paradigms in logic programming. Hierarchical dependencies among modules (classes) can be represented by means of nested modules or by inclusion axiom schemas. For example, if $[m_1]M_1$ and $[m_2]M_2$ represent two modules, where M_1 and M_2 are sets of clauses, the inclusion axiom

$$[m_1]\varphi \supset [m_2]\varphi$$

says that all the clauses of module m_1 are exportable into module m_2; in different words m_1 is a more specific class of m_2. Besides, a behaviour similar to the use of self can be obtained by means of a modal operator which is a sort of common knowledge operator.

In Chapter IX, a goal directed proof procedure, which is modular with respect to the chosen set of inclusion axiom clauses, is presented by making use of a notion of derivation relation between sequences of modal operators. The derivation relation only depends on the properties of modalities themselves (i.e., it is based on the set of inclusion axiom clauses contained in the program). More specifically, the proof procedure is based on a notion of modal context, where modal context is a sequence of modal operators, which keeps trace of the ordering between modalities found in front of goals during a computation so that a modal context is associated with each goal to be solved. According to the modal context in which a subgoal has to be proved, a given clause of the program may or may not be used to solve it, depending both on the modal structure of the clause itself and on its “relation” to the modal context of the goal. This relation is defined by the above mentioned derivation relation; thus, the derivation relation is used to select a clause for proving a goal in a certain modal context, according to the properties of modalities of the clause. These properties are completely specified by the derivation relation, that can be regarded as a rewriting system [Book, 1987]. The sequences of modalities are the domain of the strings and the rewriting rules are the axioms characterizing the modal operators of the underlying logic (specified by means of the inclusion axiom clauses).

In this part of the thesis, we also investigate the relationship between NemoLOG and the general proof theory presented in Chapter III. In particular, we, first, introduce a sequent calculus that is a simple syntactical transformation of our tableau method and, then, we prove that, in the case of NemoLOG, we can restrict our attention to sequent proofs of a form, that corresponds to the uniform proofs in the meaning of [Miller et al., 1991]. This kind of proofs have a lot of importance because they can be constructed in a goal-directed manner and, thus, automated deduction based on this kind of proofs can be optimized.
This result is achieved due to the more “flexibility” of all prefixed tableau methods in the application of the rules during the construction of a proof.

We show that our goal directed proof procedure is sound and complete with respect to the possible-worlds semantics presented in Chapter V. To do this we define a fixed point semantics by generalizing the standard construction of Horn clauses and we prove its completeness with respect to the possible-worlds semantics through a canonical model construction. Though the construction is pretty standard, we believe that its advantage is in the modularity of the approach, i.e., both the completeness and soundness proof are modular with respect to the underlying inclusion modal logics of the programs and so they work for the whole class of inclusion modal systems.

This part of the thesis is organized as follows. NemoLOG is introduced in Chapter IX. The operational semantics is presented and some examples of programs and operational derivations are discussed. Moreover, the relations with the general proof theory of the inclusion modal logics is shown. In Chapter X, we show some interesting applications of the defined modal extension of Horn clauses, while in Chapter XI, we define the fixed point semantics and we give the proof of soundness and completeness of operational semantics with respect to possible-worlds semantics. Finally, in Chapter XII, we overview some related works. They are divided in two classes: the ones that are based on inclusion modal logics and the ones that are not.
Chapter IX

A Programming Language

In this chapter we introduce NemoLOG, our modal logic programming language. It extends Horn clause logic allowing modalities to occur in clauses and in goals. In particular, it allows free occurrences of some universal modalities of the form \([t]\), where \(t\) is an arbitrary term of the language, in front of clauses, clause heads and goals. A goal directed proof procedure will be defined and, at the end, we will investigate the relationship between programs and goals of NemoLOG and the tableau methods studied in the first part of the thesis. Finally, we give a method for translating NemoLOG programs into standard Horn clause logic, so that the translated programs can be executed by any Prolog interpreter or compiler.

IX.1 Syntax

Given a first-order modal language \(\mathcal{L}_{FO}\) (see page 46) we define NemoLOG as a first-order modal logic programming language whose alphabet contains:

- all the symbols of \(\mathcal{L}_{FO}\) apart from the classical connectives \(\lor\) and \(\land\);
- the distinguished symbol \(T\) (true);
- the binary operator \(\rightarrow\);
- the symbol \(\varepsilon\) denoting the empty sequence of modalities.

Definition IX.1.1 (Modalized goals) The set \(\text{GOAL}\) of modalized goals in NemoLOG is defined as the least set of formulae that satisfies the following conditions:

- \(T \in \text{GOAL}\);
- if \(A\) is an atomic formulae of \(\text{FOR}\) then, \(A \in \text{GOAL}\);
- if \(G_1, G_2 \in \text{GOAL}\) then, \(G_1 \land G_2 \in \text{GOAL}\);
Deﬁnition IX.1.2 (Modalized deﬁned clauses) The set DEFC of modalized deﬁned clauses in NemoLOG is deﬁned as the least set of formulae that satisﬁes the following conditions:

- if \(G \in \text{GOAL} \) and \(x \in \text{VAR} \) then, \(\exists xG \in \text{GOAL} \);
- if \(t \in \text{TERM} \) and \(G \in \text{GOAL} \) then, \([t]G \in \text{GOAL}\).

NemoLOG allows free occurrence of modal operators in front of clauses

\[
[t_1][t_2](a \land b \supset c),
\]

in front of clause heads

\[
[t_1][t_2](a \land b \supset [t_3][t_4]c),
\]

and in front of each goal

\[
[t_1][t_2](t_5a \land [t_6][t_7]b \supset [t_3][t_4]c).
\]

Deﬁnition IX.1.3 (Inclusion axiom clauses) The set INC of inclusion axiom clauses in NemoLOG is deﬁned as the least set of formulae that satisﬁes the following condition:

- if \(\Gamma_1 \) is a non-empty sequence of modalities and \(\Gamma_2 \) is a possible empty sequence of modalities\(^1\) then, \(\Gamma_1 \rightarrow \Gamma_2 \in \text{INC} \).

We will refer to modalized clauses, modalized goals, modalized clause heads, and inclusion axiom clauses with clauses, goals, clause heads and axiom clauses when no confusion arises.

Deﬁnition IX.1.4 (Program) A program \(P \) in NemoLOG is a pair \(\langle Ds, Ax \rangle \), where:

- \(Ds \) is a set of modalized deﬁned clauses of DEFC; and
- \(Ax \) is a ﬁnite (possible empty) set of inclusion axiom clauses of INC.

Intuitively, assume that NemoLOG is based on the ﬁrst-order modal language \(\mathcal{L}_{FO} \) and let \(\langle Ds, Ax \rangle \) be a program of NemoLOG. Then, the set \(Ds \) of clauses can be considered the actual program speciﬁcation, while the set \(Ax \) of axiom clauses represents the set of inclusion axiom schemas the characterizes the underlying inclusion modal logic of the program. More precisely, the underlying logic of the set of clauses \(Ds \) is \(\mathcal{I}_A^{\mathcal{L}_{FO}} \), where \(A = \{[t_1] \ldots [t_n]\varphi \supset [s_1] \ldots [s_m]\varphi | [t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \in Ax \} \).

\(^1\)For instance, \(\Gamma \) could be \([t_1][t_2] \ldots [t_n]\).
\(^2\)Denoted by “\(\varepsilon \)”.

\[\]
Some examples of modal logic programs

To give an idea of how a program in NemoLOG is defined, let us consider two simple examples. The former is a formulation of the Fibonacci example from [Abadi and Manna, 1989], while the latter presents the friends puzzle of Example II.3.3.

Example IX.1.1 (The Fibonacci numbers) In this example the modal operator next represents the next instant of time and it is axiomatized only by the axiom K, while always denote a temporal operator used to represent something that holds in any instant of time. always is axiomatized by the following:

\begin{align*}
(A_1) & \quad T(\text{always}) : [\text{always}]\varphi \supset \varphi; \\
(A_2) & \quad 4(\text{always}) : [\text{always}]\varphi \supset [\text{always}][\text{always}]\varphi; \\
(A_3) & \quad I(\text{always}, \text{next}) : [\text{always}]\varphi \supset [\text{next}]\varphi.
\end{align*}

We want $\text{fib}(X)$ to hold after n instants of time, if X is equal to Fibonacci of n. The formulation is given by Program IX.1.

Program IX.1 : Fibonacci numbers.

Ax: (1) $[\text{always}] \rightarrow \varepsilon$
(2) $[\text{always}] \rightarrow [\text{always}][\text{always}]
(3) $[\text{always}] \rightarrow [\text{next}]

Ds: (4) $T \supset \text{fib}(0)$
(5) $T \supset [\text{next}][\text{fib}(1)]$
(6) $\forall X \forall Y \forall Z([\text{always}][\text{fib}(Y) \wedge [\text{next}][\text{fib}(Z) \wedge X = Y + Z \supset [\text{next}][\text{next}][\text{fib}(X)])$

Axiom clauses (1), (2), and (3) represent the inclusion modal axioms (A_1), (A_2), and (A_3), respectively. Clause (4) says that at time 0, $\text{fib}(0)$ holds; clause (5) says that at time 1, $\text{fib}(1)$ holds; clause (6) says that, for any time n, if $\text{fib}(Y)$ holds at time n, and if $\text{fib}(Z)$ holds at time $n + 1$, then $\text{fib}(X)$, with $X = Y + Z$, holds at time $n + 2$. The sequence $[\text{next}] \ldots [\text{next}]$ of $n \geq 0$ modalities is used to represent what holds after n instants of time. From this program, the query $[\text{next}][\text{next}][\text{next}][\text{fib}(X)]$ succeeds with $X = 2$, and indeed 2 is Fibonacci of 3.

Example IX.1.2 (The friends puzzle) The Program IX.2 shows the NemoLOG version of Example II.3.3.

Program IX.2 : Friends puzzle.

Ax: (1) $[\text{peter}][\text{john}] \rightarrow [\text{john}][\text{peter}]
(2) $[\text{peter}] \rightarrow \varepsilon
(3) $[\text{peter}] \rightarrow [\text{peter}][\text{peter}]
(4) $[\text{john}] \rightarrow \varepsilon
(5) $[\text{john}] \rightarrow [\text{john}][\text{john}]
(6) $[\text{wife(peter)}] \rightarrow [\text{peter}]
(7) $[\text{wife(peter)}] \rightarrow \varepsilon
Again, the set Ax represents the inclusion axioms of the underlying modal logic of the set of clauses Ds (see axioms (A_1)–(A_8) of Example II.3.3). The goal

$$[john][peter]\text{appointment} \land [peter][john]\text{appointment}$$

succeeds from the program $\langle Ds, Ax \rangle$.

IX.2 Operational semantics

In this section we introduce a goal directed proof procedure for our modal logic programming language but, before to do this, we need to give some more notions.

Derivability relation

Since modalities are allowed to occur freely in front of goals, when proving a goal G from a program P we need to record the sequence of modalities which occur in the goal, that is the modal context in which each subgoal has to be proved. According to the modal context in which a subgoal has to be proved, a given clause of the program may be used or not to solve it: it depends on the modal structure of the clause itself, and on its relation to the modal context of the goal (see also [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni et al., 1997a]). For instance, given a goal $[t_1][t_2]p$, the sequence $[t_1][t_2]$ represents the modal context for the goal p. Assume that the program contains a clause $[t_3]p$. This clause can be used to solve the goal p only if the modality $[t_3]$ relates somehow to the context $[t_1][t_2]$. For instance, if our set Ax of inclusion axiom clauses contains the axiom clause $[t_3] \rightarrow [t_1][t_2]$ (that is, the underlying logic is characterized by axiom schema $[t_3] \varphi \supset [t_1][t_2]\varphi$), then the clause $[t_3]p$ can certainly be used to prove the goal.

We formalize this relationship between sequences of modalities (the modalities in the clause and the modalities in the modal context of a goal) by introducing a derivation relation between them. This relation will depend on the inclusion axiom clauses in Ax of the program (and, therefore, by the logical axioms A of the underlying logic).

More formally, let C be a set of all ground modal operators of the form $[t]$, where t is a ground term of a language NemoLOG. We define the set of modal contexts C^* as the set of all finite sequences on C, including the empty sequence “ε”. Moreover, we denote with $[Ax]$ the set of all ground instance of the axiom clauses in Ax.

Definition IX.2.1 (Derivation relation) Given a set Ax of inclusion axiom clauses, the derivation relation $\Rightarrow Ax$ generated by Ax is the the transitive and reflexive closure of
IX.2. Operational semantics

the relation \Rightarrow_{Ax} defined as follows: for each $\Gamma_1 \rightarrow \Gamma_2 \in [Ax]$ and $\Gamma, \Gamma' \in C^*$, $\Gamma_1 \Gamma' \Rightarrow_{Ax} \Gamma_2 \Gamma'$.

Given a set Ax of axiom clauses two sequences of modalities Γ_1 and Γ_2, we say that Γ_1 derives Γ_2 if $\Gamma_1 \Rightarrow_{Ax} \Gamma_2$; in this case Γ_1 is an ancestor of Γ_2 and Γ_2 is a descendant of Γ_1. We can prove the following property.

Proposition IX.2.1 Given a set of inclusion axiom clauses Ax, for all formula ψ of L_{FO} and for all $\Gamma, \Gamma' \in C^*$, if $\Gamma \Rightarrow_{Ax} \Gamma'$ then $\models_{\mathcal{A}} \Gamma \psi \supset \Gamma' \psi$, where $\mathcal{A} = \{ \Gamma_1 \varphi \supset \Gamma_2 \varphi \mid \Gamma_1 \rightarrow \Gamma_2 \in Ax \}$.

Proof. The proof is by induction on the definition of \Rightarrow_{Ax}. (Base) If $\Gamma_1 \Gamma' \Rightarrow_{Ax} \Gamma_2 \Gamma'$ and $\Gamma_1 \rightarrow \Gamma_2 \in [Ax]$, then we have to prove $\models_{\mathcal{A}} \Gamma_1 \Gamma \psi \supset \Gamma_2 \Gamma' \psi$, that is for all Kripke \mathcal{A}-interpretation M and all world w in W, we have $M, w \models_{\mathcal{A}} \Gamma_1 \Gamma \psi \supset \Gamma_2 \Gamma' \psi$. Let us assume $M, w \models_{\mathcal{A}} \Gamma_1 \Gamma \psi$ and prove $M, w \models_{\mathcal{A}} \Gamma_2 \Gamma' \psi$. If $M, w \models_{\mathcal{A}} \Gamma_1 \Gamma \psi$ then, for any sequence of worlds w_1, \ldots, w_n, such that $(w, w_1) \in R_{V(t_1)}, \ldots, (w_{n-1}, w_n) \in R_{V(t_n)}$, where $[t_1] \cdots [t_n] = \Gamma$, we have that $M, w_n \models_{\mathcal{A}} \Gamma_1 \Gamma \psi$. Now, $\models_{\mathcal{A}} \Gamma_1 \varphi \supset \Gamma_2 \varphi$, for any formula φ of L_{FO} and, in particular, $\models_{\mathcal{A}} \Gamma_1 (\Gamma' \psi) \supset \Gamma_2 (\Gamma' \psi)$. Thus, since $M, w_n \models_{\mathcal{A}} \Gamma_1 (\Gamma' \psi)$, we have $M, w_n \models_{\mathcal{A}} \Gamma_2 (\Gamma' \psi)$, for any sequence of worlds w_1, \ldots, w_n, that is, $M, w \models_{\mathcal{A}} \Gamma_2 \Gamma' \psi$. (Reflexivity) The case of reflexivity closure is trivial. (Transitivity) Let us assume that $\Gamma \Rightarrow_{Ax} \Gamma'$ and $\Gamma \Rightarrow_{Ax} \Gamma''$ and $\Gamma'' \Rightarrow_{Ax} \Gamma'$, we have to prove $\models_{\mathcal{A}} \Gamma \psi \supset \Gamma' \psi$. By inductive hypothesis $\models_{\mathcal{A}} \Gamma \psi' \supset \Gamma'' \psi'$ and $\models_{\mathcal{A}} \Gamma'' \psi'' \supset \Gamma' \psi''$, for any formula ψ' and ψ'' of L_{FO} and, in particular, for $\psi' = \psi$ and $\psi'' = \psi$. Let us assume that $\models_{\mathcal{A}} \Gamma \psi$ and prove $\models_{\mathcal{A}} \Gamma' \psi$. If $\models_{\mathcal{A}} \Gamma \psi$, since $\models_{\mathcal{A}} \Gamma \psi \supset \Gamma'' \psi$, we have that $\models_{\mathcal{A}} \Gamma'' \psi$ and, since $\models_{\mathcal{A}} \Gamma'' \psi \supset \Gamma' \psi$, we have $\models_{\mathcal{A}} \Gamma' \psi$. □

Remark IX.2.1 It is worth noting that the set $[Ax]$ of ground inclusion axiom clauses of a program can be regarded as a rewriting system on C, having as rewriting rules the pair (Γ_1, Γ_2) such that $\Gamma_1 \rightarrow \Gamma_2$ belongs to $[Ax]$. In others words, to establish if $\Gamma_1 \Rightarrow_{Ax} \Gamma_2$ means to establish if Γ_2 can be derived from Γ_1 by means of a finite number of applications of the rewriting rules of Ax. That is, to establish if Γ_2 belongs to the language $[\Gamma_1]_{Ax} = \{ \Gamma \in C^* : \Gamma_1 \Rightarrow_{Ax} \Gamma \}$.

Remark IX.2.2 Given two string Γ_1 and Γ_2, the problem of answering if Γ_2 is a descendant of Γ_1 is known in literature as the word problem for the rewriting system. In general the word problem is undecidable since it can be reduced to the Post’s Correspondence Problem. Nevertheless, under certain restriction on such systems, it is decidable. For example when the system is complete, i.e., it is noetherian and confluent [Book, 1987], or when the language defined by Γ_1 is a context sensitive language [Hopcroft and Ullman, 1979].

\[3\]We denote by $\Gamma_1 \Gamma_2$ the concatenation of the modal contexts Γ_1 and Γ_2.

\[4\]In this case it is shown to be even a PSPACE-complete problem.
These remarks are quite relevant when we have to deal with the implementation of the matching relation in the case when only ground terms may occur within modalities in the program, in the goal and in the axiom clause Ax, and, in particular, no variables may occur within them. In the general case, the problem of implementing the matching relation is more serious, and verifying if a sequence of modalities Γ_1 matches another sequence Γ_2 cannot be simply seen as the problem of determining if Γ_2 can be derived from Γ_1 by applying some rewriting rules. In fact, when the sequences Γ_1 and Γ_2 contain variables, and modalities in the axiom clauses contain variables too, verifying if Γ_1 derives Γ_2 involves some form of theory unification.

A goal directed proof procedure

The goal directed proof procedure that we define is modular with respect to the underlying inclusion modal logic of a program: the differences among the logics are factored out in the derivation relation.

It is worth noting that the proof procedure is an abstract one. In particular, we follow [Miller, 1989a], in order to avoid problems with variable renaming and substitutions. Given a program $P = \langle Ds, Ax \rangle$, we denote by $[Ds]$ the set of all ground instances of the set Ds.

Definition IX.2.2 Let be $\langle Ds, Ax \rangle$ a program in NemoLOG and let Γ be an arbitrary modal context. Define $[Ds]$ to be the smallest set satisfying the following conditions:

- $Ds \subseteq [Ds]$;
- if $\Gamma(\forall x D') \in [Ds]$ then $\Gamma(D'[t/x]) \in [Ds]$ for all ground terms t.

Hence, given a program $\langle Ds, Ax \rangle$, $[Ds]$ contains ground clauses of the form $\Gamma_b(G \supset \Gamma_h A)$, where Γ_b and Γ_h are arbitrary sequence of modalities (including the empty one), G is a ground goal and A an atomic ground formula.

The operational derivability of a closed goal G from a program P in a modal context Γ, is defined by induction on the structure of G. We introduce a proof rule for each kind of goal.

Definition IX.2.3 (Operational Semantics) Given a program $P = \langle Ds, Ax \rangle$ in NemoLOG and a modal context Γ, the operational derivability of a goal G from P in the modal context Γ, written $P, \Gamma \vdash_\circ G$, is defined by induction on the structure of G as follows:

1. $P, \Gamma \vdash_\circ T$;
2. $P, \Gamma \vdash_\circ A$ if there is a clause $\Gamma_b(G \supset \Gamma_h A) \in [Ds]$ and $\Gamma_b^* \Gamma_h^* \Rightarrow_{Ax} \Gamma$, for some Γ_b^* such that $\Gamma_b \Rightarrow_{Ax} \Gamma_b^*$, and $P, \Gamma_b^* \vdash_\circ G$;
3. $P, \Gamma \vdash_\circ G_1 \land G_2$ if $P, \Gamma \vdash_\circ G_1$ and $P, \Gamma \vdash_\circ G_2$;
4. $P, \Gamma \vdash_\circ [t]G$ if $P, \Gamma[t] \vdash_\circ G$;
5. \(P, \Gamma \vdash_o \exists x G \) if \(P, \Gamma \vdash_o G[t/x] \), for some ground term \(t \).

Proving a goal \(G \) from a program \(P \) amounts to show that \(G \) is operationally derivable from \(P \) in the empty modal context \(\varepsilon \), that is, to show that \(P, \varepsilon \vdash_o G \) can be derived by making use of the above proof rules.

While inference rules 1), 3) and 5) are the usual ones for dealing with distinguished symbol \(T \), conjunctive goals and existential goals, rules 2) and 4) are those which deal with modalities. By rule 4), to prove a goal \([t]G \), the modality \([t] \) is added to the current context, and the goal \(G \) is proved for the new context \(\Gamma'[t] \). By rule 2), a clause \(b(G \supset \Gamma_h A) \) can be selected from \([Ds] \) to prove an atomic formula \(A \) in a given context, if the modalities occurring in front of the clause and in front of the clause head are in a certain relation with \(b \), concatenated with \(\Gamma_h \) derives \(\Gamma \) according to the properties of modalities specified by the set of axiom clauses \(Ax \).

Example IX.2.1 (The friends puzzle) The following is the successful derivation of the first conjunct of the goal \(\text{[john][peter]} \text{appointment} \land \text{[peter][john]} \text{appointment} \) of Example IX.1.2 (the proof of the second conjunct is similar).

1.\(\quad P, \varepsilon \vdash_o \text{[john][peter]} \text{appointment} \)
2.\(\quad P, \text{[john]} \vdash_o \text{[peter]} \text{appointment} \)
3.\(\quad P, \text{[john][peter]} \vdash_o \text{appointment} \)
4.\(\quad P, \text{[john][peter]} \vdash_o \text{place} \land \text{time} \)
5a.\(\quad P, \varepsilon \vdash_o T \)
6a.\(\quad P, \varepsilon \vdash_o T \)
7a.\(\quad \text{success} \)
5b.\(\quad P, \text{[peter][peter]} \vdash_o \text{time} \)
6b.\(\quad P, \text{[peter]} \vdash_o \text{[peter]} \text{time} \)
7b.\(\quad P, \text{[peter][peter]} \vdash_o \text{time} \)
8b.\(\quad P, \varepsilon \vdash_o T \)
9b.\(\quad \text{success} \)

We denote with “a” and “b” the two branches which are created by the application of the rule 3) to step 4. Explanation: 1.: goal; 2.: by rule 4); 3.: by rule 4); 4.: by rule 2), from clause (12) since \(\text{[peter][john]} \vdash Ax \text{[john][peter]} \); 5a.: from 4., by rule 3); 6a.: by rule 2), from clause (11) since \(\text{[peter][john]} \vdash Ax \text{[john][peter]} \); 7a.: by rule 1); 5b.: from 4., by rule 3); 6b.: by rule 2), from clause (10) since \(\text{wife(peter)} \vdash Ax \text{[peter]} \) and \(\text{[peter][john]} \vdash Ax \text{[john][peter]} \); 7b.: by rule 4); 8b.: by rule 2), from clause (9) since \(\text{[peter]} \vdash Ax \text{[peter][peter]} \); 9b.: by rule 1).

Remark IX.2.3 Note that, when the axiom clauses are only of the form \([t_1] \rightarrow [s_1] \ldots [s_m] \), that is, there is a single modality on the antecedent, the proof procedure can be simplified. In particular, due to the specificity of the derivation relation, proof rule 2) for atomic formulas can be simplified as follows:

\(\vdash P, \Gamma \vdash_o A \) if there is a clause \(\Gamma_b(G \supset \Gamma_b A) \in [Ds] \) such that, for some \(\Gamma_b^* \) and \(\Gamma_h^* \), \(\Gamma_b^* \Gamma_h^* = \Gamma, \Gamma_b \vdash Ax \text{[peter]} \), \(\Gamma_h \vdash Ax \text{[john][peter]} \), and \(P, \Gamma_b \vdash_o G \);
IX. A Programming Language

that is, the current context can be split in two parts so that \(\Gamma_b \) derives the first one, and \(\Gamma_h \) derives the second one. This is the kind of semantics it is used in [Baldoni et al., 1993], where a modal logic programming language is proposed to define modularity constructs, and where modalities were ruled by the axioms of \(S4 \) and \(K \). In the general case, this is not sufficient, and we must require that \(\Gamma_b \) and \(\Gamma_h \) jointly derive the current context \(\Gamma \). An example is given by the derivation above, where 6b. is obtained from 5b. and clause (10), by applying rule 2), while it could not be obtained by applying rule 2').

