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Abstract 

This thesis presents the results of the research on the fields of security, privacy 

and authentication concerning specifically shared access to restricted data. Those 

fields are strictly related, as we will see in the following, to what we call 

irrefutable administration and its background. It is an interdisciplinary work, 

bringing together concepts belonging to research areas such as Computer 

Security, Network Security, Intrusion Detection Systems, Group Signatures and 

Secret Sharing.  

 

The work consists of four parts. In the first part (Chapter 1 and Chapter 2) we 

introduce the subject of the research and we present the state of the art related to 

our work. Each section here is related to a different technology underlying the 

present research, summarizing the main results related to the concepts our study is 

based on. This will not be a mere summing up, though, because we will try to 

draw attention to the relationships of the studied concepts with their 

corresponding use we’ve made of in the research. 

 

The second part, presented in Chapter 3, studies the concepts of secure 

logging related to what we call irrefutable administration, focusing on the 

research we’ve carried on. The concept is presented keeping in mind that the 

possible application is that of securely archiving log files related to systems 

administration with elusion/exclusion properties, enforced anonymity, privacy and 

security. 

 

As for the third part of the work, as mentioned before the research topics cover 

more than just one underlying technology, but the most important one concerns 

group signatures. In order to provide a functional framework where irrefutable 

administration can be built, we designed two solutions for group signatures, 

described in details in the third part of the thesis (Chapter 4). Those two solutions 

are based on different technologies and theoretical principles and suited to 

different needs of a complex system.  
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In the third part, Chapter 5, we present the implementation we’ve developed 

of a complex system for irrefutable administration, based on the solution 

described in the second part of this work (Chapter 3). Here we show how the 

concepts of securely archived encrypted log files, exclusion/elusion, single/group 

authorized access can be integrated in order to provide a working framework. 

 

Finally, the fourth part (Chapter 6) contains some conclusive observations and 

a summary of what has been done during the present research. A short summary 

of the improvements which could be applied on our current research is included, 

together with some reasoning on the ethical issues related to the field of 

irrefutable administration.



ACKNOWLEDGEMENTS 

xi 

Acknowledgements 

I wish to thank all the people who helped me out during these years spent at the 

Department of Computer Science of Turin. 

 

Andrea Nesta, my PhD colleague and friend tragically gone in a motorbike 

accident two years ago. Prof. Francesco Bergadano, my supervisor, for sharing his 

knowledge with me and for trusting me in more than one difficult situation. Dr. 

Davide Cavagnino, my supervisor and friend, for his support, encouragement and 

kindness – a big special thank goes to him. 

 

The whole Computer and Network Security Group: Francesco, Davide, 

Federica, Alessandro, Michele, Rossano, Giancarlo, Marco, Daniele, Giuseppe 

and all my friends and colleagues here at the Department for their kindness, 

honesty and cooperation. 

 

My family, for their constant love and support. My uncle Nino and my aunt 

Matilde, for their example of true love which goes beyond life and death. 

 

Samanta, for what she means to me and what – I hope ;-) – I mean to her. 

 

Kim, for his constant presence, unconditioned friendship and love. Whether 

they have two or four feet, friends are friends. 



ACKNOWLEDGEMENTS 

xii 



CHAPTER 1 – INTRODUCTION 

1 

Chapter 1 

Introduction 

Restricted data management is an ever-growing research and development area 

nowadays, mainly when it comes to standard use cases such as private documents 

protection for personal use, encrypted data sharing or digital signatures. It’s not 

hard to find resources on this subject: academic literature and software houses 

have been dealing with the matter of data protection through encryption for some 

years now, but mainly for what pertains to somehow “standard” situations. 

Companies like PGP Corporation [PGP05] offer solutions for data 

encryption/sharing commonly used as of now, and several products are available 

for free or for commercial use. On the other hand, the