Example IX.2.2 (The Fibonacci numbers) The following is the successful derivation of the goal [\(\text{next} \)][\(\text{next} \)][\(\text{next} \)]\(\text{fib}(X) \) of Example IX.1.1.

1. \(P, \varepsilon \vdash_o [\text{next}][\text{next}][\text{next}]\text{fib}(X) \)
2. \(P, [\text{next}] \vdash_o [\text{next}][\text{next}][\text{next}]\text{fib}(X) \)
3. \(P, [\text{next}][\text{next}] \vdash_o [\text{next}][\text{next}]\text{fib}(X) \)
4. \(P, [\text{next}][\text{next}] \vdash_o \text{fib}(X) \)
5. \(P, [\text{next}] \vdash_o \text{fib}(Y) \land [\text{next}]\text{fib}(Z) \land \text{X is Y + Z} \)
6a. \(P, [\text{next}] \vdash_o \text{fib}(Y) \)
7a. success, with \(Y = 1 \)
6b. \(P, [\text{next}] \vdash_o \text{fib}(Z) \)
7b. \(P, [\text{next}] \vdash_o \text{fib}(Z) \)
8b. \(P, \varepsilon \vdash_o \text{fib}(Y_1) \land [\text{next}]\text{fib}(Z_1) \land \text{Z is Y_1 + Z_1} \)
9ba. \(P, \varepsilon \vdash_o \text{fib}(Y_1) \)
10ba. success, with \(Y_1 = 0 \)
9bb. \(P, \varepsilon \vdash_o [\text{next}]\text{fib}(Z_1) \)
9bb. \(P, \varepsilon \vdash_o [\text{next}]\text{fib}(Z_1) \)
10bb. \(P, [\text{next}] \vdash_o \text{fib}(Z_1) \)
11bb. success, with \(Z_1 = 1 \)
9bc. \(P, \varepsilon \vdash_o \text{Z is 0 + 1} \)
10bc. success, with \(Z = 1 \)
6c. \(P, [\text{next}] \vdash_o \text{X is 1 + 1} \)
7c. success, with \(X = 2 \)

We denote with “a”, “b”, and “c” the three branches which are created by the application of the rule 3) to step 5. and with “ba”, “bb”, and “bc” the three branches which are created by the application of the rule 3) to step 8b. Explanation: 1.: goal; 2.: by rule 4); 3.: by rule 4); 4.: by rule 4); 5.: by rule 2), from clause (6) since [\(\text{always} \) \(\Rightarrow_{Ax} [\text{next}] \)] and [\(\text{next} \)][\(\text{next} \)][\(\text{next} \)] \(\Rightarrow_{Ax} [\text{next}][\text{next}][\text{next}] \); 6a.: from 5., by rule 3); 7a. by rule 1) and 2), from clause (5) since [\(\text{next} \) \(\Rightarrow_{Ax} [\text{next}] \)] 6b.: from 5., by rule 3); 7b. by rule 4); 8b.: by rule 2), from clause (6) since [\(\text{always} \) \(\Rightarrow_{Ax} \varepsilon \) and [\(\text{next} \)][\(\text{next} \)] \(\Rightarrow_{Ax} [\text{next}][\text{next}] \); 9ba.: from 8b., by rule 3); 10ba. by rule 1) and 2), from clause (4); 9bb.: from 8b., by rule 3); 10bb. by rule 4); 11bb. by rule 1) and 2), from clause (5) since [\(\text{next} \) \(\Rightarrow_{Ax} [\text{next}] \); 9bc.: from 8b., by rule 3) since \(Y_1 = 0 \) and \(Z_1 = 1 \); 6c.: from 5., by rule 3) since \(Y = 1 \) and \(Z = 1 \);
IX.3. Uniform proofs for NemoLOG

In this section we study the relationship between our modal logic programming language and the proof theory of the inclusion modal logics given in Chapter III. In particular, we show that in the case of programs and goals of NemoLOG we can restrict our attention to proofs which are uniform as presented in [Miller et al., 1991], where the logical connectives are interpreted as search instructions, so that a uniform proof can be found by a goal-directed manner. In order to do this in an easy way, we use the tableau calculus for first-order inclusion modal logic in the form of a cut-free sequent calculus but this is only a straightforward syntactic change. As we will observe at the end of the section, the use of prefixed formulae plays an important role which allows us to restrict to uniform proofs (see Remark IX.3.1).

A sequent calculus

We present the cut-free sequent calculus for the class of predicative inclusion modal logics. As in the case of tableau method studied in the first part of the thesis, for simplicity, we restrict our attention to a language containing only constant symbols and modal operators labeled with constant symbols. Recall that we denote with L_{FO} the first-order modal language L_{FO} extended with countably many new constants (parameters) in order to deal with free variables in the proofs.

Definition IX.3.1 (Sequent calculus) Let L_{FO} be a predicative modal language and let \mathcal{A} be a set of inclusion axioms, the sequent calculus for $T_{L_{FO}}^\mathcal{A}$ is shown in Figure IX.1.

In Figure IX.1, the set \mathcal{G} contains the collection of accessibility relation formulae and, intuitively, it is used to keep the accessibility relationships among the worlds represented by means of the prefixes. $R\forall$ and $L\exists$ have the proviso that a_w is a w-parameter that does not occur in any formula of the lower sequent. In rule $L\forall$ and $R\exists c$ is any constant of the language L_{FO}. The meaning of the rules are simple to understand taking into account the already presented tableau calculus. Note that, in the sequent calculus we do not use signed formulae. Formulae at the left side (the antecedent), with respect to the arrow symbol, are the ones interpreted as true, while the formulae at the right side (the consequent) are the ones interpreted as false.

In this sequent calculus there is no need for structural rules, since in a sequent $\Theta \vdash _{L_{FO}}^\mathcal{G} \Delta$ the antecedent and the consequent are sets of statements rather than sequences of statements.

Since T is a distinguished symbol which can be regarded as any propositional tautology, we can assume to have the additional initial sequent (axiom) $\Theta \vdash _{L_{FO}}^\mathcal{G} w : T, \Delta$ to deal with this symbol.

A proof for the sequent $\Theta \vdash _{L_{FO}}^\mathcal{G} \Delta$, where Θ and Δ are two set of prefixed signed formulae of $T_{L_{FO}}^\mathcal{A}$, is a finite tree constructed using the above rules, having the root labeled with $\Theta \vdash _{L_{FO}}^\mathcal{G} \Delta$ and the leaves labeled with initial sequents, i.e. sequents of the form
\[\Theta, w : \varphi \vdash_{A} w : \varphi, \Delta \]

- \[\Theta, w : \varphi, \Delta \]
- \[\Theta, w : \neg \varphi \vdash_{A} \Delta \]

- \[\Theta, w : \varphi, w : \psi \vdash_{A} \Delta \]
- \[\Theta, w : \varphi \land \psi \vdash_{A} \Delta \]

- \[\Theta, w : \varphi, \psi \vdash_{A} \Delta \]
- \[\Theta, w : \varphi \vdash_{A} \psi, \Delta \]

- \[\Theta, w : [x/c] \varphi \vdash_{A} \Delta \]
- \[\Theta, w : (\forall x) \varphi \vdash_{A} \Delta \]

- \[\Theta, w : [x/a_w] \varphi \vdash_{A} \Delta \]
- \[\Theta, w : (\exists x) \varphi \vdash_{A} \Delta \]

- \[\Theta, w : [t] \varphi \vdash_{A} \Delta \]
- \[\Theta, w : [t] \psi \vdash_{A} \Delta \]

provided that \(w \rho_t w' \in \mathcal{G} \)

\[\Theta, w' : \varphi \vdash_{A} \Delta \]

\[\Theta, w' : \varphi \vdash_{A} \Delta \]

where \(w \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w' \in \mathcal{G} \),

\[\mathcal{G}' = \mathcal{G} \cup \{ w \rho_{t_1} w'_1, \ldots, w'_{n-1} \rho_{t_n} w' \} \],

\(w'_1, \ldots, w'_{n-1} \) are new on \(\mathcal{G} \),

and \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in \mathcal{A} \)

\[\Theta, w : \varphi \vdash_{A} \Delta \]

\[\Theta, w : \neg \varphi \vdash_{A} \Delta \]

\[\Theta, w : \varphi \land \psi \vdash_{A} \Delta \]

\[\Theta, w : \varphi \vdash_{A} \psi, \Delta \]

\[\Theta, w : [x/c] \varphi \vdash_{A} \Delta \]

\[\Theta, w : (\forall x) \varphi \vdash_{A} \Delta \]

\[\Theta, w : [x/a_w] \varphi \vdash_{A} \Delta \]

\[\Theta, w : (\exists x) \varphi \vdash_{A} \Delta \]

\[\Theta, w : [t] \varphi \vdash_{A} \Delta \]

\[\Theta, w : [t] \psi \vdash_{A} \Delta \]

where \(w \rho_t w' \in \mathcal{G} \)

\[\Theta, w' : \varphi \vdash_{A} \Delta \]

\[\Theta, w' : \varphi \vdash_{A} \Delta \]

where \(w \rho_{s_1} w_1, \ldots, w_{m-1} \rho_{s_m} w' \in \mathcal{G} \),

\[\mathcal{G}' = \mathcal{G} \cup \{ w \rho_{t_1} w'_1, \ldots, w'_{n-1} \rho_{t_n} w' \} \],

\(w'_1, \ldots, w'_{n-1} \) are new on \(\mathcal{G} \),

and \([t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \in \mathcal{A} \)

Figure IX.1: The sequent calculus for the class of predicative inclusion modal logics.
IX.3. Uniform proofs for NemoLOG

\[\Theta, \varphi, \Delta; w : \varphi, \Delta \] or of the form \[\Theta \vdash_A \Delta \] if the sequent \[\Theta \vdash_A \Delta \] has a proof, where \(\Theta \) and \(\Delta \) are sets of prefixed signed sentences of \(I_{\mathcal{F}_0} \) with prefix the initial world \(i \). Furthermore, we say that \(\Theta \vdash_A \Delta \) is \(A \) valid in a Kripke \(A \) interpretation \(M = (W, R, D, J, V) \), if, for all \(w \in W \), with every constant of the sequent interpreted in \(J(w) \), we have that if \(M; w \models_A \varphi, \) for each \(i : \varphi \in \Theta \), then \(M; w \models_A \psi \), for some \(i : \psi \in \Delta \). A sequent \(\Theta \vdash_A \Delta \) is \(A \) valid if it is \(A \) valid in each interpretation \(M \) of \(M_A \).

The sequent calculus above is sound and complete with respect to the Kripke semantics defined in Section V.2.

Theorem IX.3.1 (Soundness and Completeness) A sequent \(\Theta \vdash_A \Delta \) (with \(\Theta \) and \(\Delta \) sets of prefixed signed sentences of \(I_{\mathcal{F}_0} \) with prefix \(i \)) is valid iff \(\Theta \vdash_A \Delta \) has a proof in the sequent calculus.

Proof. By Theorem III.3.1 and Theorem III.3.2. \(\square \)

Uniform proofs

In this section we show that we can restrict our attention to uniform proofs when we consider sequents of the form \(i : Ds \vdash_A i : G \), where \(\langle Ds, Ax \rangle \) is a program and \(G \) is a goal of our modal logic programming language NemoLOG.

First of all, we can observe that the language NemoLOG does not allow existentially quantified clauses nor universally quantified goals. Moreover, negation never occurs in programs nor in goals and implication never occurs in goals. For this reason, we can prove the following lemma.

Lemma IX.3.1 Let \(\Xi \) be a proof of a sequent \(i : Ds \vdash_A i : G \) where \(\langle Ds, Ax \rangle \) is a program and \(G \) a goal of NemoLOG. Then \(\Xi \) contains no application of the rules \(L\neg, R\neg, R\supset, L\exists \) and \(R\forall \), where \(A = \{ \Gamma \varphi \supset \Gamma' \varphi \mid \Gamma \rightarrow \Gamma' \in Ax \} \).

Proof. Our sequent calculus is cut-free. Hence, by the subformula property, derivations are formed entirely from the subformulas of their end sequent. In particular, no negation occurs in \(Ds \) and \(G \), and therefore, no application of \(R\neg \) or \(L\neg \) is allowed in the proof of \(i : Ds \vdash_A i : G \). The same for the implication. Moreover, rules \(L\exists \) and \(R\forall \) are not applicable too, since in a proof of \(i : Ds \vdash_A i : G \) existentially quantified goals can never occur in the left hand side of a sequent and universally quantified clauses can never occur in the right hand side of a sequent. \(\square \)

A second observation is about \(L\supset \) rule. We show that if we have to prove the sequent \(i : Ds \vdash_A i : G \) then, we can use a weaker version of \(L\supset \), namely \(L\supset' \), instead of \(L\supset \).
Proposition IX.3.1 Let Ξ be a proof of a sequent $i : Ds \vdash G$ where $\langle Ds, Ax \rangle$ is a program and G a goal of NemoLOG, then there is a proof Ξ' which uses the rule

$$\frac{\Theta \xrightarrow{\theta_A} w : \varphi \quad \Theta, w : \psi \xrightarrow{\theta_A} \Delta}{\Theta, w : \varphi \supset \psi \xrightarrow{\theta_A} \Delta} \quad L\supset'$$

instead of $L\supset$.

Proof. We prove the lemma that for all sequent $\Theta \xrightarrow{\theta_A} \Delta$ in Ξ the following properties hold:

1. there exists a proof of $\Theta \xrightarrow{\theta_A} \Delta$ which uses the rule $L\supset'$ instead of $L\supset$;
2. if Δ has the form $w : \varphi, \Delta'$ (i.e. the sequent has the form $\Theta \xrightarrow{\theta_A} w : \varphi, \Delta'$) then there is a proof for $\Theta \xrightarrow{\theta_A} w : \varphi$ or for $\Theta \xrightarrow{\theta_A} \Delta'$ which makes use of $L\supset'$ instead of $L\supset$.

In particular, since $i : Ds \vdash G$ is a sequent which belongs to Ξ the thesis holds. We prove the properties above by induction on height of the proof $\Theta \xrightarrow{\theta_A} \Delta$ of a sequent whose proof has height less or equal to h. We consider the following cases, one for each inference figure in which $\Theta \xrightarrow{\theta_A} \Delta$ can terminate.

1. Trivial.
2. If $\Theta \xrightarrow{\theta_A} \Delta$ is of the form $\Theta \xrightarrow{\theta_A} w : \varphi, \Delta'$ and it is an axiom then there is a formula $w' : \psi \in \Theta \cap (\{w : \varphi\} \cup \Delta')$ and, in particular, $w' : \psi \in (\{w : \varphi\} \cup \Delta')$. Thus, there are two cases. If $\psi = \varphi$ and $w = w'$ then, $\Theta \xrightarrow{\theta_A} w : \varphi$ is provable, while if $\psi \in \Delta'$ then, $\Theta \xrightarrow{\theta_A} \Delta'$ is provable.

The height of $\Theta \xrightarrow{\theta_A}$ is $h + 1$. By inductive hypothesis the thesis holds for the sequents whose proof has height less or equal to h. We consider the following cases, one for each inference figure in which $\Theta \xrightarrow{\theta_A}$ can terminate.

$R \land, L \land$: Assume that the root inference figure in $\Theta \xrightarrow{\theta_A}$ is $R \land$. Hence, Θ is of the form

$$\frac{\Theta \xrightarrow{\theta_A} w : \varphi, \Delta' \quad \Theta \xrightarrow{\theta_A} w : \psi, \Delta'}{\Theta \xrightarrow{\theta_A} w : \varphi \land \psi, \Delta'} \quad R \land$$

1. Trivial, by application of the inductive hypothesis.
2. By inductive hypothesis we have a proof for $\Theta \xrightarrow{\theta_A} w : \varphi$ or $\Theta \xrightarrow{\theta_A} \Delta'$ and a proof for $\Theta \xrightarrow{\theta_A} w : \psi$ or $\Theta \xrightarrow{\theta_A} \Delta'$, that is a proof for $\Theta \xrightarrow{\theta_A} w : \varphi$ and $\Theta \xrightarrow{\theta_A} w : \psi$ (and hence for $\Theta \xrightarrow{\theta_A} w : \varphi \land \psi$ by applying $R \land$), or $\Theta \xrightarrow{\theta_A} \Delta'$.

The case when the last inference figure is $L \land$ is similar.
IX.3. Uniform proofs for NemoLOG

\(R[t] \) : Assume that the root inference figure in \(\Upsilon \) is \(R[t] \). Hence, \(\Upsilon \) is of the form

\[
\begin{array}{c}
\text{\(\Theta \xi_A w' : \varphi, \Delta' \)} \\
\Theta \xi_A w : [t] \varphi, \Delta' \\
\end{array}
\]

1. Trivial, by application of the inductive hypothesis.

2. If we have a proof for \(\Theta \xi_A w' : \varphi, \Delta' \) then, we have a proof for \(\Theta \xi_A w' : \varphi \) and, by applying the rule \(R[t] \), we have a proof for \(\Theta \xi_A w : [t] A \).

\(L\sigma \) : Assume that the root inference figure in \(\Upsilon \) is \(L\sigma \). Hence, \(\Upsilon \) is of the form

\[
\begin{array}{c}
\text{\(\Theta \xi_A w : \varphi, \Delta \)} \\
\Theta, w : \varphi \sigma \psi \xi_A \Delta \\
\end{array}
\]

1. Since \(\Upsilon_1 \) is shorter than \(\Upsilon \), by inductive hypothesis there is a proof which uses \(L\sigma' \) instead of \(L\sigma \) for \(\Theta \xi_A w : \varphi \) or \(\Theta \xi_A \Delta \). Moreover, there is a proof \(\Upsilon_2' \) for \(\Theta : \psi \xi_A \Delta \).

(a) If there is a proof \(\Upsilon_1'' \) for \(\Theta \xi_A w : \varphi \), which uses \(L\sigma' \) instead of \(L\sigma \), we get the following proof for the root sequent

\[
\begin{array}{c}
\text{\(\Theta \xi_A w : \varphi \)} \\
\Theta, w : \varphi \sigma \psi \xi_A \Delta \\
\end{array}
\]

(b) If there is a proof for \(\Theta : \psi \xi_A \Delta \) which uses \(L\sigma' \) instead of \(L\sigma \), then, by weakening\(^\text{5}\) there is a proof for \(\Theta, w : \varphi \sigma \psi \xi_A \Delta \).

2. Assume that \(\Theta, w : \varphi \sigma \psi \xi_A \Delta \) is \(\Theta, w : \varphi \sigma \psi \xi_A w' : \eta, \Delta' \). Now, we have just proved that

\[
\begin{array}{c}
\text{\(\Theta \xi_A w : \varphi \)} \\
\Theta, w : \varphi \sigma \psi \xi_A w' : \eta, \Delta' \\
\end{array}
\]

Since, by inductive hypothesis, we have a proof which use \(L\sigma' \) instead of \(L\sigma \) for \(\Theta \xi_A w : \varphi \) and for \(\Theta, w : \psi \xi_A w' : \eta \) or \(\Theta, B \xi_A \Delta' \), we have a proof which use \(L\sigma' \) instead of \(L\sigma \) for \(\Theta \xi_A w : \varphi \) and \(\Theta, w : \psi \xi_A w' : \eta \) or for \(\Theta \xi_A w : \varphi \) and \(\Theta, w : \psi \xi_A \Delta' \). By applying \(L\sigma' \), we have a proof for \(\Theta, w : \varphi \sigma \psi \xi_A w' : \eta \) or \(\Theta, w : \varphi \sigma \psi \xi_A \Delta' \), respectively.

\(^{5}\) It is easy to show that if \(\Theta \xi_A \Delta \) is a provable sequent then, \(\Theta, Z \xi_A \Delta \), where \(Z \) is an arbitrary prefixed formula, is a provable sequent too.
Theorem IX.3.2
Let \(\langle Ds, Ax \rangle \) be a program and \(G \) a goal of NemoLOG then, \(Ds \vdash_A G \) if and only if \(Ds \vdash^u_A G \), where \(A = \{ \Gamma \varphi \supset \Gamma' \varphi \mid \Gamma \rightarrow \Gamma' \in Ax \} \).

Proof. (If part) Trivial. (Only if part) We prove that for all sequent proof \(\Upsilon \) of \(\Theta \overset{\varnothing}{\rightarrow}_A w : \eta \) in the proof \(\Xi \) of \(i : Ds \overset{\varnothing}{\rightarrow}_A i : G \) there exists a uniform proof \(\Upsilon' \) of \(\Theta \overset{\varnothing}{\rightarrow}_A w : \eta \). By induction of the height \(h \) of the proof of \(\Theta \overset{\varnothing}{\rightarrow}_A w : \eta \). If \(h = 1 \) then \(\Upsilon \) must be an axiom and the thesis holds trivially. The height of \(\Upsilon \) is \(h + 1 \). By inductive hypothesis the thesis holds for proofs with height less of equal to \(h \). We consider the following cases, one for each inference figure in which \(\Upsilon \) can terminate.

Figure IX.2: A partial schema of the results about NemoLOG.

From now on we will refer to the sequent calculus with rules \(L \land, R \land, L[t], R[t], L\supset', R\supset', L\forall, R\forall \) and \(\rho \). As a corollary of Proposition IX.3.1 we have the following.

Corollary IX.3.1 Let \(\Xi \) be a proof of a sequent \(i : Ds \overset{\varnothing}{\rightarrow}_A i : G \), where \(\langle Ds, Ax \rangle \) is a program and \(G \) a goal of NemoLOG. Then, each sequent occurrence in \(\Xi \) has a singleton set as its consequent.

Finally, we show that when we deal with programs and goals of NemoLOG we can restrict our attention on only uniform sequent proofs, if we refer to the notion of uniform proof as presented in [Miller et al., 1991]. This notion provides a natural interpretation of logical connectives as search operators in the space of the proofs.

Definition IX.3.2 ([Miller et al., 1991]) A uniform proof is a proof in which each sequent occurrence has a singleton set for its consequent and each occurrence of a sequent whose consequent contains a non-atomic formula is the lower sequent of the inference figure that introduces its top-level connective.

In our case, we write \(\Theta \vdash^u_A \Delta \) if \(\Theta \vdash_A \Delta \) and the proof is uniform.
IX.3. Uniform proofs for NemoLOG

$L[t], L \land, L\forall$: Assume that the root inference figure of Υ if $L[t]$. Hence, Υ is of the form

$$
\begin{align*}
\Upsilon_1 & \\
\Theta, w'' : \varphi \vdash_A w : \eta & \\
\Theta, w' : [t] \varphi \vdash_A w : \eta
\end{align*}
L[t]
$$

By inductive hypothesis there is a uniform proof Υ_1' with root inference figure $\Theta, w'' : \varphi \vdash_A w : \eta$. Now, we can recognize in Υ_1' all the points where a rule is applied to $w'' : \varphi$. Then, let us change Υ_1' in the following way. Let us assume that Φ is the sub-proof of Υ_1' associated with one of this point with the root inference figure $\Theta', w'' : \varphi \vdash_A \psi : A$. Note that the right end of this sequent must contains an atomic formula. Thus, we add the following step

$$
\begin{align*}
\Phi & \\
\Theta', w'' : \varphi \vdash_A \psi : A & \\
\Theta, w' : [t] \varphi \vdash_A \psi : A
\end{align*}
L[t]
$$

obtaining another uniform proof. Now, we can change Υ_1' substituting Φ with the above proof and replacing all formulae $w'' : \varphi$ with $w' : [t] \varphi$ along the path between the sequent $\Theta', w'' : \varphi \vdash_A \psi : A$ and $\Theta, w'' : \varphi \vdash_A w : \eta$ in the proof Υ_1'. Now, we repeat this for all above recognized points.

The case when the last inference figure in Υ are $L \land$ and $L\forall$ are similar.

$L\lor'$: Assume that the root inference figure of Υ if $L\lor'$. Hence, Υ is of the form

$$
\begin{align*}
\Upsilon_1 & \\
\Theta \vdash_A w' : \varphi & \\
\Theta, w' : \psi \vdash_A w : \eta
\end{align*}
L\lor'
$$

By inductive hypothesis there are a uniform proof Υ_1' with root inference figure $\Theta \vdash_A w' : \varphi$ and a uniform proof Υ_2' with root inference figure $\Theta, w' : \psi \vdash_A w : \eta$. Now, we can recognize in Υ_2' all the points where a rule is applied to $w' : \psi$. Then, let us change Υ_2' in the following way. Let us assume that Φ is the sub-proof of Υ_2' associated with one of this point with the root inference figure $\Theta', w' : \psi \vdash_A \psi : A$. Note that the right end of this sequent must contains an atomic formula. Thus, we add the following step

$$
\begin{align*}
\Phi & \\
\Theta', w' : \psi \vdash_A \psi : A & \\
\Theta, w' : \varphi \vdash_A \psi : A
\end{align*}
L\lor'
$$

obtaining another uniform proof. Now, we can change Υ_2' substituting Φ with the above proof and replacing all formulae $w' : \psi$ with $w' : \varphi \lor \psi$ along the path between the sequent $\Theta', w' : \psi \vdash_A \psi : A$ and $\Theta, w' : \psi \vdash_A w : \eta$ in the proof Υ_1'. Now, we repeat this for all above recognized points.
96

IX. A Programming Language

\[R \land \alpha, \exists t, R[t], \rho : \text{Obvious by inductive hypothesis.} \]

Finally, since \(i : Ds \not\vdash_A i : G \) belongs to \(\Sigma \) the thesis also holds for it. \(\Box \)

Remark IX.3.1 Note that the above theorem could be proven only because we make use of a *prefix* sequent calculus.

In more standard sequent and tableau calculus for modal logics, such as the ones presented in [Fitting, 1983, Chapter 2] and in [Wallen, 1990, Chapter 3], the modal rule \(R[t] \) has the effect of deleting some formulae of the “denominator” of the rule to obtain the “numerator” (destructive sequent (tableau) systems [Fitting, 1996]). The choice of the formulae is based on both the syntactic structure of the formulae themselves and the properties of the considered logic. Therefore, we can influence the content of a sequent by changing the order of rule application, restricting (or enlarging) the set of formulae available to complete, eventually, the proof (see, for more details, [Wallen, 1990, Chapter 4]). On the contrary, in a prefixed sequent (tableau) calculus this not happened.

In the case of uniform proofs, as shown in [Baldoni *et al.*, 1997a], the problem is that the modal operators in a proof have the effect of changing the “context” and, then, they cannot be given an interpretation as search operators in the space of proofs (i.e. they do not have a goal directed interpretation) because before using \(R[t] \) some applications of left rules may be needed, which is not possible in a uniform proof. In fact, each occurrence of a sequent \(\Theta \rightarrow G \) in an uniform proof, where \(G \) is not an atomic formula, is obtained by applying the right rule for the main logical connective of \(G \). Instead, in this section, we have shown that a calculus based on prefixed formulae can avoid the necessity of applying left rules before the right rule \(R[t] \).

Figure IX.2 summarizes the results of this section. This schema will be completed in Chapter XI, where the soundness and completeness of operational semantics with respect to possible-worlds semantics will be proved by means of a fixed point semantics.

IX.4 Translating NemoLOG programs into Horn clause logic

NemoLOG has a goal directed operational semantics which has been proved to be sound and complete with respect to the Kripke semantics. The operational derivability of a goal is defined with respect to a notion of modal context, which consists of a sequence of modal operators. The modal context keeps track of the new clauses which are added to the program when evaluating implication goals.

The goal directed procedure gives a precise definition of the operation behaviour of a program, and provides a means for executing a program. However the actual implementation of the procedure can raise several problems. The simplest solution of building an interpreter (say in Prolog), may turn out to be inefficient, since the interpreter will have to deal with the modal context.
In this section we present a different approach, based on translating our language into Horn clause logic, so that the translated programs can be executed by any Prolog interpreter or compiler, with the advantage that many features, such as unification or variable renaming, are directly provided. Furthermore, a real program usually needs to use built-in predicates and extra logical features, which, again, are provided by the Prolog environment (as, for instance, cut).

The translation methods is based on the idea of implementing directly the operational semantics making explicit reference to the modal context. This is achieved by adding to all predicates an extra argument representing the modal context where the predicate must hold. In particular, a modal context allows us to record the ordering between modalities found in front of goals, during a computation. Note that the notion of modal context plays a role similar to that of prefixes of formulas in the tableau method presented in Chapter III. Intuitively, a prefix is a name for a possible world, and the same is for a modal context. A modal context allows us to recognize syntactically whether the worlds being named are accessible or not.

As we will see this approach is closely related to functional translation methods for modal logics [Ohlbach, 1993b] and it is adapted from the translation method for Horn clause languages extended with embedded implication presented in [Baldoni et al., 1996b]. For sake of simplicity, we will be concerned with the case in which the modal operators are only labeled with constant symbols and not with terms. In Appendix A you can find a collection of translated NemoLOG programs taken among the ones presented in this chapter and the following ones.

The translation method

Since universal modal operators are distributive with respect to the conjunction of clauses and goals and due to the converse of Barcan formula that holds, we can assume without loss of generality that a NemoLOG program can always contain universally quantified modalized defined clauses of the following form:

$$\Gamma_b(\Gamma_h, A_0 :.- \Gamma_{g_1}, A_1, \ldots, \Gamma_{g_m}, A_m) \tag{IX.1}$$

and modalized goals of the form:

$$\Gamma_{g_1}, A_1, \ldots, \Gamma_{g_m}, A_m \tag{IX.2}$$

where A_1, \ldots, A_m are atomic predicates and $\Gamma_b, \Gamma_h, \Gamma_{g_1}, \ldots, \Gamma_{g_m}$ arbitrary sequences of modalities.

Thus, by combining rules 2), 3) and 4) of Definition IX.2.3, we can define the operational derivability of the atomic formulae by means of the new following rule:

6Nevertheless, in Appendix A, we have reported some examples which make use of terms with variables.

7For readability, we use the standard Prolog syntax extended with modal operators.
2”. \(P, \Gamma \vdash_o A \)

if there is a clause \(\Gamma_b(\Gamma_h A :- \Gamma_{g_1} A_1, \ldots, \Gamma_{g_m} A_m) \in [Ds] \) and \(\Gamma_b^* \Gamma_h \Rightarrow_{Ax} \Gamma \), for some \(\Gamma_b^* \) and \(P, \Gamma_b^* \Gamma_h \vdash_o A_1, \ldots, P, \Gamma_b^* \Gamma_g \vdash_o A_m \).

The idea for eliminating modalities is based on the structure of rule 2”) and it is obtained adding to all atomic predicates an argument which represents the modal context where the predicates have to be proved. In others worlds, to move the modal context of operational semantics directly into the predicates.

Let \(P \) be a program in NemoLOG and let \(\text{derive}(\Gamma_b, \Gamma_h, X, Y) \) be a predicate such that it has success if the joint sequence of modalities \(\Gamma_b \) and \(\Gamma_h \) derives the current context \(X \), according to the set of inclusion axiom clauses in \(P \) and Definition IX.2.1, and it returns the derived sequence of \(\Gamma_b^* \) by \(\Gamma_b \) in \(Y \). So a clause of the form (IX.1) can be translated as

\[
A_0(X) :- \text{derive}(\Gamma_b, \Gamma_h, X, Y), A_1(Y \bullet \Gamma_{g_1}), \ldots, A_m(Y \bullet \Gamma_{g_m})
\]

obtaining a Horn clause, and operational derivability will be defined as SLD resolution. In particular, let \(\Gamma_g A \) be a subgoal in the body of a clause, we can translate it in

\[
A(Y \bullet \Gamma_g)
\]

where \(Y \) is a variable which is unified with the current context (the name of the world where \(\Gamma_g A \) has to be proved) and linked (denoted by “\(\bullet \)“) with \(\Gamma_g \) for proving \(A \). While a query of the form (IX.2) can be translated as

\[
A_1(\Gamma_{g_1}), \ldots, A_m(\Gamma_{g_m}).
\]

Note that the added argument “\(X \)“ in the translated clauses will always be ground during the computation. In fact, since we ask to prove a query in the empty initial modal context, we start each resolution with a goal as \(A(\Gamma) \), where \(\Gamma \) does not contain variables. Thus, it is not possible to introduce variables into resolvent, so the the derivation relation works correctly.

We can now give the procedure for translating modalized clauses of NemoLOG into first-order logic, by eliminating modal operators.

Definition IX.4.1 (Procedure for translating into Horn clauses logic) Let \(P \) be a program and a goal in NemoLOG. Then, the procedure in Figure IX.3 takes as input the pair \(P \) and returns as output \(P^{tr} \), the program obtained by translation of \(P \) into Horn clauses logic.

Note that the sequence \(\Gamma' \bullet \Gamma'' \) is the concatenation of sequences \(\Gamma' \) and \(\Gamma'' \). Moreover, if \(A \) is \(p(t_1, \ldots, t_s) \), then \(A(X) \) and \(A(Y \bullet \Gamma_{g_j}) \) are \(p(X, t_1, \ldots, t_s) \) and \(p(Y \bullet \Gamma_{g_j}, t_1, \ldots, t_s) \), respectively. Finally, the predicate \(\text{derive/4} \) carries out the derivation relation of Definition IX.2.1, and \(X \) and \(Y \) are variables.

Let us see how the translation works on the programs IX.1 and IX.2.

*Together the proviso that \(X \) and \(Y \) do not belong to the set of variables of clause (IX.1).
IX.4. Translating NemoLOG programs into Horn clause logic

begin
 S := P;
 for each clause C ∈ S do
 begin
 C' := A(X) := derive(Γ_h, X, Y),
 A_1(Y ⊳ Γ_{g_1}), ..., A_m(Y ⊳ Γ_{g_m});
 S := (S - {C}) ∪ {C'}
 end;
 end
 P_tr := S;
end

Figure IX.3: Procedure for translating NemoLOG programs into Horn clause logic.

Example IX.4.1 (The Fibonacci numbers) Given the Program IX.1 of the Example IX.1.1, after applying the procedure of Definition IX.4.1, we will obtain the following program P_tr (we will denote with ε the empty sequence of modalities).

Program IX.3 : Fibonacci numbers translated.

1. \(fib(X, 0) := \)
 derive(ε, ε, X, Y).
2. \(fib(X, 1) := \)
 derive(ε, [next], X, Y).
3. \(fib(X, A) := \)
 derive([always], [next][next], X, Y),
 fib(Y ⊳ ε, B),
 fib(Y ⊳ [next], C),
 A is B + C.

The goal [next][next][next]fib(A), that is translated into fib([next][next][next], A) succeeds from P_tr with the following SLD derivation (denoted by the symbols ⊢_{SLD}):

1. \(P_tr ⊢_{SLD} fib([next][next][next], A) \)
2. \(P_tr ⊢_{SLD} derive([always], [next][next], [next][next][next], Y_0), \)
 fib(Y_0 ⊳ ε, B_0), fib(Y_0 ⊳ [next], C_0), A is B + C
3a. \(P_tr ⊢_{SLD} derive([always], [next][next], [next][next][next], Y_0) \)
4a. success, with \(Y_0 = [next] \)
3b. \(P_tr ⊢_{SLD} fib([next] ⊳ ε, B) \)
4b. \(P_tr ⊢_{SLD} derive(ε, [next], [next], Y_1) \)
5b. success, with \(Y_1 = ε \) and \(B = 1 \)
3c. \(P_tr ⊢_{SLD} fib([next] ⊳ [next], C) \)
4c. \(P_tr ⊢_{SLD} derive([always], [next][next], [next][next][next], Y_2) \)
 fib(Y_1 ⊳ ε, B_1), fib(Y_1 ⊳ [next], C_1), C is B_1 + C_1
5ca. \(P_tr ⊢_{SLD} derive([always], [next][next], [next][next][next], Y_2) \)
Example IX.4.2 *(The Friends puzzle)* Given the Program IX.2 of the Example IX.1.2, after applying the procedure of Definition IX.4.1, we will obtain the following program P^{tr}.

Program IX.4 : Friends puzzle translated.

(1) \begin{align*}
\text{time}(X) :&= \\
&\text{derive}(\varepsilon, [\text{peter}], X, Y).
\end{align*}

(2) \begin{align*}
\text{time}(X) :&= \\
&\text{derive}([\text{wife}(\text{peter})], [\text{john}], X, Y), \text{time}(Y \bullet [\text{peter}]).
\end{align*}

(3) \begin{align*}
\text{place}(X) :&= \\
&\text{derive}(\varepsilon, [\text{peter}] [\text{john}], X, Y).
\end{align*}

(4) \begin{align*}
\text{appointment}(X) :&= \\
&\text{derive}([\text{peter}] [\text{john}], \varepsilon, X, Y), \\
&\text{place}(Y \bullet \varepsilon), \\
&\text{time}(Y \bullet \varepsilon).
\end{align*}

The goal $[\text{john}][\text{peter}]$ appointment, that is translated into $\text{appointment}([\text{john}][\text{peter}])$ succeeds from P^{tr} with the following SLD derivation:

1. $P^{tr} \vdash_{SLD} \text{appointment}([\text{john}][\text{peter}])$
2. $P^{tr} \vdash_{SLD} \text{derive}([\text{peter}] [\text{john}], \varepsilon, [\text{john}][\text{peter}], Y_0), \\
 \text{place}(Y_0 \bullet \varepsilon), \text{time}(Y_0 \bullet \varepsilon)$
3a. $P^{tr} \vdash_{SLD} \text{derive}([\text{peter}] [\text{john}], \varepsilon, [\text{john}][\text{peter}], Y_0),$
4a. success, with $Y_0 = [\text{john}][\text{peter}]$
3b. $P^{tr} \vdash_{SLD} \text{place}([\text{john}][\text{peter}] \bullet \varepsilon)$
4b. $P^{tr} \vdash_{SLD} \text{derive}([\text{peter}] [\text{john}], \varepsilon, [\text{john}][\text{peter}], Y_1),$
5b. success, with $Y_1 = [\text{john}][\text{peter}]$
3c. $P^{tr} \vdash_{SLD} \text{time}([\text{john}][\text{peter}] \bullet \varepsilon)$
4c. $P^{tr} \vdash_{SLD} \text{derive}([\text{wife}(\text{peter})], [\text{john}], [\text{john}][\text{peter}], Y_2), \text{time}(Y_2 \bullet [\text{peter}])$
5ca. $P^{tr} \vdash_{SLD} \text{derive}([\text{wife}(\text{peter})], [\text{john}], [\text{john}][\text{peter}], Y_2),$
6ca. success, with $Y_2 = [\text{peter}]$
5cb. $P^{tr} \vdash_{SLD} \text{time}([\text{peter}] \bullet [\text{peter}])$
6cb. $P^{tr} \vdash_{SLD} \text{derive}(\varepsilon, [\text{peter}], [\text{peter}][\text{peter}], Y_3),$
7cd. success, with $Y_3 = \varepsilon$
IX.4. Translating NemoLOG programs into Horn clause logic

Notice that the steps of the derivations closely correspond to the step of the derivations in Example IX.2.2 and IX.2.1.

The correctness of the whole process of translation is given by the following theorem.

Theorem IX.4.1 (Correctness of the Translation) Let P be a program and G a goal in NemoLOG, then

$$P, ε ⊢ G \iff P^{tr} \cup \text{derive}/4 ⊢_{\text{SLD}} G^{tr}$$

where P^{tr} and G^{tr} are the new program after applying procedures of Definition IX.4.1 and the translated goal, respectively, \vdash_{SLD} is standard operational derivability relation for Horn clause logic, and derive/4 is defined on the basis of the set of inclusion axiom clauses in P.

Proof. It follows easily by the above argumentation. □

Remark IX.4.1 This technique has been implemented and tested on several examples. Since the performance of the translated program heavily depends on the predicate derive/4, special care was devoted to its implementation. Unfortunately, it is not possible to define a predicate derive/4 that works for any set of inclusion axiom clauses of a program because in general, as we have already remarked, the derivation relation for the class of unrestricted grammars is undecidable [Hopcroft and Ullman, 1979]. However, this is not for most of interesting cases such as the ones shown in this chapter and in the Chapter X (see Appendix A).

Translation methods for modal logics have been developed by many authors [Ohlbach, 1993b] as an alternative approach to the development of specific theorem proving techniques and tools. In fact, by translating a modal theorem into predicate logic, it is possible to use a standard theorem prover without the need to build a new one.

The translation methods for modal logics are based on the idea of making explicit reference to the worlds by adding to all predicates an argument representing the world where the predicate holds, so that modal operators can be transformed in quantifiers of classical logic. In particular, in the functional approach [Ohlbach, 1991; Auffray and Enjalbert, 1992], accessibility is represented by means of functions: a modal operator \square is translated into $\forall F_m$, where F_m is a function of sort m, and the worlds will always be represented by a composition of functions, such as $F_{m_1} \cdots F_{m_n}$. For instance, the following NemoLOG modalized clause

$$[\text{wife(peter)}][\text{[john]time}] \leftarrow [\text{[peter]time}]$$

will be translated into

$$\forall F_{\text{wife(peter)}} ((\forall G_{\text{john time}}(F_{\text{wife(peter)}} \bullet G_{\text{john}}) \leftarrow (\forall H_{\text{peter time}}(F_{\text{wife(peter)}} \bullet H_{\text{peter}})$$
This translation is correct if the accessibility relation is assumed to be serial and if the
domain of interpretations is constant. We can assume that these conditions hold in our
case. The above formula can be transformed to clausal form as follows

\[\text{time}(F_{wife(peter)} \cdot G_{john}) :\text{time}(F_{wife(peter)} \cdot c_{peter}) \]

where \(c_{peter} \) is a Skolem constant of sort \(peter \). Note that, since the body is negated, all
universally quantified variables in the body have to be skolemized.

The properties of the accessibility relation, such as reflexivity or transitivity, can usually
be described with equations which can be translated into a theory unification algorithm.
In our case, for instance, a variable \(F_{wife(peter)} \) can derive any sequence of functions of sort
\(wife(peter) \) and \(peter \), whereas a variable \(F_{peter} \) can derive only a function of sort \(peter \).

It is easy to see that this approach closely corresponds to our translation. Sequences
of functions in the functional approach correspond to sequences of modal operators in our
case and the equational unification is performed by predicate \(\text{derive}/4 \) (in our case we do
not need full unification, but only matching).
Chapter X

Applications

One of the aims at defining our modal extension of Horn clause logic is to provide structuring facilities as a basic feature. Modal operators can be used to this purpose. They can be used to define modules, by associating a modality \([t_i]\) with each module, and, in a more general setting, to provide reasoning capabilities in a multiple agent situation, by associating a modality \([t_i]\) with each agent. Furthermore, this language provides some well-known features of object-oriented programming, like the possibility of representing dependencies among modules in a hierarchy, and the notion of self to reason on this hierarchy.

In the following we show these features through some examples. For readability, we use the standard Prolog syntax extended with modal operators.

X.1 Beliefs, knowledge, and actions representation

We have already remarked that multimodal systems are particularly suited to formalize knowledge and belief operators or to reasoning about actions. NemoLOG inherits this ability, Program IX.2 is an example.

Example X.1.1 is a variant of the above mentioned example that introduce a slightly weaker version of the common knowledge operator in [Halpern and Moses, 1992] already used in Example II.3.4. Example X.1.2, instead, uses modal operators to represent actions.

Example X.1.1 (Epistemic reasoning and common knowledge: The friends puzzle II) Let us consider the Example II.3.3, it is reasonable to think that the information that “Peter knows that if John knows the place and the time of their appointment, then John knows that he has an appointment”, it is, indeed, a common knowledge. We use the modal operator \([fool]\) to represent this kind of information in Program X.1.

Program X.1 : The friends puzzle II.

\[
[fool] \rightarrow [fool][fool] \\
[fool] \rightarrow \varepsilon \\
[fool] \rightarrow [peter] \\
[fool] \rightarrow [john]
\]
Remark X.1.1 As already remarked above, our modal operator \([fool]\) can be taken as
a weaker version of the common knowledge operator. In fact, in the possible-worlds sem-
antics associated, differently that the one in [Halpern and Moses, 1992], the accessibility
relation associated to \([fool]\) includes the transitive and reflexive closure of the union of the
accessibility relations associated with the other epistemic operators and not to be
equal to it (see also Remark VI.2.1). That means that \([fool]\) cannot be regarded as a common
knowledge operator, though it shares some of its properties. In particular, in our example,
the formula:

\[\varphi \land [fool](\varphi \supset [peter]\varphi \land [john]\varphi \land [wife(peter)]\varphi) \supset [fool]\varphi \]

(the induction axiom for common knowledge) is not valid in the possible-worlds semantics of
our language, while it is expected to be a valid formula when \([fool]\) is a common knowledge
operator. In [Genesereth and Nilsson, 1987] a similar weaker version of common knowledge
operator is suggested. To explain this notion of common knowledge, in [Genesereth and
Nilsson, 1987] a fictitious knower has been assumed, sometimes called any fool. What any
fool knows is what all other agents know, and all agents know that others know (and so
on). In other words, instead of regarding common knowledge as an operator over beliefs
of agents, it is regarded as a new agent which interacts with the others.

The following example presents a modal version of the well-known “shooting problem”.
The solution proposed, differently than [Baldoni et al., 1997b], is monotonic and the frame
axiom is explicitly represented in the clauses.

Example X.1.2 (Reasoning about actions: The shooting problem) Assume that our language
contains a \(K\) modality \([a]\) for each possible atomic action \(a\), and modalities \([s_1; s_2]\) to represent
sequences of actions and a modality \([\varepsilon]\) to represent the initial state. The set \(\mathcal{A}\) will contain
the logical axioms \([s_1][s_2]\alpha \supset [s_1; s_2]\alpha\), for all action sequences \(s_1\) and \(s_2\). We formalize the well
known “shooting problem” with the Program X.2.

Program X.2 : Shooting problem.
X.2. Defining modules

(1) \([S_1][S_2] \rightarrow [S_1;S_2]\)

(2) \([\varepsilon]\text{alive.}\)

(3) \([\varepsilon]\text{unloaded.}\)

(4) \([S][\text{shoot}\text{dead} \leftarrow \text{loaded}].\)

(5) \([S][\text{load}]\text{loaded}.\)

(6) \([S][\text{A}\text{alive} \leftarrow \text{alive}, \text{A} \neq \text{shoot}].\)

(7) \([S][\text{shoot}\text{alike} \leftarrow \text{alive, unloaded}].\)

(8) \([S][\text{A}\text{loaded} \leftarrow \text{loaded}, \text{A} \neq \text{shoot}].\)

(9) \([S][\text{A}\text{unloaded} \leftarrow \text{unloaded}, \text{A} \neq \text{load}].\)

Clauses (2) and (3) represent the initial facts, the clauses (4) and (5) the causal rules, and the clauses (6)-(9) the frame axioms. In this example it is worth using modalities labeled with terms which contains variables to represent arbitrary sequences of actions. The goal \(G = [\varepsilon;\text{load};\text{wait};\text{shoot}]\text{dead}\) succeeds with the following derivation.

1. \(\varepsilon \vdash_0 [\varepsilon;\text{load};\text{wait};\text{shoot}]\text{dead}\)
2. \(\varepsilon;\text{load};\text{wait};\text{shoot} \vdash_0 \text{dead}\) by clause (3) and \(S = \varepsilon;\text{load};\text{wait}\) and
 \(\varepsilon;\text{load};\text{wait};\text{shoot}[\text{shoot}] \Rightarrow_\text{Ax} [\varepsilon;\text{load};\text{wait};\text{shoot}],\)
3. \(\varepsilon;\text{load} \vdash_0 \text{loaded}\) by clause (7) and \(S = \varepsilon;\text{load}, A = \text{wait}\) and
 \(\varepsilon;\text{load}[\text{wait}] \Rightarrow_\text{Ax} [\varepsilon;\text{load};\text{wait}],\)
5. success, by clause (4) and \(S = \varepsilon\) and \(\varepsilon;\text{load} \Rightarrow_\text{Ax} [\varepsilon;\text{load}].\)

It is interesting to note the also the goal \(G' = [Z]\text{dead}\) succeeds with \(Z = \varepsilon;\text{load};\text{shoot}.\)

X.2 Defining modules

One of the main motivations in defining this language comes from the need of structuring facilities to enhance modularity, readability and reusability of logic programs. This problem has been addressed in the literature using many different approaches (like the meta-level approach [Bowen and Kowalski, 1982; Brogi et al., 1992], the algebraic approach [O’Keefe, 1985; Mancarella and Pedreschi, 1988; Brogi et al., 1994], and the approach based on use of higher-order logic [Nait Abdallah, 1986; Chen, 1987]) and, in particular, it has been tackled by extending the language of Horn clauses with implications embedded in goals, as proposed in [Miller, 1989a; Monteiro and Porto, 1989; Giordano et al., 1992; Lamma et al., 1993; Giordano and Martelli, 1994] (see [Bugliesi et al., 1994] for a survey of the different approaches).

In this section we show, through some examples, that the language we have introduced is well suited to define module constructs. And, in particular, it allows to introduce structuring constructs in logic programs while preserving their logical semantics.

The key idea is to use a modal operator \([m_i]\) of type \(K\) for representing what is true in a module, i.e. each label \(m_i\) can be regarded as a module name (see also [Baldoni et al., 1993; Baldoni et al., 1997a]).
Flat collection of modules

As we have mentioned above, a modal operator \(m_i \) of type \(K \) can be associated with a module and can be used to represent what is true in it. In this case, the term \(m_i \) can be regarded as a module name. This provides a simple way to define a flat collection of modules and to specify the proof of a goal in a module. In particular, if \(Ds \) is a set (conjunction) of clauses we may define the clauses in \(Ds \) as belonging to module \(m_i \) through the module definition

\[
[\text{export}][m_i]Ds.
\]

The modality \([\text{export}] \) of type \(KT4 \) in front of the module definition is needed to make the definition visible in any context (and, in particular, from inside other modules). To this purpose the inclusion axiom

\[
I(\text{export},m_i) : [\text{export}]\varphi \supset [m_i]\varphi
\]

is required. To prove a goal \(G \) in module \(m_i \), we have simply to write the goal

\[
[m_i]G.
\]

Initially, we assume that clauses in a module must have the form \(G \supset A \), where \(G \) may contain occurrences of goals \(a_iG \).

Example X.2.1 (Bubblesort I) Consider the simple Program X.3 containing two module definitions. For readability, we put module name in front of the sequence of clauses of the module, rather than in front of each one.

Program X.3 : Bubblesort I.

\[
\begin{align*}
[\text{export}] & \to \varepsilon \\
[\text{export}] & \to [\text{export}][\text{export}]
\end{align*}
\]

\[
[\text{export}][\text{list}] \{ \\
\quad \text{append}([],X,X).
\quad \text{append}(\[X\]Y,Z,[X|Y1]) :- \\
\qquad \text{append}(Y,Z,Y1), \ldots \} \% \text{End of module list}.
\]

\[
[\text{export}][\text{sort}] \{ \\
\quad \text{busort}(L,S) :- \\
\qquad \text{list} \text{append}(X,[A,B|Y],L),
\qquad B < A,
\qquad \text{list} \text{append}(X,[B,A|Y],M),
\qquad \text{busort}(M,S),
\qquad \text{busort}(S,S), \ldots \} \% \text{End of module sort}.
\]
The module list contains the definition of append and other predicates on list, while the module sort contains the definition of the predicate busort for ordering a list according to the bubblesort algorithm.

The goal \[\text{sort}\text{busort}([2, 1, 3], S) \] succeeds with answer \(S = [1, 2, 3] \). Note that, in its computation, the subgoal append(X, [A, B, Y], [2, 1, 3]) has to be proved in the context [sort][list] and, hence, it can only be proved by making use of the clauses in the module list. In fact, the clauses in module sort cannot be used in the context [sort][list], since all of them are prefixed by the sequence of modalities [export][sort] which does not derive [sort][list] by means of Ax.

Composition of modules: exporting information

In the previous section modules are closed environments, and they cannot be composed. Thus, in this case, the query \([m_1][m_2]G\) which succeeds if \(G\) can be proved from the clauses in module \(m_2\), is completely equivalent to the query \([m_2]G\).

However, our language also enables modules to be defined as open environments, so that proving the query \([m_1][m_2]G\) amounts to prove the goal \(G\) in the composition of modules \(m_1\) and \(m_2\). Languages providing modularity features of this kind have been presented in [Miller, 1989a; Monteiro and Porto, 1989; Lamma et al., 1993]. Also, a similar point of view has been taken in [Bugliesi, 1992], where a declarative characterization of inheritance is defined, and in [McCabe, 1992], where an extension of logic programming is proposed to capture the main features of object-oriented programming.

When a module is regarded as being open, it is allowed to export some information to the external environment. Consider for instance the query \([m_1][m_2][m_3]G\), the goal \(G\) must be proved in the composition of modules \(m_1\), \(m_2\) and \(m_3\). The ordering of modules in the query determines the direction in which information is exported: each module can export information to the modules following it in the sequence.

In our language, different forms of module composition can be obtained by making use of the already introduced modal operator [export] to control the information (either clauses or derived facts) that can be exported by a module. In particular, we can make a distinction among: clauses that are local to the module in which they are defined,

\[G \supset A \]

(as in the Example X.2.1), clauses that are wholly exported by the module,

\[[\text{export}] (G \supset A) \]

(we call these clauses dynamic), and clauses that only export their head (consequences),

\[G \supset [\text{export}] A \]

(we call these clauses static). This feature allows to model different kinds of modules presented in the literature (so that in each situation the kinds of module that suit better can be adopted).
Example X.2.2 (*Bubblesort II*) Let us consider Program X.4 another formulation of the previous example, which makes use of static clauses.

Program X.4: *Bubblesort II*.

```prolog
[export] -> \varepsilon
[export] -> [export][export]
[export] -> [list]
[export] -> [sort]

[export][list] {
   [export]append([], X, X).
   [export]append([X|Y], Z, [X|Y1]) :-
      append(Y, Z, Y1). ...} % End of module list.

[export][sort] {
   [export]busort(L, S) :-
      append(X, [A, B|Y], L),
      B < A,
      append(X, [B, A|Y], M),
      busort(M, S).
   [export]busort(S, S) ...} % End of module sort.
```

In this formulation, differently from the previous one, the subgoals `append` in the body of the first clause for `busort` are not preceded by the modal operator `[list]`, and hence, they must be proved in the current context, in which a definition of the `append` predicate must be provided. This can be done by asking the query `[lists][sort]busort([2,1,3], S)`, that is, by asking for a proof of the goal `busort([2,1,3], S)` in the composition of the two modules `list` and `sort`. The query succeeds from the program.

The predicate `append` is exported from module `list` (which contains static clauses) and thus it is visible from `sort`. Note that the body of the second `append` clause must be proved only in the module `list` and its proof cannot use any predicate defined within module `sort`.

Remark X.2.1 When, as in Example X.2.2, static visibility rules are used, our language has a behavior similar to that of the language proposed in [Monteiro and Porto, 1989; Monteiro and Porto, 1990]. A difference between the two languages is that their language adopts predicate overriding between modules, that is, given a query `[m1][m2][m3]G`, the clause definitions for the predicate `p` in `m3` override (cancel) the definitions of `p` in `m2` and in `m1`. In our language, on the other hand, the definitions of a predicate may be spread in different modules, and all of them can be used.

Nested modules

In the previous sections we have seen some programs consisting of a flat collection of modules. However, NemoLOG also allows nested modules to be defined. By exploiting the
X.2. Defining modules

feature that clauses can be preceded by an arbitrary sequence of modal operators, we can generalize module definitions \([\text{export}] [m_i] Ds\), given above, as follows:

\[[\text{export}] [m_i][m_j] Ds \]

where the module \(m_j\) is defined \emph{locally} to \(m_i\), and it becomes visible whenever \(m_i\) is entered.

The following example (from [Goldberg and Robson, 1983]) shows how we can use nested modules.

Example X.2.3 (Dictionary) We define a \emph{dictionary} of pairs \((name, value)\) with two possible implementations. The first one, named \emph{fast}, makes use of a \emph{search tree} and can be used for big dictionaries, where fast access is important. The second one, named \emph{small}, makes use of a \emph{list} and can be used for small dictionaries, if we want to minimize the space needed to store information. The formulation is given by Program X.5.

Program X.5 : Dictionary.

\begin{verbatim}
[export] \rightarrow \varepsilon
[export] \rightarrow [export][export]
[export] \rightarrow [dictionary]
[export] \rightarrow [small]
[export] \rightarrow [fast]

[export][dictionary] {

[export](getValue(Name, Value, Dictionary) :-

 not_empty(Dictionary),
 search(Name, Dictionary, Value)).
[export](putValue([Name, Value], Dictionary, NewDictionary) :-

 not_member(Name, Dictionary),
 insert([Name, Value], Dictionary, NewDictionary)).

[fast] {

 not_empty([[Name, Value], L, R]).
 search(Name, [[Name, Value], .., ..], Value).
 search(Name, [[Name1, ..], L, R], Value) :-

 Name < Name1,
 search(Name, L, Value). } % End of module fast.

[small] {

 not_empty([[Name, Value]|L]).
 search(Name, [[Name, Value]|..], Value).
 search(Name, [[Name1, ..]|L], Value) :-

 Name \neq Name1,
 search(Name, L, Value). } % End of module small.

. . . . } % End of module dictionary.
\end{verbatim}
The module *dictionary* contains the definition of *getvalue*, which returns the *value* associated with a *name*, and *putvalue*, which insert a new pair (*name*, *value*) in a dictionary if it is not already a member of it. The module *dictionary* also contains two nested modules, *fast* and *small*, which describe the predicates used in the definition of *getvalue* and *putvalue*, in the case we wish to use a fast dictionary or a small dictionary, respectively. Then, we can retrieve a *value* associated to a *name* in a fast dictionary by asking the goal

\[\text{dictionary}[\text{fast}] \text{getvalue}(\text{Name}, \text{Value}) \]

Note that we can use module *fast only* when module *dictionary* is entered. In fact, using module *fast* (respectively *small*) is meaningful only when it is composed with module *dictionary*. Observe, moreover, that the usage of a dynamic clause for predicates *getvalue* and *putvalue* in module *dictionary* is due to the fact that they use predicates defined in module *fast* (respectively, *small*).

Parametric modules

Parametric modules are an important features of a module system. They allow to enhance the modularity [Giordano et al., 1994; Hill, 1993] as well as to support some aspects of object-oriented [McCabe, 1992; Monteiro and Porto, 1990; Lamma et al., 1993]. In *NemoLOG* a modalized defined clause can be of the form

\[\forall x[t(x)](Ds(x)) \]

where the variable *x* is free in the set of clauses *Ds(x)*. Indeed, the above formula is also the definition of a module and, in particular, of a *parametric* module. In *NemoLOG*, parametric modules can be obtained by *sharing* some variables between the label of the modalities (the name of a module) and their associated clauses (the body of a module).

Example X.2.4 (Bubblesort III) Let us consider the module definition in Program X.6

Program X.6 : Bubblesort III.

```
[export] → ε
[export] → [export][export]
[export] → [list]
[export] → ascending
[export] → descending
[export] → [sort(ascending)]
[export] → [sort(descending)]

[export][list]{
  append([], X, X).
  append([X|Y], Z, [X|Y1]) :-
    append(Y, Z, Y1). ...} % End of module list.
```
X.2. Defining modules

[export] [ascending]
ordered(X, Y) :- X < Y.
%
End of module ascending.

[export] [descending]
ordered(X, Y) :- X > Y.
%
End of module descending.

[export] [sort(Order)]
busort(L, S) :-
list append(X, [A, B|Y], L),
[Order] ordered(B, A),
list append(X, [B, A|Y], M)
busort(M, S).
busort(S, S).
%
End of module sort.

As already seen, the module lists contains the definition of append and the other predicates on lists, while the module sort(Order) contains the definition of the predicate busort as in Program X.3. In order to parameterize the algorithm with respect to the type of the order, we introduce two modules, named ascending and descending, which contain two different definition of the predicate ordered. Now, we can specify a particular order through the variable Order. Thus, the goal

[sort(ascending)] busort([2, 1, 3], S)

succeeds with answer S = [1, 2, 3], while the goal

[sort(descending)] busort([2, 1, 3], S)

succeeds with answer S = [3, 2, 1].

Nested and parametric modules can be used in supporting the notion of an abstract data-type. Program X.5 and X.6 are examples of this. The following example shows how to extend the Program X.6 in order to deal with pairs of natural number instead of only simple natural number.

Example X.2.5 (Bubblesort IV) We can extend Program X.6 to deal also with pairs of number simply adding the module in Program X.7

Program X.7 : Bubblesort IV.

[export] [cartesian(Order1, Order2)]

[export] [cartesian(Order1, Order2)]
ordered([X, Y], [U, V]) :-
[Order1] ordered(X, U).
ordered([X, Y], [X, V]) :-
%
End of module cartesian.
The module `cartesian(Ord1, Ord2)` specifies the predicate `ordered` for pairs of number. Note that this module is parametric so that we can choose by means of the variables `Ord1` and `Ord2` the kind of ordering for each element of the pairs. The goal

\[
\text{[sort(cartesian(ascending, descending))]} \text{busort([[3, 4], [1, 6], [3, 2], [10, 5]], S)}
\]
succeeds with answer \(S = [[1, 6], [3, 4], [3, 2], [10, 5]]\).

X.3 Inheritance and hierarchies

Another important problem related with providing support for software engineering is the integration of logic programming and object-oriented paradigms [McCabe, 1992; Bugliesi, 1992] (see also [Bugliesi et al., 1994, Section 3.6] and [Turini, 1995]). A significant proposal to tackle this problem is the class template language presented in [McCabe, 1992], where the idea of representing an object as a first-order logic theory is exploited. McCabe interprets attributes and methods of an object as a set of formulae. Classes are introduced by means of parametric modules whose parameters play the role of instance variables of the object-oriented languages. Class rules allow to specify the structure of the classes and, thus, the hierarchy.

From a different perspective, in the following examples, we show how modal logics can be used to obtain some features of object-oriented paradigms, although we do not deal with the state of objects. In particular, hierarchical dependencies among modules can be represented both by means of nested modules and by inclusion axiom schemas. For example, if \([m_i]D_{s_i}\) and \([m_j]D_{s_j}\) represent two modules, the inclusion axiom

\[
[m_i]\varphi \supset [m_j]\varphi
\]
says that all the clauses of module \(m_i\) are exportable into module \(m_j\); in different words \(m_j\) is a more specific subclass of \(m_i\). Besides, a behavior similar to the use of self can be obtained by means of the previously introduced modal operator \(\text{export}\) and using dynamic clauses.

Example X.3.1 (Animal taxonomy I) This is an example of the usefulness of dynamic clauses in nested modules. It is taken from [Brogi et al., 1990b] and describes inheritance in a hierarchy of modules. Program X.8 describes a simple taxonomy that has three levels: the root (animal), which contains the subclasses horse, bird, and tweety, which is a subclass of bird.

Program X.8 : Animal taxonomy I.

\[
\text{[export] } \rightarrow \varepsilon \\
\text{export } \rightarrow \text{[export][export]} \\
\text{export } \rightarrow \text{[animal]} \\
\text{export } \rightarrow \text{[bird]} \\
\text{export } \rightarrow \text{[tweety]}
\]
X.3. Inheritance and hierarchies

| export | animal | {
| export | mode(walk).
| export | (mode(run) :- no_of_legs(X), X ≥ 2).
| export | (mode(gallop) :- no_of_legs(X), X = 4).

| horse | {
| export | no_of_legs(4).
| export | covering(hair).} % End of module horse.

| bird | {
| export | no_of_legs(2).
| export | covering(feather).
| export | mode(fly).

| tweety | {
| export | owner(fred).} % End of module tweety.
...} % End of module bird.
...} % End of module animal.

The goal

[animal][bird][tweety]mode(run)

succeeds, since the clause defining mode(run) is exported by the module animal and its body can be evaluated in the current context, including module bird which contains the information no_of_legs(2). The goal would fail, if the modality [export] in front of the clause

[export](mode(run) :- no_of_legs(X), X ≥ 2)

in module animal were omitted. By using clauses preceded by the operator [export] (dynamic clauses) we can achieve a result somewhat similar to the use of self in object-oriented languages, by allowing methods of a class to use information coming from a more specific class.

In the following example we show how to obtain the same description of Example X.3.1 but using inclusion axioms to describe the hierarchical dependency among modules instead of nested modules.

Example X.3.2 (Animal Taxonomy II) Let us consider again the four classes animal, horse, bird and tweety. Since what is true for animals is also true for birds and horses, the bird and horse class inherit from the animal class. Moreover, the class tweety inherits from bird and thus from animal. To model this situation, we use the following set of inclusion axioms for defining the inheritance rules:

\[I(\text{animal}, \text{horse}) : [\text{animal}]\alpha \supset [\text{horse}]\alpha \]
\[I(\text{animal}, \text{bird}) : [\text{animal}]\alpha \supset [\text{bird}]\alpha \]
\[I(\text{bird}, \text{tweety}) : [\text{bird}]\alpha \supset [\text{tweety}]\alpha \]

Thus, the Program X.8 becomes the following.

Program X.9 : Animal taxonomy II.

```
[animal] → [horse]
[animal] → [bird]
[bird] → [tweety]

[animal]
    mode(walk).
    mode(run) :- no_of_legs(X), X ≥ 2.
    mode(gallop) :- no_of_legs(X), X = 4. . . . } % End of module animal.

[horse]
    no_of_legs(4).
    covering(hair). . . . } % End of module horse.

[bird]
    no_of_legs(2).
    covering(feather).
    mode(fly). . . . } % End of module bird.

[tweety]
    owner(fred). . . . } % End of module tweety.
```

The goal [tweety] mode(run) succeeds, since the clause defining mode(run) is inherited by the class tweety from animal.

Note that, Program X.9 enjoys some distinctive characteristics with respect to the Program X.8:

- we do not need to use dynamic clause inside a module for export its clauses; and
- we do not need to specify the whole hierarchy to query something about a class (tweety in the example) even with statically configured module systems [Brogi et al., 1990b]. Inclusion axiom clauses works like class rules in class template language of McCabe.

Finally, it is also interesting to note that we can ask goals like [X] mode(fly). In fact, it succeeds with answers X = bird and X = tweety.

The following example, inspired from [McCabe, 1992], shows another interesting feature of NemoLOG related to the use of parametric modules and axiom clauses.

Example X.3.3 The class human(S, A) is a subclass of animal. It is defined by a parametric module whose parameters allow to specify the attribute age and sex of a particular instance of a human. Furthermore, we define the class mathematician that is not subclass of any other class.

Program X.10 : Humans.
X.3. Inheritance and hierarchies

[animal] → [human(S,A)]

[human(S,A)]{
 sex(S).
 age(A).
 no_of_legs(2).
 likes(logic):-
 sex(male),
 age(Ag),
 Ag < 40.
 likes(logic):-
 sex(female).
 ...
}[% End of module human.

[mathematician]{
 likes(logic).
 likes(math).
 ...
}[% End of module mathematician.

[human(male,30)] → [peter]

[human(female,42)] → [jane]

[human(male,45)] → [john]
[mathematician] → [john]

Now, the axiom clauses are used both to specify a hierarchical structure among modules and to create particular instance of the class human. Then, peter, jane, and john are the instance of the class human and inherits all its content. Thus, the goal

[peter](mode(walk) ∧ likes(logic))

succeeds because peter is a human aged 30 and because he is an animal and, then, he can walk. It is interesting to note that, despite the fact that john is a human aged 42, the goal

[john](mode(walk) ∧ likes(logic))

succeeds. In fact, john is also a mathematician and, then, inherits both from the class human and from the class mathematicial (multiple inheritance).

Evolving and conservative systems with dynamic or static configuration of modules

In [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al., 1993] a general unifying framework for structuring logic programs, called Ctx_Prolog, is presented. It is inspired by the works in [Monteiro and Porto, 1989; Miller, 1989a] and it is aimed at giving a framework in which different proposals for structuring logic programs can be described and compared.
A program in Ctx_Prolog is a collection of named modules (unit) while goals are proved in variable sets of clauses (context) obtained by suitably combining units by means of the extension operators “>>>” (cactus extension) and “>>>” (linear extension). In particular, in Ctx_Prolog a distinction is made between statically and dynamically configured systems and between conservative (or nested) and evolving (or global) policies to establish bindings of predicate calls (this distinction roughly corresponds to the distinction between static and dynamic visibility rules for non-local predicate definitions in [Giordano and Martelli, 1992; Giordano and Martelli, 1994]).

A statically configured system is defined as a system where hierarchies among units are specified when units are defined. In these systems the context in which a unit is used does not depend on the dynamic sequence of goals but is always fixed when the unit is defined. For instance, in [Lamma et al., 1993], to specify that whenever a unit \(m_1 \) is used, it is used only in the context of the modules \(m_2, m_3, \) and \(m_4 \) a definition of the form

\[
\text{unit}(m_1, \text{closed}([m_2, m_3, m_4]))
\]

takes place in the program. On the contrary, the context of unit \(m_1 \) can be different in different queries.

In our language, nested modules allows to describe a sort of statically configured modules. Let us consider the Example X.3.1, the module \(\text{tweety} \) is visible only if \(\text{bird} \) and \(\text{animal} \) are entered. However, nested modules does not model the meaning of static configuration of modules as given in [Lamma et al., 1993]. In fact, since \(\text{animal} \) is exportable, the sequence of modules \([\text{animal}] [\text{bird}] [\text{tweety}] \) can be the suffix of different contexts and, thus, \(\text{tweety} \) can inherit information not only from \(\text{animal} \) and \(\text{bird} \). On the other hand, module \(\text{animal} \) needs to be defined exportable in order to make it visible inside other modules.

Nevertheless, statically configured modules can be allowed by introducing a new modal operator \([\text{public}]\) of type \(S4 \) to control the information that can be exported by a module (instead of \([\text{export}]\)) and the modal operator \([\text{closed}]\) of type \(K \) to make a context closed.

Example X.3.4 *(Statically and dynamically configured systems)* Let us consider three modules, named respectively \(m_1, m_2 \) and \(m_4 \). Modules \(m_1 \) and \(m_2 \) are static, while module \(m_3 \) is dynamic [Brogi et al., 1990a, Example 6].

Program X.11 : Statically and dynamically configured systems.

\[
\begin{align*}
(1) \quad [\text{export}] & \rightarrow \varepsilon \\
(3) \quad [\text{export}] & \rightarrow [\text{export}] [\text{export}] \\
(5) \quad [\text{export}] & \rightarrow [\text{closed}] \\
(6) \quad [\text{export}] & \rightarrow [m_1] \\
(8) \quad [\text{export}] & \rightarrow [m_2] \\
(10) \quad [\text{export}] & \rightarrow [m_3] \\
(12) \quad [m_1] [\text{public}] & \rightarrow [m_2] \\
(2) \quad [\text{public}] & \rightarrow \varepsilon \\
(4) \quad [\text{public}] & \rightarrow [\text{public}] [\text{public}] \\
(7) \quad [\text{public}] & \rightarrow [m_1] \\
(9) \quad [\text{public}] & \rightarrow [m_2] \\
(11) \quad [\text{public}] & \rightarrow [m_3]
\end{align*}
\]
X.3. Inheritance and hierarchies

In this way, m_2 always inherits the “public” information of module m_1 (by means of the inclusion axiom clause $[m_1][public] \rightarrow [m_2]$) but not the other ones. The goal $[m_3]c$ has the following successful derivation:

1. $\varepsilon \vdash_0 [m_3]c$
2. $[m_3] \vdash_0 c$
3. $[m_3] \vdash_0 [closed][m_2]a$ by clause (16) and $[export][m_3] \Rightarrow Ax [m_3], [m_3][public] \Rightarrow Ax [m_3]$
4. $[m_3][closed] \vdash_0 [m_2]a$
5. $[m_3][closed] \vdash_0 a$
6. $[m_3][closed][m_2] \vdash_0 b$ by clause (14) and $[export][m_2] \Rightarrow Ax [m_3][closed][m_2]$. $[m_3][closed][m_2][public] \Rightarrow Ax [m_3][closed][m_2]$
7. success, by clause (13) and $[export][m_1] \Rightarrow Ax [m_3][closed][m_1]$. $[m_3][closed][m_1][public] \Rightarrow Ax [m_3][closed][m_2]$

On the other hand, the goal $[m_3]c'$ does not succeed since clause (18) is not visible inside the context $[m_3][closed][m_2]$ because $[export][m_3][public]$ does not derive $[m_3][closed][m_2]$. In other words, the modal operator $[closed]$ in front of a goal has the effect of closing a context.

We said that the proposal in [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al., 1993] makes a a distinction between conservative and evolving policies. More precisely, it is possible in Ctx_Prolog to put the symbol “#” in front of the atomic goals. #p means that p is a lazy atom and, operationally, it has to be solved dynamically from the current context of modules. This gives the evolving policy. On the other hand, if the operator “#” is not used in front of an atomic goal (eager atom), it means that the atom coming from a module has to be solved statically only using clauses defined in that module or in externally nested modules. This gives the conservative policy.

In order to support both binding policies, a rather complex operational semantics, which makes use of two context have to be maintained during a computation: the global context and the partial context. Accordingly, two context extension operators $>>$ and $>>>$ are provided in Ctx_Prolog. The former, the cactus extension, has a static behavior and extends the partial context while the latter, the linear extension, has a dynamic behavior and extends the global context.

In NemoLOG, we can use dynamic clauses and static clauses to model Ctx_Prolog extended clauses whose body consist of all lazy and eager atoms, respectively. For ex-

1Where, however, we use the modal operator $[public]$ instead of $[export]$.
X. Applications

Example, the Ctx_Prolog clause \(p :- \# q, \# r \) corresponds to the dynamic NemoLOG clause
\[\text{public}(p :- q, r) \]. While the clause \(p :- q, r \) corresponds to static clause \[\text{public}(p :- q, r). \]
In the case of extension operators, both cactus extension \(u >> G \) and linear extension
\(u >>> G \) are modeled by the NemoLOG goal \[[u]G \]. The cactus extension can be regarded
as the modalized goal \[[u]G \] occurring in a static clause, while the linear extension as the
modalized goal \[[u]G \] occurring in a dynamic clause. Note that in Ctx_Prolog both lazy and
eager atoms (linear and cactus extension) are allowed to occur in the same clause body. For
instance, \(p :- \# q, r \) is a clause. Such a clause cannot be directly represented in NemoLOG
because our distinction is made at the level of clauses and not at the level of goals. However, it is sufficient to use two clauses instead of a single one as \[\text{public}(p :- q, s) \] and
\[\text{public}(s :- r) \], where \(s \) is a dummy proposition. In this way the subgoal \(q \) is proved
dynamically, while \(r \) is proved statically (see also [Giordano and Martelli, 1992]).

Though there is a correspondence between the conservative and evolving policies in
Ctx_Prolog and the use of dynamic and static clauses as we have introduced, this corre-
spondence is not perfect, as it is shown by the following example.

Example X.3.5 Let us consider the following Ctx_Prolog and corresponding NemoLOG pro-
gram:

\[
\begin{align*}
\text{unit}(m_1): & \quad \text{[export]}[m_1]\{ \\
a & :- d. \quad \text{[public]}a :- d. \\
d & :- \# b. \quad \text{[public]}(d :- b). \}
\end{align*}
\]

\[
\begin{align*}
\text{unit}(m_2): & \quad \text{[export]}[m_2]\{ \\
b \quad \text{[public]b} \}
\end{align*}
\]

Then, both the goal \(m_1 >> m_2 >> d \) and the goal \(m_1 >> m_2 >> a \) succeed, while it does not in
our language, i.e. the goal \([m_1][m_2]d \) succeeds and \([m_1][m_2]a \) fails. In fact, in this case, though
the atom \(d \) in the body of the clause \(a :- d \) is eager and therefore has to be solved with a clause
in \(m_1 \), the subgoals generated by it can be solved dynamically. Indeed, the proof of the eager goal
\(d \) can make use of the atom \(b \) defined in the nested module \(m_2 \). This behaviour is allowed by
means of using two context (the global one and the partial one) instead of a single one as the
operational semantics we have defined for NemoLOG (see also [Giordano and Martelli, 1992]).
Chapter XI

Fixed Point Semantics

In this chapter, we present a fixpoint semantics for our language, which is used to prove soundness and completeness of the proof procedure in Section IX.2 with respect to the model theory defined in Section V.2. We also show that there is no loss of generality in restricting first-order Kripke A-interpretations to those in which the domain at each world is the Herbrand universe. It is worth noting that the T_P operator, canonical model construction, and all definitions and proofs are modular with respect to the underlying logic of the program specified by means of its set of inclusion axiom clauses.

XI.1 Immediate consequence transformation

We define an immediate consequence operator T_P based on a relation of weak satisfiability for closed goals in the line of [Miller, 1989a]. This allows to capture the dynamic evolution of the modal context in the operational semantics during a computation.

Completeness with respect to the model theory is proved by a Henkin-style canonical model construction, which is similar to the one given in [Bonner et al., 1989].

Interpretations and weak satisfiability

The weak satisfiability is defined on a Kripke-like semantics, where each world represents a modal context and it interprets the program at that modal context. As a result, we define an interpretation for a program P as any function $I : C^* \rightarrow 2^{B(P)}$; that is a mapping from modal contexts to Herbrand interpretations of the program P. We denote by \mathfrak{S} the set of all interpretations. It is easy to note that $(\mathfrak{S}, \sqsubseteq)$ is a complete lattice, where \sqsubseteq is defined as the ordering $I_1 \sqsubseteq I_2$ if and only if $(\forall \Gamma \in C^*) I_1(\Gamma) \subseteq I_2(\Gamma)$. The bottom element, denoted by \bot, is the interpretation \bot such that $\bot(\Gamma) = \emptyset$, for all context $\Gamma \in C^*$. Moreover, we define the join, denoted by “\sqcup”, of two interpretations I_1 and I_2 as the interpretation $(I_1 \sqcup I_2)(\Gamma) = I_1(\Gamma) \cup I_2(\Gamma)$, and the meet, denoted by “\sqcap”, of I_1 and I_2 as the interpretation $(I_1 \sqcap I_2)(\Gamma) = I_1(\Gamma) \cap I_2(\Gamma)$.
Definition XI.1.1 (Weak satisfiability) Let I be an interpretation and let Γ be a modal context, and Ax a set of inclusion axiom clauses then, we say that a closed goal G of NemoLOG is weakly satisfiable in $I(\Gamma)$, denoted by $I(\Gamma) \models_{Ax} G$, by induction on the structure of G as follows:

1. $I(\Gamma) \models_{Ax} T$;
2. $I(\Gamma) \models_{Ax} A$ iff $A \in I(\Gamma)$;
3. $I(\Gamma) \models_{Ax} G_1 \land G_2$ iff $I(\Gamma) \models_{Ax} G_1$ and $I(\Gamma) \models_{Ax} G_2$;
4. $I(\Gamma) \models_{Ax} \exists x G'$ iff $I(\Gamma) \models_{Ax} G'[t/x]$, for some $t \in U_P$;
5. $I(\Gamma) \models_{Ax} [t]G'$ iff $I(\Gamma') \models_{Ax} G'$, for all $\Gamma' \in C^*$ such that $\Gamma[t] \Rightarrow_{Ax} \Gamma'$.

Given an interpretation I and a context Γ, $I(\Gamma) \models_{Ax} G$ means that the goal G is true in the interpretation associated with Γ.

Remark XI.1.1 In the rule 5) the derivation relation \Rightarrow_{Ax} between modal context depends on the choice of the set of axioms A. A goal $[t]G$ holds in a world Γ if the goal G is true in all worlds reachable from Γ, that is in all world Γ' such that $\Gamma[t] \Rightarrow_{Ax} \Gamma'$. This allows to satisfy the inclusion relation properties of the Kripke A-interpretation which is built by the fixed point semantics (as we will see from the canonical model construction at the page 126).

T_P operator

We are interested in finding an interpretation I such that G is operationally derivable from (Ds, Ax) if and only if $I(\varepsilon) \models_{Ax} G$. This particular interpretation is the least fixed point of the following immediate consequence transformation T_P defined in the domain of interpretations (\exists, \subseteq). We denote with U_P the Herbrand universe of P.

Definition XI.1.2 (Immediate consequence operator) Let (Ds, Ax) be a program of NemoLOG, Γ a modal context, and let I be an interpretation, then we define a function T_P from interpretations to interpretations as follows:

$$T_P(I)(\Gamma) = \{ A \in B(P) : \Gamma_b(G \supset \Gamma_h, A) \in [Ds] \text{ and } \Gamma_b, \Gamma_h \Rightarrow_{Ax} \Gamma, \text{ for some } \Gamma_b \text{ such that } \Gamma_b \Rightarrow_{Ax} \Gamma_b, \text{ and } I(\Gamma_b) \models_{Ax} G \}.$$

To prove that T_P is monotone and continuous we first state two lemmas concerning the weak satisfiability. We present the proof for only the first lemma. The proof of the second is similar.

Lemma XI.1.1 Given a set Ax of inclusion axiom clauses in NemoLOG, if $I_1 \subseteq_{3} I_2$ then $I_1(\Gamma) \models_{Ax} G$ implies $I_2(\Gamma) \models_{Ax} G$, for all $\Gamma \in C^*$.
XI.1. Immediate consequence transformation

Proof. By induction on the structure of G.

\(G = T \) : Trivial.

\(G = A \) : If \(I_1(\Gamma) \models_{Ax} A \) then, \(A \in I_1(\Gamma) \) and, since \(I_1 \subseteq I_2 \), \(A \in I_2(\Gamma) \). Hence \(I_2(\Gamma) \models_{Ax} A \).

\(G = [t]G' \) : If \(I_1(\Gamma) \models_{Ax} [t]G' \) then, \(I_1(\Gamma') \models_{Ax} G' \) for all modal contexts \(\Gamma' \) such that \(\Gamma[t] \models_{Ax} \Gamma' \). By inductive hypothesis, \(I_2(\Gamma') \models_{Ax} G' \) and, thus, by definition of weak satisfiability, \(I_2(\Gamma) \models_{Ax} [t]G \).

\(G = G_1 \land G_2 \) : By induction on the structure of \(G_1 \) and \(G_2 \).

\(G = \exists x G' \) : Trivial, from definition of \(\models_{Ax} \) applying the inductive hypothesis.

\[\square \]

Lemma XI.1.2 Given a set \(Ax \) of inclusion axiom clauses in NemoLOG, let \(I_1 \subseteq \exists I_2 \subseteq \exists I_3 \subseteq \cdots \) be a sequence of interpretations. If \(G \) is a goal, \(\Gamma \in \mathcal{C}^* \) a modal context and \(\bigcup_{k \in \omega} I_k(\Gamma) \models_{Ax} G \), then there exist a \(k \geq 1 \) such that \(I_k(\Gamma) \models_{Ax} G \).

Now we are ready to show that \(T_P \) is monotone and continuous.

Theorem XI.1.1 Given a program \(P = \langle Ds, Ax \rangle \) in NemoLOG, \(T_P \) is monotone, that is, if \(I_1 \subseteq I_2 \) then \(T_P(I_1) \subseteq \exists T_P(I_2) \).

Proof. Let \(I_1 \subseteq \exists I_2 \) and assume that \(\Gamma \in \mathcal{C}^* \) and \(A \in T_P(I_1)(\Gamma) \). Thus, there is a ground clause \(\Gamma_\exists(G \supset \Gamma_h A) \in [Ds] \) such that \(\Gamma_\exists^* \Gamma_h \models_{Ax} \Gamma \), for some \(\Gamma_h \) such that \(\Gamma_h \models_{Ax} \Gamma_\exists^* \), and \(I(\Gamma_\exists^*) \models_{Ax} G \). For Lemma XI.1.1 we have that \(I_2(\Gamma_\exists^*) \models_{Ax} G \) and \(A \in T_P(I_2)(\Gamma) \). Since \(\Gamma \) and \(A \) are arbitrary, we have proved that \(T_P(I_1) \subseteq \exists T_P(I_2) \).

\[\square \]

Theorem XI.1.2 Given a program \(P = \langle Ds, Ax \rangle \) in NemoLOG, \(T_P \) is continuous, that is, if \(I_1 \subseteq \exists I_2 \subseteq \exists I_3 \subseteq \cdots \) is a sequence of interpretations, then

\[\bigcup_{k \in \omega} T_P(I_k) = T_P \left(\bigcup_{k \in \omega} I_k \right). \]

Proof. We prove the inclusion in two directions.

1. If \(I_j \subseteq \exists \bigcup_{k \in \omega} I_k \) for any \(j \), \(j \geq 1 \), we have, since \(T_P \) is monotone, that \(T_P(I_j) \subseteq \exists T_P(\bigcup_{k \in \omega} I_k) \). \(j \) is arbitrary, so we can conclude

\[\bigcup_{k \in \omega} T_P(I_k) \subseteq \exists T_P(\bigcup_{k \in \omega} I_k). \]

2. If \(\Gamma \in \mathcal{C}^* \) and \(A \in T_P(\bigcup_{k \in \omega} I_k)(\Gamma) \) then there is a ground clause \(\Gamma_\exists(G \supset \Gamma_h A) \in [Ds] \) such that

\[\Gamma_\exists^* \Gamma_h \models_{Ax} \Gamma, \text{ for some } \Gamma_\exists^* \text{ such that } \Gamma_\exists^* \models_{Ax} \Gamma_h, \text{ and } (\bigcup_{k \in \omega} I_k)(\Gamma_\exists^*) \models_{Ax} G. \]

By Lemma XI.1.2, there exists a \(k \), \(k \geq 1 \), such that \(T_P(I_k)(\Gamma_\exists^*) \models_{Ax} G \) and, thus, \(A \in T_P(I_k)(\Gamma) \subseteq \exists \bigcup_{k \in \omega} T_P(I_k)(\Gamma) \). \(\Gamma \) and \(A \) are arbitrary, thus

\[T_P(\bigcup_{k \in \omega} I_k) \subseteq \exists \bigcup_{k \in \omega} T_P(I_k). \]
The transformation T_P is monotone and continuous in $(\mathcal{S}, \subseteq_\mathcal{S})$. Thus, the least fixed point T_P^k of T_P exists by monotonicity and, by continuity, we have $T_P^k(\bot) = \bigcup_{k \in \omega} T_P^k(\emptyset)$, where $T_P^0(\emptyset) = \emptyset$ and, for each $k > 0$, $T_P^k(\emptyset) = T_P(T_P^{k-1}(\emptyset))$.

It is worth noting that for $T_P^k(\bot)$ the following property holds. It is the fixpoint semantics counterpart of the inclusion property of the Kripke \mathcal{A}-interpretations.

Proposition XI.1.1 Let $P = \langle Ds, Ax \rangle$ be a program, G a closed goal and let Γ be a modal context, then

$$T_P^k(\bot)(\Gamma) \models_{Ax} G \text{ implies } T_P^k(\bot)(\Gamma') \models_{Ax} G$$

for all context Γ' such that $\Gamma \models_{Ax} \Gamma'$.

Proof. We prove, by double induction on k and the structure of G, that

$$T_P^k(\bot)(\Gamma) \models_{Ax} G \text{ implies } T_P^k(\bot)(\Gamma') \models_{Ax} G$$

for all $\Gamma' \in \mathcal{C}^*$ such that $\Gamma \models_{Ax} \Gamma'$ and $k \geq 0$.

If $k = 0$ then the theorem holds trivially.

Let assume that the theorem holds for $k - 1$ and we prove it for k. We consider the following cases, one for each possible structure of G.

$G = T$: Trivial.

$G = A$: If $T_P^k(\bot)(\Gamma) \models_{Ax} A$ then, $A \in T_P(T_P^{k-1}(\bot))(\Gamma)$. Now, there are two cases:

1. $A \in T_P^{k-1}(\bot)(\Gamma)$. By inductive hypothesis on k, we have that $A \in T_P^{k-1}(\bot)(\Gamma')$, for all $\Gamma' \in \mathcal{C}^*$ such that $\Gamma \models_{Ax} \Gamma'$. Hence, $A \in T_P^k(\bot)(\Gamma')$, for all $\Gamma' \in \mathcal{C}^*$ such that $\Gamma \models_{Ax} \Gamma'$, by Theorem XI.1.1.

2. $A \not\in T_P^{k-1}(\bot)(\Gamma)$. There is a clause $\Gamma_b(G' \rho \Gamma_h A) \in [Ds]$ such that $\Gamma^*_b \models_{Ax} \Gamma$, for some Γ^*_b such that $\Gamma_b \models_{Ax} \Gamma^*_b$, and $T_P^{k-1}(\bot)(\Gamma^*_b) \models_{Ax} G'$. Now, for all Γ', such that $\Gamma \models_{Ax} \Gamma'$, we have that $\Gamma^*_b \models_{Ax} \Gamma \models_{Ax} \Gamma'$.

Let us fix a Γ', by inductive hypothesis on k, we have that $T_P^{k-1}(\bot)(\Gamma^*_b) \models_{Ax} G'$, for all $\Gamma^*_b \in \mathcal{C}^*$ such that $\Gamma^*_b \models_{Ax} \Gamma^*_b$, in particular, since $\Gamma^*_b \models_{Ax} \Gamma^*_b$, $T_P^{k-1}(\bot)(\Gamma^*_b) \models_{Ax} G'$. Since $\Gamma^*_b \models_{Ax} \Gamma^*_b$, we have that $A \in T_P^k(\bot)(\Gamma^*_b)$ and, by Definition XI.1.2, $T_P^k(\bot)(\Gamma^*_b) \models_{Ax} A$.

$G = [t]G'$: If $T_P^k(\bot)(\Gamma) \models_{Ax} [t]G'$ then, $T_P^k(\bot)(\Gamma^*) \models_{Ax} G'$, for all Γ^* such that $\Gamma[t] \models_{Ax} \Gamma^*$. Now, we have to prove that, $\forall \Gamma'$, $\Gamma \models_{Ax} \Gamma'$, $T_P^k(\bot)(\Gamma') \models_{Ax} [t]G'$, that is, $\forall \Gamma'$, $\Gamma \models_{Ax} \Gamma'$, $\Gamma[t] \models_{Ax} \Gamma^*$, $T_P^k(\bot)(\Gamma^*) \models_{Ax} G'$. Let us fix Γ' and Γ^*, we have to prove that $T_P^k(\bot)(\Gamma^*) \models_{Ax} G'$. Since $\Gamma \models_{Ax} \Gamma'$ and $[t] \models_{Ax} [t]$, $\Gamma[t] \models_{Ax} \Gamma'[t]$, therefore $\Gamma[t] \models_{Ax} \Gamma^*$ and, by inductive hypothesis, $T_P^k(\bot)(\Gamma^*) \models_{Ax} G'$.

$G = G_1 \land G_2$, $G = \exists x G'$: Trivial, from definition of weak satisfiability applying the inductive hypothesis on the structure.
XI.2. Soundness and completeness

Related work

In [Balbiani et al., 1988] a fixpoint semantics is provided for an instance of MOLOG. In particular, the declarative semantics associated to a program is developed in terms of a tree, defined as the fixed point of a certain transformation T_P. Such a tree represents the minimal Kripke model of the program. In [Baudinet, 1989] a fixpoint characterization of the declarative semantics of TEMPLOG programs is also given. Both of these languages can be seen to belong to the class of intensional logic programs introduced in [Orgun and Wadge, 1992]. There, a language-independent theory is developed, which can be applied to a variety of intensional logic programming languages by investigating general properties of intensional operators (of which modal operators are a special case). In particular, the authors of [Orgun and Wadge, 1992] use a neighborhood semantics of Scott and Montague as an abstract formulation of the denotations of intensional operators and they show that intensional Horn programs (i.e. programs in which atomic formulas can be prefixed by any sequence of intensional operators) have a fixed point characterization of the declarative semantics under some conditions. In particular, intensional operators that appear in clause heads have to be universal, monotonic and conjunctive, and those in clause bodies have to be monotonic and finitary. Our language does not belong to the class of languages that satisfy the above conditions. In fact, the universal modal operators used in clause bodies are not finitary. Nevertheless, as we have seen, a fixed point semantics can be given to the language.

XI.2 Soundness and completeness

In this section, we prove the soundness and completeness of fixed point semantics with respect to both operational semantics and possible-worlds semantics. In particular, the correspondence between the fixed point and declarative semantics is proved through a canonical model construction.

With respect to operational semantics

The soundness of the fixed point semantics with respect to the operational semantics is given by the following theorem.

Theorem XI.2.1 (Soundness) Let $P = \langle Ds, Ax \rangle$ be a program of NemoLOG and let G be a closed goal, then

$$T^\phi_k(\bot) \models_{Ax} G \text{ implies } P, \varepsilon \vdash_o G.$$

Proof. It is proved by showing, with a double induction on k and the structure of G, that $T^\phi_k(\bot)(\Gamma) \models_{Ax} G$ implies $P, \Gamma \vdash_o G$, for any modal context Γ and $k \geq 0$. In particular, for the empty context ε, we have the main theorem.

If $k = 0$ then the theorem holds trivially.

Let us assume that the theorem holds for $k - 1$ and we prove it for k. We consider the following cases, one for each possible structure of G.
XI. Fixed Point Semantics

\[G = T : \text{Trivial.} \]

\[G = A : \text{If } T_P^k(\bot)(\Gamma) \models_{Ax} A \text{ then, } A \in T_P(T_P^{k-1}(\bot))(\Gamma). \] Now, there are two cases:

1. \(A \in T_P^{k-1}(\bot)(\Gamma) \). By inductive hypothesis on \(k \), we have that \(P, \Gamma \vdash_o A \).

2. \(A \not\in T_P^{k-1}(\bot)(\Gamma) \). Hence, there is a clause \(\Gamma_b(G' \supset \Gamma_h A) \in [Ds] \) such that

\[\Gamma_b \Gamma_h \Rightarrow_{Ax} \Gamma, \text{ for some } \Gamma^*_b \text{ such that } \Gamma_b \Rightarrow_{Ax} \Gamma^*_b, \text{ and } T_P^{k-1}(\bot)(\Gamma^*_b) \models_{Ax} G'. \]

By inductive hypothesis on \(k \), we have that \(P, \Gamma^*_b \vdash_o G' \) and, by definition of operational derivability, \(P, \Gamma \vdash_o A \).

\[G = [t]G' : \text{If } T_P^k(\bot)(\Gamma) \models_{Ax} [t]G' \text{ then, } T_P^k(\bot)(\Gamma') \models_{Ax} G', \text{ for all } \Gamma' \text{ such that } \Gamma[t] \Rightarrow_{Ax} \Gamma'. \]

By inductive hypothesis on the structure, \(P, \Gamma' \vdash_o G' \), for all \(\Gamma' \) such that \(\Gamma[t] \Rightarrow_{Ax} \Gamma' \).

In particular, since \(\Gamma[t] \Rightarrow_{Ax} \Gamma[t], \) \(P, \Gamma[t] \vdash_o G' \), and, by definition of operational derivability, \(P, \Gamma \vdash_o [t]G' \).

\[G = G_1 \land G_2, G = \exists x G' : \text{Trivial, from definition of operational derivability, applying the inductive hypothesis on the structure.} \]

\[\square \]

The completeness of fixed point semantics with respect to operational semantics is stated by the following theorem.

Theorem XI.2.2 (Completeness) Let \(P = (Ds, Ax) \) be a program of NemoLOG and let \(G \) be a closed goal, then

\[P, \varepsilon \vdash_o G \text{ implies } T_P^\varepsilon(\bot)(\varepsilon) \models_{Ax} G. \]

Proof. It is proved by showing, by induction on the length \(h \) of the derivation of \(G \), the stronger property that, for any modal context \(\Gamma \), if \(P, \Gamma \vdash_o G \) then \(T_P^h(\bot)(\Gamma) \models_{Ax} G \).

If \(h = 1 \) then \(G \) must be \(T \) then, it is obvious that \(P, \Gamma \vdash_o T \) implies \(T_P^0(\bot)(\Gamma) \models_{Ax} T \) by definition of weak satisfiability.

The length of the derivation is \(h + 1 \). Assume that the theorem holds for derivation with length less or equal than \(h \). We consider the following cases, one for each possible structure of \(G \).

\[G = T : \text{Trivial.} \]

\[G = A : \text{If } P, \Gamma \vdash_o A \text{ then there exists a clause } \Gamma_b(G' \supset \Gamma_h A) \in [Ds] \text{ such that } \Gamma_b \Gamma_h \Rightarrow_{Ax} \Gamma, \text{ for some } \Gamma^*_b \text{ such that } \Gamma_b \Rightarrow_{Ax} \Gamma^*_b, \text{ and } P, \Gamma^*_b \vdash_o G'. \]

By inductive hypothesis, \(T_P^h(\bot)(\Gamma^*_b) \models_{Ax} G' \) and, by Definition XI.1.2, we have that \(A \in T_P^h(\bot)(\Gamma) \). Hence, by definition of weak satisfiability, \(T_P^h(\bot)(\Gamma) \models_{Ax} A \).

\[G = [t]G' : \text{If } P, \Gamma \vdash_o [t]G' \text{ then } P, \Gamma[t] \vdash_o G'. \]

Hence, by inductive hypothesis, \(T_P^h(\bot)(\Gamma[t]) \models_{Ax} G' \) and, by Proposition XI.1.1, \(T_P^h(\bot)(\Gamma') \models_{Ax} G' \), for all \(\Gamma' \) such that \(\Gamma[t] \Rightarrow_{Ax} \Gamma' \).

Thus, by definition of weak satisfiability, we have that \(T_P^h(\bot)(\Gamma) \models_{Ax} [t]G' \).
XI.2. Soundness and completeness

\[G = G_1 \land G_2, G = \exists x G' : \text{Trivial, from the definition of weak satisfiability applying the inductive hypothesis.} \]

\[\Box \]

With respect to possible-worlds semantics

The soundness of fixed point semantics with respect to possible-worlds semantics is stated by the following theorem.

Theorem XI.2.3 (Soundness) Let \(P = \langle Ds, Ax \rangle \) be a program of NemoLOG, let \(G \) be a closed goal and let \(\Gamma \) be a modal context, then

\[T_P^\omega(\bot)(\varepsilon) \models_{Ax} G \implies \models_{\Gamma} Ds \supset G \]

where \(\Lambda = \{[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \mid [t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \in Ax \} \).

Proof. We prove, by double induction on \(k \) and the structure of \(G \), that \(T_P^k(\bot)(\Gamma) \models_{Ax} G \)

implies \(Ds \models_{\Lambda} \Gamma G \), for any modal context \(\Gamma \) and \(k \geq 0 \).

If \(k = 0 \) then the theorem holds trivially.

Let us assume that the theorem holds for \(k - 1 \) and we prove it for \(k \). We consider the following cases, one for each possible structure of \(G \).

\[G = T : \text{Trivial.} \]

\[G = A : \text{If } T_P^k(\bot)(\Gamma) \models_{Ax} A \text{ then, } A \in T_P(T_P^{k-1}(\bot)(\Gamma)). \text{ Now, there are two cases:} \]

1. \(A \in T_P^{k-1}(\bot)(\Gamma) \). By inductive hypothesis on \(k \), we have that \(Ds \models_{\Lambda} \Gamma A \).

2. \(A \notin T_P^{k-1}(\bot)(\Gamma) \). Hence there is a clause \(\Gamma_b(G' \supset \Gamma_h A) \in [Ds] \) such that \(\Gamma_b \Gamma_h \Rightarrow_{Ax} \Gamma \), for some \(\Gamma_b \) such that \(\Gamma_b \Rightarrow_{Ax} \Gamma_b, \text{ and } T_P^{k-1}(\bot)(\Gamma_b) \models_{Ax} G' \). Let us assume that \(\models_{Ax} Ds \), in particular \(\models_{Ax} \Gamma_b(G' \supset \Gamma_h A) \). Since \(\Gamma_b \Rightarrow_{Ax} \Gamma_b, \models_{Ax} \Gamma_b(G' \supset \Gamma_h A) \), hence \(\models_{Ax} \Gamma_b G' \supset \Gamma_b \Gamma_h A \). Now, by inductive hypothesis on \(k \), \(\models_{Ax} Ds \supset \Gamma_b G' \) and since, by hypothesis, \(\models_{Ax} Ds \), we have that \(\models_{Ax} \Gamma_b \Gamma_h A \). Finally, since \(\Gamma_b \Gamma_h \Rightarrow_{Ax} \Gamma \), we have that \(\models_{Ax} \Gamma A \) holds.

\[G = [t]G' : \text{If } T_P^k(\bot)(\Gamma) \models_{Ax} [t]G' \text{ then, } T_P^k(\bot)(\Gamma') \models_{Ax} G', \text{ for all } \Gamma' \text{ such that } \Gamma[t] \Rightarrow_{Ax} \Gamma'. \]

In particular, since \(\Gamma[t] \Rightarrow_{Ax} \Gamma[t], T_P^k(\bot)(\Gamma[t]) \models_{Ax} G' \). By inductive hypothesis on the structure, \(Ds \models_{Ax} \Gamma[t]G' \), that is \(Ds \models_{Ax} \Gamma G \).

\[G = G_1 \land G_2, G = \exists x G' : \text{Trivial, from definition of satisfiability relation and applying the inductive hypothesis on the structure.} \]

\[\Box \]
Let us now consider the completeness of the fixed point semantics with respect to the possible-worlds semantics. The completeness proof is given by constructing a canonical model for a given program P, whose domain is constant and is the Herbrand universe U_P of the program.

Definition XI.2.1 (Canonical Model) The canonical model \mathcal{M}_c^{Ax} for a program $P = \langle Ds, Ax \rangle$ of NemoLOG is a tuple $\langle W, R, D, J, V \rangle$, where:

- $W = C^*$;
- $D = U_P$ (the Herbrand universe of P);
- J is the constant function $J(w) = U_P$, for all $w \in W$;
- V is an assignment function, such that:

 (a) it interprets terms as usual in Herbrand interpretations;

 (b) for each predicate symbol $p \in \text{PRED}^n$ and each world $\Gamma \in C^*$, $V(p, \Gamma) = \{ \langle t_1, \ldots, t_n \rangle : T_p(\bot)(\Gamma) \models_{Ax} p(t_1, \ldots, t_n) \text{ and } t_1, \ldots, t_n \in U_P \}$.

- R is defined as follows: for all $t \in U_P$, $R_t = \{ (\Gamma, \Gamma') \in W \times W : \Gamma, \Gamma' \in C^*$ and $\Gamma[t] \models_{Ax} \Gamma' \}$;

The canonical model \mathcal{M}_c^{Ax} for a program P of NemoLOG is a Kripke \mathcal{A}-interpretation. In fact, it is easy to see that for each axiom $[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi$ in \mathcal{A}, $R_{V(t_1)} \circ \ldots \circ R_{V(t_n)}$ holds. It is enough noting that $R_{V(t_1)} \circ \ldots \circ R_{V(t_n)} = \{ (\Gamma, \Gamma') : \Gamma, \Gamma' \in C^*$ and $\Gamma[t_1] \ldots [t_n] \models_{Ax} \Gamma' \}$, $R_{V(t_1)} \circ \ldots \circ R_{V(s_m)} = \{ (\Gamma, \Gamma') : \Gamma, \Gamma' \in C^*$ and $\Gamma[s_1] \ldots [s_m] \models_{Ax} \Gamma' \}$ and $[t_1] \ldots [t_n] \models_{Ax} [s_1] \ldots [s_m]$.

Completeness proof is based on the following two properties of \mathcal{M}_c^{Ax}. They can be proved by induction on the structure of the goals G and the clauses D.

Theorem XI.2.4 Let $P = \langle Ds, Ax \rangle$ be a program in NemoLOG, \mathcal{M}_c^{Ax} its canonical model and let G be a closed goal, then the following properties hold:

1. for any $\Gamma \in C^*$, $\mathcal{M}_c^{Ax}, \Gamma \models_{\mathcal{A}} G$ iff $T_p(\bot)(\Gamma) \models_{Ax} G$;

2. \mathcal{M}_c^{Ax} satisfies Ds; i.e., for all clauses D in Ds, $\mathcal{M}_c^{Ax}, \varepsilon \models_{\mathcal{A}} D$.

Where $\mathcal{A} = \{ [t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \mid [t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \in Ax \}$.

Proof. We prove property 1) by induction on the structure of G.

$G = T$: Trivial.

$G = A : \mathcal{M}_c^{Ax}, \Gamma \models_{\mathcal{A}} A$, where $A = p(t_1, \ldots, t_n)$, iff $\langle t_1, \ldots, t_n \rangle \in V(p, \Gamma)$, that is $T_p(\bot)(\Gamma) \models_{Ax} A$.

$G = \mathcal{A} : \mathcal{M}_c^{Ax}, \Gamma \models_{\mathcal{A}} A$, where $A = \varphi[t_1, \ldots, t_n]$, iff $A(t_1, \ldots, t_n)$ is a property of a term φ in \mathcal{A}.
XI.2. Soundness and completeness

\(G = G_1 \land G_2 : \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} G_1 \land G_2 \text{ iff } \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} G_1 \text{ and } \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} G_2; \) by inductive hypothesis, \(T^c_P(\bot)(\Gamma) \models Ax \ G_1 \) and \(T^c_P(\bot)(\Gamma) \models Ax \ G_2, \) hence \(T^c_P(\bot)(\Gamma) \models Ax \ G_1 \land G_2. \)

\(G = \exists x G' : \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} \exists x G' \text{ iff } \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} G'[t/x], \) for some \(t \in U_P, \) and, by inductive hypothesis, \(T^c_P(\bot)(\Gamma) \models Ax \ G'[t/x], \) for some \(t \in U_P, \) that is \(T^c_P(\bot)(\Gamma) \models Ax \exists x G'. \)

\(G = [t]G' : \mathcal{M}^{Ax}_c, \Gamma \models \mathcal{A} [t]G' \text{ iff } \mathcal{M}^{Ax}_c, \Gamma' \models \mathcal{A} G', \) for each world \(\Gamma' \) such that \((\Gamma, \Gamma') \in R_{V(t)}. \)

By inductive hypothesis and definition of \(R_{V(t)}, \) \(T^c_P(\bot)(\Gamma') \models Ax \ G', \) for each \(\Gamma' \) such that \(\Gamma[t] \Rightarrow Ax \Gamma' \) and hence \(T^c_P(\bot)(\Gamma) \models Ax \ [t]G'. \)

We prove the property 2) if we prove that for all clause \(D \) in \(D_s \) holds that \(\mathcal{M}^{Ax}_c, \varepsilon \models Ax \ D. \)

First we prove the property that \(\mathcal{M}^{Ax}_c, \Gamma \models Ax \ D, \) for all clause \(\Gamma' \Delta D \) in \(D_s, \) such that \(\Gamma' \Rightarrow Ax \ \Gamma, \) with \(\Gamma, \Gamma' \in C^*. \) In particular, since \(\varepsilon \) is a modal context, the main property holds. We prove this property by induction on the structure of \(D. \)

\(D = G \supset \Gamma_h A : \text{ If } \Gamma'(G \supset \Gamma_h A) \text{ is in } D_s, \) and \(\Gamma' \Rightarrow Ax \ \Gamma, \) then \(\mathcal{M}^{Ax}_c, \Gamma \models Ax \ G \supset \Gamma_h A \text{ iff } \mathcal{M}^{Ax}_c, \Gamma \models Ax \ G \text{ implies } \mathcal{M}^{Ax}_c, \Gamma \models Ax \ \Gamma_h A. \)

Let us assume \(\mathcal{M}^{Ax}_c, \Gamma \models Ax \ G, \) by property 1) we have that \(T^c_P(\bot)(\Gamma) \models Ax \ G. \) Hence, by Definition XI.1.2 and since \(\Gamma' \Rightarrow Ax \ \Gamma, \) \(A \in T^c_P(\bot)(\Gamma''), \) that is \(T^c_P(\bot)(\Gamma'') \models Ax \ A, \) for all \(\Gamma'' \) such that \(\Gamma' \Rightarrow Ax \ \Gamma''. \)

Hence, since \(\Gamma' \Rightarrow Ax \ \Gamma \) by reflexivity of \(\Rightarrow Ax, \) \(T^c_P(\bot)(\Gamma' \Gamma_h) \models Ax \ A. \)

Now, let us assume \(\Gamma_h = \Gamma_h[t], \) if \(T^c_P(\bot)(\Gamma' \Gamma_h[t]) \models Ax \ A, \) then, by Proposition XI.1.1, \(\forall \Gamma*, \Gamma' \Gamma_h[t] \Rightarrow Ax \ \Gamma*, T^c_P(\bot)(\Gamma^*) \models Ax \ A, \) hence, by definition of weak satisfiability, \(T^c_P(\bot)(\Gamma' \Gamma_h) \models Ax \ [t]A. \)

We can continue so on until we have that \(T^c_P(\bot)(\Gamma') \models Ax \ \Gamma_h A. \) Again, by Proposition XI.1.1, \(\forall \Gamma*, \Gamma' \Rightarrow Ax \ \Gamma*, T^c_P(\bot)(\Gamma^*) \models Ax \ \Gamma_h A, \) and, in particular, since \(\Gamma' \Rightarrow Ax \ \Gamma, \) we have that \(T^c_P(\bot)(\Gamma) \models Ax \ \Gamma_h A. \) Finally, by property 1), \(\mathcal{M}^{Ax}_c, \Gamma \models Ax \ \Gamma_h A. \)

\(D = [t]D' : \text{ Let us assume } \Gamma'(\lbrack t \rbrack D') \text{ is in } D_s \) and \(\Gamma' \Rightarrow Ax \ \Gamma. \) We have that \(\mathcal{M}^{Ax}_c, \Gamma \models Ax \ [t]D' \text{ if } \mathcal{M}^{Ax}_c, \Gamma^* \models D', \) for all \(\Gamma^* \) such that \(\Gamma[t] \Rightarrow Ax \ \Gamma^*. \) By inductive hypothesis, since \((\Gamma'[t])D' \) is in \(D_s, \) \(\mathcal{M}^{Ax}_c, \Gamma^* \models Ax \ D', \) for any \(\Gamma^* \) such that \(\Gamma'[t] \Rightarrow Ax \ \Gamma^*. \) In particular, since \(\Gamma' \Rightarrow Ax \ \Gamma \) and \([t] \Rightarrow Ax \ [t], \) we have that \(\Gamma'[t] \Rightarrow Ax \ \Gamma[t], \) \(\Gamma[t] \Rightarrow Ax \ \Gamma^*, \) that is, by transitivity of the derivation relation, \(\Gamma'[t] \Rightarrow Ax \ \Gamma^* \) and, thus, \(\mathcal{M}^{Ax}_c, \Gamma^* \models Ax \ D'. \)

\(D = D_1 \land D_2, G = \forall x D' : \text{ Trivial, from the definition of satisfiability relation and applying the inductive hypothesis. } \)

\(\square \)

By Theorem XI.2.4, the canonical model definition makes it explicit the fact that the fixed point construction builds a Kripke \(\mathcal{A} \)-interpretation for a program \(P. \) We can now prove the following result.

Theorem XI.2.5 (Completeness) Let \(P = \langle D_s, Ax \rangle \) be a program of NemoLOG, and let \(G \) be a closed goal then,

\(\models \mathcal{A} D_s \supset G \text{ implies } T^c_P(\bot)(\varepsilon) \models Ax \ G \)
where $A = \{[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \mid [t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \in Ax\}$.

Proof. (If part) Let us assume that $|_{A} Ds \supset G$. Then, for every Kripke A-interpretation $M = (W, R, D, J, V)$, for every $w \in W$, $M, w \models_{A} P$ implies $M, w \models_{A} G$. Hence, in particular, for the canonical model M_{*}^{Ax} and the world $\varepsilon \in C^{*}$, $M_{*}^{Ax}, \varepsilon \models_{A} P$ implies $M_{*}^{Ax}, \varepsilon \models_{A} G$. By Theorem XI.2.4, property 2), we have that $M_{*}^{Ax}, \varepsilon \models_{A} P$, thus $M_{*}^{Ax}, \varepsilon \models_{A} G$ holds and then, by Theorem XI.2.4, property 1), $T_{\varepsilon}^{A} (\bot) \models_{Ax} G$. \qedsymbol

XI.3 Herbrand domains

In this section we show that for the programs in our language we can, without loss of generality, restrict our concern to Kripke interpretations in which the Herbrand universe is the constant domain of quantification for each world. A similar property has been proved to hold for other modal and temporal languages and, in particular, for TEMPOLOG in [Baudinet, 1989], for an instance of MOLOG in [Balbiani et al., 1988], and for a general class of intensional logic programs in [Orgun and Wadge, 1992]. Moreover, in [Cialdea and Fariñas del Cerro, 1986] a general Herbrand’s property has been proved to hold for the modal system Q and, based on it, a first-order extension of propositional modal resolution is defined. In our case this result is a consequence of the completeness and soundness of fixed point semantics with respect to possible-worlds semantics.

In the following we will denote by U_{P} the Herbrand universe for a program P, i.e., the set of ground terms built up from the constants and function symbols that appear in P. Let us start by defining a Kripke interpretation with Herbrand domain.

Definition XI.3.1 Let P be a program of NemoLOG. A Kripke interpretation on the Herbrand universe of P is a Kripke interpretation $M = (W, R, D_{H}, J_{H}, V_{H})$ such that:

- D_{H} is the Herbrand Universe of P, U_{P};
- J_{H} is a constant function which maps all worlds in W to the Herbrand universe U_{P};
- V_{H} interprets terms as usual in Herbrand interpretations; i.e., $V_{H}(t) = t$.

The relation $|$ between members of W and statements of I_{E}, the satisfiability, and validity of a closed formula φ of the modal logic is the same of Section V.2. As well as the restriction to the Kripke A-interpretations for characterizing the inclusion modal logics I_{E}^{A}.

Theorem XI.3.1 Let $P = (Ax, Ds)$ be a program of NemoLOG and G a closed goal, then

$|_{A} Ds \supset G$ if and only if $|_{A, H} Ds \supset G$

where $|_{A, H}$ denotes the satisfiability in Kripke A-interpretations with constant domain U_{P} and $A = \{[t_1] \ldots [t_n] \varphi \supset [s_1] \ldots [s_m] \varphi \mid [t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \in Ax\}$.
XI.3. Herbrand domains

Theorem XI.3.1

Ds \models_{\mathcal{A}, H} G

\text{Theorem XI.3.1}

Ds \models_{\mathcal{A}} G

\text{Theorem XI.2.3}

Ds \vdash_{\mathcal{A}} G

\text{Theorem XI.2.5}

Ds \vdash_{\mathcal{A}} G

\text{Theorem III.3.1}

Ds \vdash_{\mathcal{A}} G

\text{Theorem III.3.2}

Ds \vdash_{\mathcal{A}} G

\text{Theorem IX.3.2}

Ds \vdash_{\mathcal{A}} G

\text{soundness}

Ds \vdash_{\mathcal{A}} G

\text{completeness}

\langle Ds, Ax \rangle \vdash_o G

\text{Theorem XI.2.2}

\text{Proof.} (\text{Only if part}) If \models_{\mathcal{A}} Ds \supset G then, Ds \supset G holds in all Kripke \mathcal{A}\text{-interpretations. In particular, } Ds \supset G \text{ is true in all Kripke } \mathcal{A}\text{-interpretations with constant domain } U_P. (\text{If part}) Let us assume that \models_{\mathcal{A}, H} Ds \supset G \text{ and } \not\models_{\mathcal{A}} P \supset G. \text{ By Theorem XI.2.3, we have that } T^\omega_P(\bot)(\varepsilon) \not\models_{Ax} G. \text{ Hence, by Theorem XI.2.4, property 1), we have that } M_{c}^{Ax}, \varepsilon \not\models_{\mathcal{A}} G. \text{ On the other hand, } M_{c}^{Ax}, \varepsilon \models_{\mathcal{A}} Ds, \text{ by Theorem XI.2.4, property 2), thus, we have that } M_{c}^{Ax}, \varepsilon \models_{\mathcal{A}} Ds \text{ and } M_{c}^{Ax}, \varepsilon \not\models_{\mathcal{A}} G, \text{ i.e. } M_{c}^{Ax}, \varepsilon \not\models_{\mathcal{A}} Ds \supset G. \text{ Since, by construction, } M_{c}^{Ax} \text{ is a Kripke } \mathcal{A}\text{-interpretation with constant domain } U_P, \text{ we have that } M_{c}^{Ax}, \varepsilon \not\models_{\mathcal{A}, H} Ds \supset G, \text{ a contradiction. } \square

Figure XI.1 summarizes the results obtained about \textbf{NemoLOG}.
Chapter XII

Related work

In this part of the thesis, we have developed a modal extension of logic programming that is based on the class of inclusion modal logics. This language (called NemoLOG) is a modal extension of the language of Horn clauses. More precisely, the modal operators may occur in front of clauses, clause heads and in front of goals, and are of the form $[t]$, where t is a term. The properties of the modal operators used in a program, that is the underlying inclusion modal logic that characterizes it, are specified by a set of inclusion clause. Actually, these clauses represent the set \mathcal{A} of inclusion axioms.

Furthermore, we have defined a goal directed proof procedure. Its main advantage is that it is modular with respect to the axiom clauses. This feature is achieved by using a notion of derivation relation between sequences of modalities, which only depends on the properties of modalities themselves. We have also defined a fixpoint semantics by generalizing the standard construction for Horn clauses. It is used to prove soundness and completeness of the operational semantics with respect to model theoretic semantics and it works for the whole class of logics identified by the inclusion axioms. Last but not least, a comparison with the proof theory given in the first part of the thesis is made. In particular, we have shown that in the case of programs and goals of NemoLOG we can restrict to uniform proof as presented in [Miller et al., 1991].

XII.1 Languages based on inclusion modal logics

In [Baldoni et al., 1993] a logic programming language which provides modules as a basic feature is defined. This language is a clausal fragment of an inclusion multimodal logic. In fact, in order to deal with modules, Horn clauses are extended with a collection of modal operators $[m_i]$ of type K. Module composition can be obtained by allowing modules to export clauses or derived facts. To achieve this purpose, a modal operator \Box of type $S4$ is introduced, which makes it possible to distinguish among clauses local to a module, clauses that are fully exported from a module, and those whose consequences are exported. This language allows to model different kinds of modules presented in the literature (so that in each situation the kinds of module that suit better can be adopted). Furthermore,
XII. Related work

this language provides some well-known features of object-oriented programming, like the

NemoLOG includes the language in [Baldoni et al., 1993] because it is not restricted to
a particular inclusion modal logic and because the occurrence of modal operators in front
of clauses and clause heads is not restricted to a particular form. Moreover, from the point
of view of the programming language it is wider and more flexible. In fact, it allows to
define nested and parametric modules and it is possible to represent dependencies among
modules in a hierarchy.

In [Baldoni et al., 1997a] an extension of the language in [Baldoni et al., 1993] is
presented. In this proposal, both multiple universal modal operators and embedded
implications are allowed. The authors show that this extension is well suited for structuring
knowledge and, more specifically, for defining module constructs within programs for repres-
enting agents beliefs and, also, for hypothetical reasoning. The language is again a clause
fragment of the multimodal logic of the proposal in [Baldoni et al., 1993], however, besides
the embedded implications, free occurrences of modal operators are allowed in front of
clauses, clause heads, and goals. In the same way of the language in [Baldoni et al., 1993],
a set of modal operators of type K has been used to define modules, by associating a
modality with each module for labeling its clauses. In a more general setting, these modal-
ities are used to provide reasoning capabilities in a multiple agents situation, by associating
a modal operator with each agent to represent its beliefs. Moreover, a modal operator \Box of
type $S4$ has been used as a weaker version of the common knowledge operator of [Halpern
and Moses, 1992].

In [Baldoni et al., 1997a] embedded implications are allowed to occur both in goals
and in clause bodies. Languages with embedded implications have been extensively studied
[Gabbay and Reyle, 1984; Gabbay, 1985; Miller, 1986; McCarty, 1988a; McCarty, 1988b].
These languages allow implications of the form $D \supset G$ which provide a way of introducing
local definitions of clauses: the clauses in D are intended to be local to the goal G, as
they can be used only in a proof of G. The meaning of embedded implications, is that of
hypothetical insertion: the goal $D \supset G$ is derivable from a program P if G is derivable from
the program updated with D. When intuitionistic logic is taken as the underlying logic of
this language, like in N-Prolog [Gabbay and Reyle, 1984; Gabbay, 1985] and in [Miller et
al., 1991], embedded implications allow hypothetical reasoning to be performed, and for
this reason they are often called hypothetical implications.

In [Giordano et al., 1992; Giordano and Martelli, 1994] the problem of defining structur-
ing facilities in a language with embedded implications is studied. In some way, an
embedded implication $D \supset G$ could be compared to what is called a block in Algol-like
languages, that is, a pair (definitions, statement), where D is a set of clause definitions and
G plays the role of the statement. In [Giordano et al., 1992] it is shown how different logic
languages with embedded implications (or blocks) can be obtained by choosing different
visibility rules for locally defined clauses. On the other hand, in [Giordano and Martelli,
1994], a modal extension of Horn clause logic (based on the S4 logic and, consequently, on
an inclusion modal logic) is defined to provide a unifying framework in which these differ-
ent kinds of local definitions of clauses can be integrated. These extensions with embedded
implications provide different notions of a block, from which various kinds of modules can also be defined, by introducing some syntactic sugar.

In [Baldoni et al., 1997a] embedded implications have been used to introduce local definitions of clauses like blocks in imperative programming and for performing some form of hypothetical reasoning. In particular, since \Box is an $S4$ modality, the language subsumes N_PProlog: by adopting the well-known translation of intuitionistic logic to modal logic $S4$, N_PProlog clauses can be translated in this language.

The logic programming language presented in [Baldoni et al., 1997a] is modal logic refinement of hereditary Harrop formulae [Miller et al., 1991], and it lies on the same line as other logic programming languages which are not based on classical first-order logic, like, for instance, those based on intuitionistic logic [Gabbay and Reyle, 1984; Gabbay, 1985; McCarty, 1988a; McCarty, 1988b; Miller, 1986; Miller, 1989a; Miller, 1989b], higher-order logic [Miller et al., 1991], and linear logic [Hodas and Miller, 1991].

In [Baldoni et al., 1996b] a translation to standard Horn clauses for the language in [Baldoni et al., 1997a] is presented, this translation method consisting of two steps. In the first step all embedded implications are eliminated so to obtain a program consisting only of modal Horn clauses. This step requires the introduction of a new modal operator for each embedded implication, so that the extracted clauses can be used only in the right environment. The second step is based on an approach similar to the functional translation: modalities are eliminated by adding to each predicate an argument which represents the modal context.

Despite the fact that NemoLOG does not allow embedded implications to occur in goals and in the body of clauses, it can deal with modal operators which are characterized by more complex properties than the ones in [Baldoni et al., 1997a]. Due to the fact that it is possible to define “ad hoc” interaction axioms by means of the inclusion axiom clauses, NemoLOG can express more sophisticated knowledge information and, then, it is better suited to perform epistemic reasoning. Furthermore, as we have seen in Chapter X, inclusion axiom clauses allow to define hierarchical dependencies among modules in a simple way.

In [Baldoni et al., 1993; Baldoni et al., 1997a], the logic is described by defining a sequent calculus for it. The sequent calculus is used to prove soundness and completeness of the proof procedures with respect to the model theoretic semantics showing that the proof procedure looking for derivations which correspond to sequent proofs of a certain form. The approach could be regarded as being complementary to the one in [Giordano and Martelli, 1994]. In fact, in [Giordano and Martelli, 1994], the soundness and completeness of the proof procedure with respect to the Kripke semantics has been proved by making use of a Henkin-style canonical model construction. In [Baldoni et al., 1993; Baldoni et al., 1997a], instead, the goal directed proof procedures is proved sound and complete by means of a sequent calculus.

If we compare the kind of sequent proofs in [Baldoni et al., 1993; Baldoni et al., 1997a] with uniform proofs as presented in [Miller et al., 1991], we can observe that the former are not uniform. As already remarked in Chapter IX, this happens because a prefixed sequent calculus is not used. In fact, since NemoLOG subsumes the language in [Baldoni et al.,
XII. Related work

1993] and that we have proved that for programs and goals in NemoLOG there exists a notion of uniform proof, we have that a notion of uniform proof exists also for the language in [Baldoni et al., 1993]. Furthermore, we believe that a similar proof could be given also for the language in [Baldoni et al., 1997a] provided that the prefixed sequent calculus like the one here adopted is used.

In [Baldoni et al., 1996a], it is presented a framework for developing modal extensions of logic programming, which is parametric with respect to the properties chosen for the modal operators and which allow sequences of universal modalities to occur in front of clauses, goals, and clause heads. This work is at the basis of our logic programming language NemoLOG.

Finally, we would like to mention the modal programming language L^A for reasoning about actions presented in [Baldoni et al., 1997b]. L^A makes use of abductive assumptions to deal with persistence and provides a solution to the ramification problem by allowing one-way “causal rules” to be defined among fluents. Both the semantics and the goal directed abductive proof procedure are defined within the argumentation framework [Bondarenko et al., 1993; Dung, 1993b] developing a three-valued semantics which can be regarded as a generalization of Dung’s admissibility semantics [Dung, 1993a] to modal settings.

The language L^A can be regarded as an extension of Gelfond and Lifschitz’ language \mathcal{A} [Gelfond and Lifschitz, 1993]. However, rather than following the way of defining a language with an “ad hoc” (and high-level) semantics and, then, translating it into a logic programming language with negation as failure, in [Baldoni et al., 1997b] actions are represented by modal operators and the semantics is a standard Kripke semantics. The reason is that modal logics allow to interpret actions as state transitions through the accessibility relations in a natural way.

XII.2 Other languages

NemoLOG bears strong similarities with MOLOG [Fariñas del Cerro, 1986] (later evolved in TIM [Balbiani et al., 1991]), a framework for modal logic programming in which the user can fix the underlying modal logic. In MOLOG both existential and universal modalities can occur in front of clauses, in front of clause heads, and in front of goals. A resolution procedure (close to Prolog resolution) is defined for modal Horn clauses in the logic S_5 which contains only universal modal operators of the form $\text{knows}(t)$, where t is an arbitrary term. TIM is a meta-level inference system which can support some well-known modal systems and epistemic logics such as Q, T, S_4, and S_5 and it provides a general methodology to implement non-classical logics. Though the language in similar to ours, the properties of S_5 modalities are different from the ones we have considered, in the sense that we did not take into account S_5. In [Balbiani et al., 1988], instead, a modal SLD-resolution method is presented for a fragment of MOLOG in which \Box cannot be used in the bodies of modal clauses (while \Diamond can). Some different modal systems (Q, T and $K4$) are considered. A fixpoint semantics is also provided.

Modal logic programming languages based on S_5 have been also proposed in [Akama,
1986]. There, a program is defined as a set of modal definite clauses whose literals are prefixed by any sequence of universal and existential modalities. An SLD-resolution procedure is defined for these languages.

In NemoLOG universal modalities are allowed to freely occur in front of clauses, clause heads and clause bodies (or goals), while existential modal operators are not allowed. In particular, differently than other languages proposed in the literature, like TEMPLOG [Abadi and Manna, 1989], Temporal Prolog [Gabbay, 1987], the fragment of MOLOG in [Balbiani et al., 1988], and the language in [Akama, 1986], existential modalities are not allowed to occur in front of goals. In spite of this limitation, the features of parametric modalities and the possibility of introducing inclusion axioms, make NemoLOG well suited for performing some epistemic reasoning, for defining parametric and nested modules, for representing inheritance in a hierarchy of classes and for reasoning about actions.

Actually, NemoLOG could be extended to allow existential modalities in front of goals. Indeed, due to the analogy between universal (existential) quantifiers and universal (existential) modalities, and from the fact that, in standard logic programs, universal quantifiers occur in front of clauses, while existential quantifiers occur in front goals, the use of existential modalities should be possible. Of course, to deal with existential modalities (\(t\)) in front of goals, the proof procedure presented in Chapter IX should be modified substantially. The main difference would be that, since existential modalities \(t\) do not distribute on conjunctions, a goal \(\langle t\rangle(G_1 \land G_2)\) cannot be proved by proving the two subgoals \(\langle t\rangle G_1\) and \(\langle t\rangle G_2\). For this reason, the policy of recording the sequence of modalities that are found in front of a goal in a context \(\Gamma\) does not work in that case in a straightforward way.

TEMPLOG is a temporal logic programming language and it allows temporal operators like \(\bigcirc\) (next moment in time), \(\Box\) (from now on), and \(\Diamond\) (sometime in the future) to occur in Horn clauses. \(\Diamond\) is allowed in front of goals while \(\Box\) is not. In our language, while existential modalities are not admitted, universal modalities can occur in goals and clause bodies. Despite these differences, there are some similarities with TEMPLOG. In particular, in TEMPLOG a distinction is made between initial clauses (\(G \supset A\) and \(G \supset \Box A\)), and permanent clauses (\(\Box(G \supset A)\)). This distinction is quite similar to ours between local, static and dynamic clauses (see Chapter X).

Temporal Prolog [Gabbay, 1987] allows occurrences of temporal operators like \(F\) (some-time in the future), \(P\) (some-time in the past), \(\Box\) (always). This language is rather different from ours and in particular, it admits embedded implications in clause heads.

We have already mentioned to the translation approach to modal logics in Chapter VII. In the case of modal logic programming, this approach has been used in [Debart et al., 1992; Nonnengart, 1994] to obtain a standard Prolog program starting form Horn clauses extended with modal operators. In [Debart et al., 1992] the functional translation method is extended to multimodal logic and it is applied to modal logic programming. The modalities considered are both universal and existential, and are of any type among \(KD\), \(KT\), \(KD4\), \(KT4\), \(KF\). Interaction axioms of the form \(I(a_i, a_j) : [a_i] \varphi \supset [a_j] \varphi\) are allowed but, in [Debart et al., 1992], general inclusion axioms as the ones in NemoLOG are not considered. Nonnengart has proposed a mixed approach based on a relational and functional translation [Nonnengart, 1993]. One of his aims is to avoid theory unification. As a partic-
ular case, following this approach, modal Horn clauses can be directly translated to Prolog clauses [Nönningart, 1994]. This method requires that accessibility relation properties are first-order predicate logic definable. Moreover, if Prolog is to be used as a first order inference machine, accessibility relation properties must be defined through Horn clauses.

In particular, he can provide Prolog translation for modalities with the properties of KD, KT, KD_4, S_4 and he can also deal with axioms like $(B) : \varphi \supset \Box \Diamond \varphi$, and, hence, with logics like KDB, KD_45 and S_5.

An optimization of the functional translation method for the class of inclusion logics has been proposed in [Gasquet, 1993], where, however, seriality is assumed for each modal operator. Then, since we deal with modal Horn clauses containing only universal modalities, the case we consider can be regarded as a special instance of the one in [Gasquet, 1993]. In particular, in the case when only ground terms can occur within modalities in the program, in the goal and in the axioms (which is the one he considers), the generality of equational unification may be replaced with a notion of matching (or a notion of string rewriting). Differently than [Gasquet, 1993], we deal with parametric modalities. However, in the general case when variables occur within modalities we also need some form of equational unification.
Conclusions

In this thesis we have studied the class of normal multimodal logics determined by axiom schemas of the form

\[[t_1][t_2] \ldots [t_n] \varphi \supset [s_1][s_2] \ldots [s_m] \varphi \quad (n > 0, m \geq 0) \]

This class is called inclusion modal logics because it is characterized by particular inclusion properties between accessibility relations. For this class of logics we have defined a prefixed analytic tableau calculus and given some undecidability and decidability results. First-order is also considered, though only in the case of increasing domains.

Afterwards, we have extended the class of the considered multimodal logics and, in particular, we have focused on the ones that are characterized by axiom schemas of the form

\[G^{a,b,c,d} : \langle a \rangle[b] \varphi \supset [c][d] \varphi \]

where the labels of the modal operators are arbitrarily complex parameters, built from the atomic ones, by using an operator of composition and an operator of union. The incestual axiom copes with most of the well-known axioms, such as \(T \), \(D \), \(B \), \(4 \), and \(5 \), and their multimodal versions. For this class of logics we have introduced a tableau calculus that is a generalization of the one presented for the inclusion modal logics.

In the course of this work, we have also defined a logic programming language based on the above class of inclusion modal logics. This language, called NemoLOG, extends the Horn clause language by allowing free occurrences of universal modal operators in front of clauses, in front of clause heads, and in front of goals. NemoLOG is parametric with respect to the class of inclusion modal logics and this feature is achieved by adding to a program a collection of inclusion axiom clauses of the form \([t_1] \ldots [t_n] \rightarrow [s_1] \ldots [s_m] \), one for each inclusion axiom schema of the considered logic.

NemoLOG is particularly suitable to represent knowledge and beliefs of agents. Moreover, due to the fact that we can characterize our modal operators by means of arbitrary inclusion axioms, our language is particularly well-suited to performing epistemic reasoning in a multiagent situation with interactions between agents. Moreover, in a software engineering settings, we have shown how to use NemoLOG to modularize logic programs in order to enhance their readability and reusability; parametric and nested modules are considered. Furthermore, NemoLOG allows to define hierarchies among modules and inheritance mechanisms similar to the ones of object-oriented languages.
NemoLOG has a goal directed proof procedure which is modular with respect to the properties of modalities: it uses a notion of derivation relation between sequences of modal operators, which only depends on the properties of modalities themselves. As it is usual in logic programming setting, a fixed point semantics is given and it is used to prove the soundness and the completeness of the proof procedure with respect to model theoretic semantics.

Indeed, despite the fact that NemoLOG shows quite a simple operational semantics, where the properties of the modal operators are factored out by means of a derivation relation, we think that it is better to consider the NemoLOG language as a framework for developing modal extension of logic programming aimed at solving particular problems. The examples shown in Chapter X can actually be reconsidered in this perspective: on one hand, restricting to specific cases it is possible to improve the language itself for the case at issue, optimizing at the same time the computational aspects, while on the other hand the general framework supplies theoretical results that can be inherited by the specific case studies. For instance, in the case of the problem of dealing with inheritance in hierarchies of modules and, in a more general setting, with the introduction of object-oriented features in a logic programming language, tackled in Chapter X, only a few axiom kinds were used. It would be interesting to deepen this investigation by making the proof procedure effective, i.e. to see if the general procedure, which cannot be implemented in an easy way, can be operationalized for the case of interest. Another example is the restriction of the language to dealing with actions and change. We are currently working at the development of a specialization of the framework for reasoning about dynamic domains in a logic programming setting [Baldoni et al., 1997b; Baldoni et al., 1998b]. To summarize, we think that it is important to consider Logic Programming as a general framework that supplies proof theories and other theoretical results that, specialized or extended ad hoc for the particular application, can be exploited for building languages and systems that solve a broad variety of problems.

Nevertheless, the work presented in this thesis is in progress and lots of problems are still open.

We have shown that the class of right-regular modal logics is decidable, however, we say nothing about the decidability of the inclusion modal logics based on left type-0 grammars, i.e. grammars whose production rules are of the form $A \rightarrow A'\sigma$ or $A \rightarrow \sigma$, where A, A' are variables and σ is a string of terminals. We believe that also this class is decidable but the technique used to prove the decidability for the right-regular modal logics does not work for it.

Another open problem regards a decision procedure. Apart from the naive algorithm given by generating all finite Kripke interpretations for checking whether or not a formula is a theorem, we have seen that our tableau calculus is not a decision procedure even if it deals with decidable modal logics. It would be interesting to transform it in a decision procedure, in the line of the works in [Fitting, 1983; Massacci, 1994].

In Chapter VI, we have introduced complex parameters as labels for the modal operators. In this case, we have used an operator of composition and an operator of union,
Conclusions

however, further extensions could also be incorporated. For example, we could add the *iteration* operator “*” and the *test* operator “?” of dynamic logic to the language. In this case two questions would arise: how to extend the tableau calculus in order to deal with these new operators? And, moreover, what is the relationship among multimodal logics and dynamic logics? A recent work [De Giacomo and Massacci, 1996] shows a tableau calculus for dynamic logic that could be at the basis for such a kind of study.

As remarked in [Fitting, 1996], although *resolution* is the most used approach to automated deduction, tableaux will continue to have a great importance because they are relatively easy to develop due to the strong relationship with the semantics issue, i.e. they rely on the *explicit* construction of models. We think it would also be a goal of this research to develop a theorem prover for better studying the expressive features of the logics considered; this would also help to implement a NemoLOG inference machine.

We have seen, in Chapter IV, that the *validity problem* for the whole class of inclusion modal logic is undecidable and it still remains undecidable even though we restrict our attention to some subclasses. However, we have not studied what happens restricting to modal Horn clauses of NemoLOG. For example, the class of inclusion modal logics based on context-free grammars is undecidable but the method used to prove this in Theorem IV.2.2 does not work in the case of formulae of NemoLOG.

Furthermore, another important problem related to our logic programming language that we have not studied is the *computational complexity* of the satisfiability. On the other hand, when we do not consider the multimodal case, our definition of modal Horn clauses falls into the one given in [Fariñas del Cerro and Penttonen, 1987; Chen and Lin, 1994] where the problem of the complexity of the satisfiability of modal Horn clauses is studied for different modal logics. In particular, in [Chen and Lin, 1994], it is shown that the satisfiability problem of modal Horn clauses for each of K, T, and S4 is PSPACE-complete.

Finally, it is worth noting that in Chapter IX we have proved that for programs and goals of NemoLOG there exists a uniform proof in the prefixed sequent calculus that we have defined. However, we do not know if such a kind of proof exists also for fragments of inclusion modal logics that are wider than the clausal fragment we have given. In particular, we refer to the possibility of extending our language allowing free occurrences of embedded implications in goals and clause bodies in the line of [Giordano and Martelli, 1994; Baldoni et al., 1997a]. The existence of a uniform proof would be a powerful tool to study a *goal directed* proof procedure for the extended language.
Appendix A

Some examples of translated NemoLOG programs

In this appendix we present some example of NemoLOG programs translated into standard Horn clause logic obtained applying the translation method defined in Section IX.4.

Before presenting the programs, it is necessary to give some more information. In particular, we have represented a sequence of modal operators by means of the list of labels of the modalities themselves. For example, the sequence \([animal][bird][tweety]\) is represented by \([animal, bird, tweety]\). Consequently, the operator “•” defined at page 98 is simply implemented by the predicate append/3, the concatenation relation for lists:

% The concatenation relation for lists.

append([], L2, L2).
append([X | L1], L2, [X | L]):-
 append(L1, L2, L).

In this way a translated clause would be of the form:

\[
A_0(X) :\neg \ derive(\Gamma_b, \Gamma_h, X, Y),
\]
\[
append(Y, \Gamma_{g_1}, Y_{g_1}), A_1(Y_{g_1}),
\]
\[
\ldots,
\]
\[
append(Y, \Gamma_{g_m}, Y_{g_m}), A_m(Y_{g_m})
\]

However, in order to simplify the form of a translated clause, we have chosen to move the append at the top of a predicate definition, before the call of the predicate derive/4. To do so we need to add another argument to all predicate definition:\footnote{Note that, in the programs presented in the following we use the predicate derive1/5 which performs the concatenation and derivation operations together.}

\[
A_0(X_1, X_2) :\neg \ append(X_1, X_2, X), derive(\Gamma_b, \Gamma_h, X, Y), A_1(Y_{g_1}, \Gamma_{g_1}), \ldots, A_m(Y_{g_m}, \Gamma_{g_m})
\]

The following predicate definitions are common to all programs.
% The membership relation.

member(X, [X | _]):-!.
member(X, [_ | List]):-
 member(X, List).

% The prefix relation. The element that forms the prefix
% must be among the ones which belong to a given set.

prefix_in([], _, _).
prefix_in([X | Prefix], [X | List], Set):-
 member(X, Set),
 prefix_in(Prefix, List, Set).

% The predicate derive/5 performs the concatenation of the
% lists X1 and X2 and the derivation operation returning
% the new context in Y.

derive1(Gamma_b, Gamma_h, X1, X2, Y):-
 append(X1, X2, Gamma),
 derive(Gamma_b, Gamma_h, Gamma, Y).

For each example in the following we show the “ad hoc” derive/4 predicate and the
translated program.

Program A.1 : Fibonacci numbers.

derive([], [], [], []).
derive([], [always | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [always, next]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, []).
derive([], [next | Gamma_h], [next | Gamma], []):-
 derive([], Gamma_h, Gamma, []).
derive([always | Gamma_b], Gamma_h, Gamma, NResult):-
 prefix_in(Prefix, Gamma, [always, next]),
 append(Prefix, Suffix, Gamma),
 derive(Gamma_b, Gamma_h, Suffix, Result),
 append(Prefix, Result, NResult).
derive([next | Gamma_b], Gamma_h, [next | Gamma], [next | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).

fib(X1, X2, 0):-
 derive1([], [], X1, X2, _).

fib(X1, X2, 1):-
 derive1([], [next], X1, X2, _).
fib(X1, X2, A):-
 derive([always], [next, next], X1, X2, Y),
 fib(Y, [], B),
 fib(Y, [next], C),
 A is B + C.

Program A.2 : Friends puzzle I and II.

derive([], [], [], []).
derive([peter], [john | Gamma_h], Gamma, [peter]):-
 prefix_in(Prefix, Gamma, [peter, john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([wife(peter)], [john | Gamma_h], Gamma, [peter]):-
 prefix_in(Prefix, Gamma, [wife(peter), peter, john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [peter, john | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [peter, john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [fool | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [fool, wife(peter), peter, john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [wife(peter), john | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [wife(peter), peter, john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [wife(peter) | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [wife(peter), peter]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [peter | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [peter]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([], [john | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [john]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).

derive([peter, john | Gamma_b], Gamma_h, Gamma, NResult):-
 prefix_in(Prefix, Gamma, [peter, john]),
 append(Prefix, Suffix, Gamma),
 derive(Gamma_b, Gamma_h, Suffix, Result),
 append(Prefix, Result, NResult).

derive([wife(peter), john | Gamma_b], Gamma_h, Gamma, NResult):-
 prefix_in(Prefix, Gamma, [wife(peter), peter, john]),
 append(Prefix, Suffix, Gamma),
 derive(Gamma_b, Gamma_h, Suffix, Result),
 append(Prefix, Result, NResult).

derive([fool | Gamma_b], Gamma_h, Gamma, NResult):-
A. Some examples of translated NemoLOG programs

\[
\text{prefix_in}(\text{Prefix}, \Gamma, [\text{fool}, \text{wife(peter)}, \text{peter}, \text{john}]),
\text{append}(\text{Prefix}, \text{Suffix}, \Gamma),
\text{derive}(\Gamma_b, \Gamma_h, \text{Suffix}, \text{Result}),
\text{append}(\text{Prefix}, \text{Result}, \text{NResult}).
\]

\[
\text{derive}(\text{wife(peter)} | \Gamma_b, \Gamma_h, \Gamma, \text{NResult}): -
\text{prefix_in}(\text{Prefix}, \Gamma, [\text{wife(peter)}, \text{peter}]),
\text{append}(\text{Prefix}, \text{Suffix}, \Gamma),
\text{derive}(\Gamma_b, \Gamma_h, \text{Suffix}, \text{Result}),
\text{append}(\text{Prefix}, \text{Result}, \text{NResult}).
\]

\[
\text{derive}(\text{peter} | \Gamma_b, \Gamma_h, \Gamma, \text{NResult}): -
\text{prefix_in}(\text{Prefix}, \Gamma, [\text{peter}]),
\text{append}(\text{Prefix}, \text{Suffix}, \Gamma),
\text{derive}(\Gamma_b, \Gamma_h, \text{Suffix}, \text{Result}),
\text{append}(\text{Prefix}, \text{Result}, \text{NResult}).
\]

\[
\text{derive}(\text{john} | \Gamma_b, \Gamma_h, \Gamma, \text{NResult}): -
\text{prefix_in}(\text{Prefix}, \Gamma, [\text{john}]),
\text{append}(\text{Prefix}, \text{Suffix}, \Gamma),
\text{derive}(\Gamma_b, \Gamma_h, \text{Suffix}, \text{Result}),
\text{append}(\text{Prefix}, \text{Result}, \text{NResult}).
\]

\[
\text{time}(X_1, X_2):
\text{derive}([], [], X_1, X_2, _).
\]

\[
\text{time}(X_1, X_2):
\text{derive}([\text{wife(peter)}], [], X_1, X_2, Y),
\text{time}(Y, [\text{peter}]).
\]

\[
\text{place}(X_1, X_2):
\text{derive}([], [], X_1, X_2, _).
\]

\[
\text{appointment}(X_1, X_2):
\text{derive}([\text{peter}, \text{john}], [], X_1, X_2, Y),
\text{place}(Y, []),
\text{time}(Y, []).
\]

\[
\%
\text{In the case of Friends puzzle II the relation appointment}
\%
\text{is defined by the following one:}
\]

\[
\text{appointment}(X_1, X_2):
\text{derive}([\text{fool}], [], X_1, X_2, Y),
\text{place}(Y, []),
\text{time}(Y, []).
\]

\[
\%
\text{Program A.3 : Bubblesort I.}
\]

\[
\text{derive}([], [], [], []).
\text{derive}([], [\text{export} | \Gamma_b], \Gamma, []):
\text{prefix_in}(\text{Prefix}, \Gamma, [\text{export}, \text{list}, \text{sort}]),
\text{append}(\text{Prefix}, \text{Suffix}, \Gamma),
\text{derive},[], [], \Gamma_h, \Gamma, [], []).
\text{derive}([], [\text{list} | \Gamma_b], [\text{list} | \Gamma], []):
\text{derive}([], \Gamma_h, \Gamma, [], _).
\text{derive}([], [\text{sort} | \Gamma_b], [\text{sort} | \Gamma], []):
\text{derive}([], \Gamma_h, \Gamma, [], _).
\text{derive}([\text{export} | \Gamma_b], \Gamma_h, \Gamma, \text{NResult})
prefix_in(Prefix, Gamma, [export, list, sort]),
append(Prefix, Suffix, Gamma),
derive(Gamma_b, Gamma_h, Suffix, Result),
append(Prefix, Result, NResult).
derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-
derive(Gamma_b, Gamma_h, Gamma, Result).
derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-
derive(Gamma_b, Gamma_h, Gamma, Result).

% module list.
new_append(X1, X2, [], X, X):-
derive1([export, list], [], X1, X2, _).
new_append(X1, X2, [A | B], C, [A | B1]):-
derive1([export, list], [], X1, X2, Y),
new_append(Y, [], B, C, B1).

% module sort.
busort(X1, X2, L, S):-
derive1([export, sort], [], X1, X2, Y),
new_append(Y, [list], C, [A, B | D], L),
B < A, !,
new_append(Y, [list], C, [B, A | D], M),
busort(Y, [], M, S).
busort(X1, X2, S, S):-
derive1([export, sort], [], X1, X2, _).

Program A.4: Bubblesort II.
derive([], [], [], []).
derive([], [export | Gamma_h], Gamma, []):-
prefix_in(Prefix, Gamma, [export, list, sort]),
append(Prefix, Suffix, Gamma),
derive([], Gamma_h, Suffix, _).
derive([], [list | Gamma_h], [list | Gamma], []):-
derive([], Gamma_h, Gamma, _).
derive([], [sort | Gamma_h], [sort | Gamma], []):-
derive([], Gamma_h, Gamma, _).
derive([export | Gamma_b], Gamma_h, Gamma, NResult):-
prefix_in(Prefix, Gamma, [export, list, sort]),
append(Prefix, Suffix, Gamma),
derive(Gamma_b, Gamma_h, Suffix, Result),
append(Prefix, Result, NResult).
derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-
derive(Gamma_b, Gamma_h, Gamma, Result).
derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-
derive(Gamma_b, Gamma_h, Gamma, Result).

% module list.
A. Some examples of translated NemoLOG programs

new_append(X1, X2, [], X, X):-
 derive1([export, list], [export], X1, X2, _).
new_append(X1, X2, [A | B], C, [A | B1]):-
 derive1([export, list], [export], X1, X2, Y),
 new_append(Y, [], B, C, B1).

% module sort.
busort(X1, X2, L, S):-
 derive1([export, sort], [export], X1, X2, Y),
 new_append(Y, [list], C, [A, B | D], L),
 B < A, !,
 new_append(Y, [list], C, [B, A | D], M),
 busort(Y, [], M, S).
busort(X1, X2, S, S):-
 derive1([export, sort], [export], X1, X2, _).

Program A.5: Bubblesort III and IV.

derive([], [], [], []).
derive([], [export | Gamma_h], Gamma, []):-
 prefix_in(Prefix, Gamma, [export, list, sort(_),
 ascending, descending, cartesian(_, _)]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).
derive([], [list | Gamma_h], [list | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [ascending | Gamma_h], [ascending | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [descending | Gamma_h], [descending | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [sort(X) | Gamma_h], [sort(X) | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [cartesian(X, Y) | Gamma_h], [cartesian(X, Y) | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([export | Gamma_b], Gamma_h, Gamma, NResult):-
 prefix_in(Prefix, Gamma, [export, list, sort(_),
 ascending, descending, cartesian(_, _)]),
 append(Prefix, Suffix, Gamma),
 derive(Gamma_b, Gamma_h, Suffix, Result),
 append(Prefix, Result, NResult).
derive([list | Gamma_h], Gamma_h, [list | Gamma], [list | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([ascending | Gamma_b], Gamma_h, [ascending | Gamma], [ascending | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([descending | Gamma_b], Gamma_h, [descending | Gamma], [descending | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([sort(X) | Gamma_b], Gamma_h, [sort(X) | Gamma], [sort(X) | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([cartesian(X, Y) | Gamma_b], Gamma_h, [sort(X) | Gamma], [cartesian(X, Y) | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
% module list.

new_append(X1, X2, [], X, X):-
 derive([export, list], [], X1, X2, _).
new_append(X1, X2, [A | B], C, [A | B1]):-
 derive([export, list], [], X1, X2, Y),
 new_append(Y, [], B, C, B1).

% module ascending.

ordered(X1, X2, A, B):-
 derive([export, ascending], [], X1, X2, _),
 A < B.

% module descending.

ordered(X1, X2, A, B):-
 derive([export, descending], [], X1, X2, _),
 A > B.

% module cartesian(Ord1, Ord2).

ordered(X1, X2, [A, B], [U, V]):-
 derive([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),
 ordered(Y, [Ord1], A, U).
ordered(X1, X2, [A, B], [A, V]):-
 derive([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),
 ordered(Y, [Ord2], B, V).

% module sort(Order).

busort(X1, X2, L, S):-
 derive([export, sort(Order)], [], X1, X2, Y),
 new_append(Y, [list], C, [A, B | D], L),
 ordered([export, sort(Order)], [Order], B, A),
 new_append(Y, [list], C, [B, A | D], M),
 busort(Y, [], M, S).
busort(X1, X2, S, S):-
 derive([export, sort(Order)], [], X1, X2, _).

Program A.6: Animal taxonomy I.

derive([], [], [], []).
derive([], [export | Gamma_h], Gamma_h, []):-
 prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),
 append(Prefix, Suffix, Gamma),
 derive([], Gamma_h, Suffix, _).
derive([], [animal | Gamma_h], [animal | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [horse | Gamma_h], [horse | Gamma], []):-
A. Some examples of translated NemoLOG programs

```
derive([], Gamma_h, Gamma, _).
derive([], [bird | Gamma_h], [bird | Gamma], []).:-
derive([], Gamma_h, Gamma, _).
derive([], [tweety | Gamma_h], [tweety | Gamma], []).:-
derive([], Gamma_h, Gamma, _).
derive([export | Gamma_b], Gamma_h, Gamma, NResult):-
  prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),
  append(Prefix, Suffix, Gamma),
  derive(Gamma_b, Gamma_h, Suffix, Result),
  append(Prefix, Result, NResult).
derive([animal | Gamma_b], Gamma_h, [animal | Gamma], [animal | Result]):-
  derive(Gamma_b, Gamma_h, Gamma, Result).
derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-
  derive(Gamma_b, Gamma_h, Gamma, Result).
derive([bird | Gamma_b], Gamma_h, [bird | Gamma], [bird | Result]):-
  derive(Gamma_b, Gamma_h, Gamma, Result).
derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-
  derive(Gamma_b, Gamma_h, Gamma, Result).

% class animal.

mode(X1, X2, walk):-
derive1([animal, export], [], X1, X2, _).
mode(X1, X2, run):-
derive1([animal, export], [], X1, X2, Y),
  no_of_legs(Y, [], X),
  X >= 2.
mode(X1, X2, gallop):-
derive1([animal, export], [], X1, X2, Y),
  no_of_legs(Y, [], X),
  X >= 4.

% class horse.

no_of_legs(X1, X2, 4):-
derive1([animal, horse, export], [], X1, X2, _).
covering(X1, X2, hair):-
derive1([animal, horse, export], [], X1, X2, _).

% class bird.

no_of_legs(X1, X2, 2):-
derive1([animal, bird, export], [], X1, X2, _).
covering(X1, X2, feather):-
derive1([animal, bird, export], [], X1, X2, _).
mode(X1, X2, fly):-
derive1([animal, bird, export], [], X1, X2, _).

% class tweety.
```
owner(X1, X2, fred):-
 derive([animal, bird, tweety, export], [], X1, X2, _).

Program A.7 : Animal taxonomy II and Humans.

derive([], [], [], []).
derive([], [animal | Gamma_h], [X | Gamma], []):-
 member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),
 derive([], Gamma_h, Gamma, _).
derive([], [bird | Gamma_h], [X | Gamma], []):-
 member(X, [bird, tweety]),
 derive([], Gamma_h, Gamma, _).
derive([], [horse | Gamma_h], [horse | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [tweety | Gamma_h], [tweety | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [human(S, A) | Gamma_h], [human(S, A) | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [human(male, 30) | Gamma_h], [X | Gamma], []):-
 member(X, [human(male, 30), peter]),
 derive([], Gamma_h, Gamma, _).
derive([], [human(female, 42) | Gamma_h], [X | Gamma], []):-
 member(X, [human(female, 42), jane]),
 derive([], Gamma_h, Gamma, _).
derive([], [human(male, 45) | Gamma_h], [X | Gamma], []):-
 member(X, [human(male, 45), john]),
 derive([], Gamma_h, Gamma, _).
derive([], [mathematician | Gamma_h], [X | Gamma], []):-
 member(X, [mathematician, john]),
 derive([], Gamma_h, Gamma, _).
derive([], [peter | Gamma_h], [peter | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [jane | Gamma_h], [jane | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([], [john | Gamma_h], [john | Gamma], []):-
 derive([], Gamma_h, Gamma, _).
derive([animal | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-
 member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([bird | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-
 member(X, [bird, tweety]),
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([human(S, A) | Gamma_b], Gamma_h, [human(S, A) | Gamma], [human(S, A) | Result]):-
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([human(male, 30) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-
 member(X, [human(male, 30), peter]),
 derive(Gamma_b, Gamma_h, Gamma, Result).
derive([human(female, 42) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-
 ...
A. Some examples of translated NemoLOG programs

\[
\text{member}(X, \text{[human(female, 42), jane]}), \\
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}). \\
\text{derive}(\text{[human(male, 45) | Gamma}_b\], \text{Gamma}_h, [X | Gamma], [X | Result]):-
\text{member}(X, \text{[human(male, 45), john]}), \\
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}). \\
\text{derive}(\text{[mathematician | Gamma}_b\], \text{Gamma}_h, [X | Gamma], [X | Result]):-
\text{member}(X, \text{[mathematician, john]}), \\
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}). \\
\text{derive}(\text{[peter | Gamma}_b\], \text{Gamma}_h, [peter | Gamma], [peter | Result]):-
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}). \\
\text{derive}(\text{[jane | Gamma}_b\], \text{Gamma}_h, [jane | Gamma], [jane | Result]):-
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}). \\
\text{derive}(\text{[john | Gamma}_b\], \text{Gamma}_h, [john | Gamma], [john | Result]):-
\text{derive}(\text{Gamma}_b, \text{Gamma}_h, \text{Gamma}, \text{Result}).
\]

% class animal.

\text{mode}(X1, X2, \text{walk}):-
\text{derive1}(\text{[animal]}, [], X1, X2, _).
\text{mode}(X1, X2, \text{run}):-
\text{derive1}(\text{[animal]}, [], X1, X2, Y), \\
\text{no_of_legs}(Y, [], X), \\
X \geq 2.
\text{mode}(X1, X2, \text{gallop}):-
\text{derive1}(\text{[animal]}, [], X1, X2, Y), \\
\text{no_of_legs}(Y, [], X), \\
X \geq 4.

% class horse.

\text{no_of_legs}(X1, X2, 4):-
\text{derive1}(\text{[horse]}, [], X1, X2, _).
\text{covering}(X1, X2, \text{hair}):-
\text{derive1}(\text{[horse]}, [], X1, X2, _).

% class bird.

\text{no_of_legs}(X1, X2, 2):-
\text{derive1}(\text{[bird]}, [], X1, X2, _).
\text{covering}(X1, X2, \text{feather}):-
\text{derive1}(\text{[bird]}, [], X1, X2, _).
\text{mode}(X1, X2, \text{fly}):-
\text{derive1}(\text{[bird]}, [], X1, X2, _).

% class tweety.

\text{owner}(X1, X2, \text{fred}):-
\text{derive1}(\text{[tweety]}, [], X1, X2, _).

% class human(S, A).
sex(X1, X2, S):-
 derive([human(S,A)], [], X1, X2, _).

age(X1, X2, A):-
 derive([human(S,A)], [], X1, X2, _).

no_of_legs(X1, X2, 2):-
 derive([human(S,A)], [], X1, X2, _).

likes(X1, X2, logic):-
 derive([human(S,A)], [], X1, X2, Y),
 sex(Y, [], male),
 age(Y, [], Ag),
 Ag < 40.

likes(X1, X2, logic):-
 derive([human(S,A)], [], X1, X2, Y),
 sex(Y, [], female).

likes(X1, X2, logic):-
 derive([mathematician], [], X1, X2, _).

likes(X1, X2, math):-
 derive([mathematician], [], X1, X2, _).
A. Some examples of translated NemoLOG programs
Index of Symbols

\[4M(t, t'), 12\]
\[4(t), 12\]
\[A, 12, 49, 82\]
\[A, 86\]
\[A\text{-downward satured}, 30, 51\]
\[A\text{-inclusion frame}, 15, 49\]
\[A\text{-mapping}, 28, 51\]
\[A\text{-satisfiable}, 28\]
\[A\text{-satisfiable in}, 16\]
\[A\text{-satisfiable under}, 28\]
\[A\text{-satisfiable with respect to}, 16\]
\[A\text{-valid in}, 16, 91\]
\[A\text{-valid with respect to}, 16\]
\[w \rho_w w', 21, 59\]
\[w \rho_{t,t'} w', 60\]
\[w \rho_{t,t'} w', 60\]
\[\alpha, 22\]
\[\alpha\text{-rule}, 23, 59\]
\[\alpha_1, 22\]
\[\alpha_2, 22\]
\[\text{[always]}, 15, 83\]
\[\land, 9, 45\]
\[a_w, 49\]
\[Ax, 82\]
\[[Ax], 84\]
\[BF(t), 46, 50\]
\[BF_t(t), 50\]
\[\beta, 22\]
\[\beta\text{-rule}, 23, 59\]
\[\beta_1, 22\]
\[\beta_2, 22\]
\[\perp, 119\]
\[B(P), 119\]
\[\bullet, 98\]
\[C, 84\]
\[C, 49\]
\[\cdot, 45\]
\[; , 53\]
\[\circ, 16\]
\[\{t; t'\}, 54\]
\[C^*, 84\]
\[DEFC, 82\]
\[\Delta, 90\]
\[\delta, 50\]
\[\delta_0(c), 50\]
\[\text{der}_G, 39\]
\[\vdash, 11\]
\[\implies Ax, 85\]
\[\implies Ax, 84\]
\[\text{derive}/4, 98\]
\[\implies G, 34\]
\[\implies G, 34\]
\[D, 46, 126\]
\[D_H, 128\]
\[Ds, 82\]
\[[Ds], 86\]
\[\varepsilon, 53, 81\]
\[\emptyset, 119\]
\[\varepsilon, 54\]
\[\equiv, 40\]
\[\{t\}, 10\]
\[\exists, 45\]
\[\text{[export]}, 106\]
\[F, 10, 21\]
\[FL(\varphi), 40\]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{for}]$</td>
<td>14</td>
</tr>
<tr>
<td>FOR</td>
<td>9, 46, 54</td>
</tr>
<tr>
<td>\forall</td>
<td>45</td>
</tr>
<tr>
<td>frame</td>
<td>10, 47</td>
</tr>
<tr>
<td>\mathcal{F}_L^A</td>
<td>10</td>
</tr>
<tr>
<td>\mathcal{F}^A_FO</td>
<td>47</td>
</tr>
<tr>
<td>$\mathcal{F}^A_FO^*$</td>
<td>49</td>
</tr>
<tr>
<td>\mathcal{F}_L^A</td>
<td>57</td>
</tr>
<tr>
<td>FUNC^n</td>
<td>45</td>
</tr>
<tr>
<td>\mathcal{G}</td>
<td>55</td>
</tr>
<tr>
<td>\mathcal{G}</td>
<td>86</td>
</tr>
<tr>
<td>\mathcal{G}-incestual frame</td>
<td>57</td>
</tr>
<tr>
<td>\mathcal{G}-satisfiable</td>
<td>57</td>
</tr>
<tr>
<td>\mathcal{G}-valid</td>
<td>57</td>
</tr>
<tr>
<td>\mathcal{G}-downward saturated</td>
<td>66</td>
</tr>
<tr>
<td>\mathcal{G}-mapping</td>
<td>65</td>
</tr>
<tr>
<td>\mathcal{G}-satisfiable</td>
<td>65</td>
</tr>
<tr>
<td>\mathcal{G}-satisfiable under</td>
<td>65</td>
</tr>
<tr>
<td>$\mathcal{G}^{a,b,c,d}$</td>
<td>12, 55</td>
</tr>
<tr>
<td>Γ</td>
<td>82</td>
</tr>
<tr>
<td>γ_i</td>
<td>50</td>
</tr>
<tr>
<td>Γ_b</td>
<td>86</td>
</tr>
<tr>
<td>Γ_h</td>
<td>86</td>
</tr>
<tr>
<td>$\gamma_0(c)$</td>
<td>50</td>
</tr>
<tr>
<td>$[\Gamma]_{Ax}$</td>
<td>85</td>
</tr>
<tr>
<td>$\mathcal{G}^{k,l,m,n}$</td>
<td>12, 55</td>
</tr>
<tr>
<td>GOAL</td>
<td>81</td>
</tr>
<tr>
<td>\mathcal{G}^{tr}</td>
<td>101</td>
</tr>
<tr>
<td>(V,T,P,S)</td>
<td>33</td>
</tr>
<tr>
<td>\mathcal{G}</td>
<td>89</td>
</tr>
<tr>
<td>$\Gamma_b(G \supset \Gamma_h A)$</td>
<td>86</td>
</tr>
<tr>
<td>I</td>
<td>54</td>
</tr>
<tr>
<td>$i: Ds$</td>
<td>91</td>
</tr>
<tr>
<td>$i: G$</td>
<td>91</td>
</tr>
<tr>
<td>\mathcal{I}_L</td>
<td>10</td>
</tr>
<tr>
<td>\mathcal{I}^A_L</td>
<td>12</td>
</tr>
<tr>
<td>$\mathcal{I}^A_FO^*$</td>
<td>49</td>
</tr>
<tr>
<td>$\mathcal{I}^A_FO^*$</td>
<td>49</td>
</tr>
<tr>
<td>\mathcal{I}_L^*</td>
<td>55</td>
</tr>
<tr>
<td>\triangleright</td>
<td>9, 45</td>
</tr>
<tr>
<td>INC</td>
<td>82</td>
</tr>
<tr>
<td>$</td>
<td>=_{A,H}$</td>
</tr>
<tr>
<td>i</td>
<td>21</td>
</tr>
<tr>
<td>\exists</td>
<td>119</td>
</tr>
<tr>
<td>I</td>
<td>119</td>
</tr>
<tr>
<td>(\exists, \subseteq)</td>
<td>119</td>
</tr>
<tr>
<td>\subseteq</td>
<td>119</td>
</tr>
<tr>
<td>IP^A_L</td>
<td>16</td>
</tr>
<tr>
<td>IP^A_FO</td>
<td>49</td>
</tr>
<tr>
<td>IP^G_L</td>
<td>57</td>
</tr>
<tr>
<td>$I(t,t')$</td>
<td>12</td>
</tr>
<tr>
<td>\mathcal{J}</td>
<td>46, 126</td>
</tr>
<tr>
<td>\mathcal{J}_H</td>
<td>128</td>
</tr>
<tr>
<td>\sqcup</td>
<td>119</td>
</tr>
<tr>
<td>K</td>
<td>12</td>
</tr>
<tr>
<td>$K(t)$</td>
<td>11</td>
</tr>
<tr>
<td>$K4$</td>
<td>12</td>
</tr>
<tr>
<td>$K4_n$</td>
<td>12</td>
</tr>
<tr>
<td>K_n</td>
<td>12</td>
</tr>
<tr>
<td>Kripke \mathcal{A}-interpretation</td>
<td>16</td>
</tr>
<tr>
<td>first-order</td>
<td>49</td>
</tr>
<tr>
<td>Kripke \mathcal{G}-interpretation</td>
<td>57</td>
</tr>
<tr>
<td>Kripke interpretation</td>
<td>10</td>
</tr>
<tr>
<td>first-order</td>
<td>46</td>
</tr>
<tr>
<td>$KT4$</td>
<td>12</td>
</tr>
<tr>
<td>LABELS</td>
<td>53</td>
</tr>
<tr>
<td>$L \land$</td>
<td>90</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>9, 54</td>
</tr>
<tr>
<td>$L(G)$</td>
<td>35</td>
</tr>
<tr>
<td>$L \exists$</td>
<td>90</td>
</tr>
<tr>
<td>\mathcal{L}_{FO}</td>
<td>45</td>
</tr>
<tr>
<td>\mathcal{L}^*_{FO}</td>
<td>49</td>
</tr>
<tr>
<td>$L \forall$</td>
<td>90</td>
</tr>
<tr>
<td>$L \supset$</td>
<td>90</td>
</tr>
<tr>
<td>$L \supset'$</td>
<td>92</td>
</tr>
<tr>
<td>$L[t]$</td>
<td>90</td>
</tr>
<tr>
<td>$L \neg$</td>
<td>90</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>\mathcal{M}_L</td>
<td>10</td>
</tr>
<tr>
<td>$M^{FL(\varphi)}$</td>
<td>40</td>
</tr>
<tr>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>I</td>
<td>28, 65</td>
</tr>
<tr>
<td>maximal $S^A_{\mathcal{E}}$-consistent, 17</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}^A_{\mathcal{E}}$, 17, 30, 51</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}^A_{\mathcal{E}x}$, 126</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}^S_{\mathcal{E}}$, 67</td>
<td></td>
</tr>
<tr>
<td>\cap, 119</td>
<td></td>
</tr>
<tr>
<td>$[m]$, 105</td>
<td>MOD, 9</td>
</tr>
<tr>
<td>$[,]$, 9, 45</td>
<td></td>
</tr>
<tr>
<td>$M^A_\mathcal{L}$, 16</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}_{\mathcal{E}FO}$, 47</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}^A_{\mathcal{E}FO}$, 49</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}^S_{\mathcal{E}}$, 57</td>
<td></td>
</tr>
<tr>
<td>NemoLOG, 81</td>
<td></td>
</tr>
<tr>
<td>$[next]$, 83</td>
<td>\neg, 9, 45</td>
</tr>
<tr>
<td>ν-rule, 23, 59</td>
<td>ν, 22</td>
</tr>
<tr>
<td>ν_0, 22</td>
<td></td>
</tr>
<tr>
<td>ω, 58, 121</td>
<td></td>
</tr>
<tr>
<td>\vdash_o, 86</td>
<td>\forall, 9, 45</td>
</tr>
<tr>
<td>$P(t, t')$, 12</td>
<td></td>
</tr>
<tr>
<td>P, 33</td>
<td></td>
</tr>
<tr>
<td>$p(t_1, \ldots, t_n)$, 46</td>
<td></td>
</tr>
<tr>
<td>P_w, 49</td>
<td></td>
</tr>
<tr>
<td>$(), 9, 45$</td>
<td></td>
</tr>
<tr>
<td>$[,]$, 9, 45</td>
<td></td>
</tr>
<tr>
<td>$\xi(w_0, w_n)$, 34</td>
<td></td>
</tr>
<tr>
<td>$\xi(w_0, w_n)$, 35</td>
<td></td>
</tr>
<tr>
<td>π-rule, 23, 59</td>
<td></td>
</tr>
<tr>
<td>π', 22</td>
<td></td>
</tr>
<tr>
<td>π'_0, 22</td>
<td></td>
</tr>
<tr>
<td>$PRED^a$, 45</td>
<td></td>
</tr>
<tr>
<td>$w : Z$, 21</td>
<td></td>
</tr>
<tr>
<td>$\alpha \rightarrow \beta$, 33</td>
<td></td>
</tr>
<tr>
<td>P, 82</td>
<td></td>
</tr>
<tr>
<td>$\langle Ds, Ax \rangle$, 82</td>
<td></td>
</tr>
<tr>
<td>P^r, 98</td>
<td></td>
</tr>
<tr>
<td>Q, 128</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}, 47, 126</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{R}^E_{\mathcal{L}}(\varphi)$, 40</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}, 54</td>
<td></td>
</tr>
<tr>
<td>$R \land$, 90</td>
<td></td>
</tr>
<tr>
<td>\rightarrow, 81</td>
<td></td>
</tr>
<tr>
<td>$R \exists$, 90</td>
<td></td>
</tr>
<tr>
<td>$R \forall$, 90</td>
<td></td>
</tr>
<tr>
<td>ρ-derives, 34</td>
<td></td>
</tr>
<tr>
<td>$(\rho(a))^*$, 58</td>
<td></td>
</tr>
<tr>
<td>ρ-rule, 23, 59, 90</td>
<td></td>
</tr>
<tr>
<td>ρ_α-rule, 59</td>
<td></td>
</tr>
<tr>
<td>ρ_β-rule, 59</td>
<td></td>
</tr>
<tr>
<td>$\uparrow_\mathcal{L}^A$, 90</td>
<td></td>
</tr>
<tr>
<td>$\downarrow_\mathcal{L}^A$, 91</td>
<td></td>
</tr>
<tr>
<td>$R \supset$, 90</td>
<td></td>
</tr>
<tr>
<td>$R[t]$, 90</td>
<td></td>
</tr>
<tr>
<td>$R\neg$, 90</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}_t, 10</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}_t-idealizable, 28, 65</td>
<td></td>
</tr>
<tr>
<td>S^4, 12</td>
<td></td>
</tr>
<tr>
<td>\models, 10</td>
<td></td>
</tr>
<tr>
<td>$\models_{\mathcal{L}}$, 16</td>
<td></td>
</tr>
<tr>
<td>$\models_{\mathcal{L}}$, 47</td>
<td></td>
</tr>
<tr>
<td>satisfiable, 10</td>
<td></td>
</tr>
<tr>
<td>$\models_{\mathcal{L}}$, 57</td>
<td></td>
</tr>
<tr>
<td>satisfiable in, 11, 48</td>
<td></td>
</tr>
<tr>
<td>satisfiable with respect to, 11, 48</td>
<td></td>
</tr>
<tr>
<td>S, 28, 65</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{S}_\mathcal{L}$, 11</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{S}_\mathcal{L}$-provable, 11</td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}^A, 12</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{S}^A_{\mathcal{L}}$-consistent, 17</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{S}^A_{\mathcal{L}}$-provable, 17</td>
<td></td>
</tr>
<tr>
<td>$\models_{\mathcal{SLD}}$, 101</td>
<td></td>
</tr>
<tr>
<td>S^{4n}, 12</td>
<td></td>
</tr>
<tr>
<td>\ast, 58</td>
<td></td>
</tr>
<tr>
<td>S, 33</td>
<td></td>
</tr>
<tr>
<td>$\varphi[t/x]$, 46</td>
<td></td>
</tr>
<tr>
<td>\sqsupset, 16</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{S}^S_{\mathcal{L}}$, 55</td>
<td></td>
</tr>
<tr>
<td>T, 12</td>
<td></td>
</tr>
</tbody>
</table>
Index of Symbols

\(T(t) \), 12
\(T \), 10, 21
\(T \), 33
\(T^A \)-provable, 24
TERM, 45
\(\Theta \), 90
\(T^A_{FD} \)-provability, 50
\(T^g \)-provable, 61
\(T_n \), 12
\(T^P \), 122
\(T^P(\bot) \), 122
\(T_P \), 120
\(T \), 81, 89

\(\cup \), 53
\([t \cup t'] \), 54
\([t] \), 10, 81
\([t] \varphi \), 12
\(U_P \), 120, 128

\(V \), 47, 126
\(V_H \), 128
\(V^{FL(\varphi)} \), 40
\(V \), 33
valid in, 11, 48
valid with respect to, 11, 48
\(V \), 10
VAR, 9, 45
\(\varphi_T(q) \), 35
\(\vdash_A \), 91
\(\vdash^A \), 94

\(\bar{w} \), 40, 59
\(W^{FL(\varphi)} \), 40
\(w \)-available, 50
\(w \)-parameter, 49
\(\mathcal{W}_C \), 21
\(\models_{AX} \), 120
\(W \), 10, 46, 126
\(w^t \), 17
\((w^t)^* \), 18

\(Z \), 21
Bibliography

Bibliography

Bibliography

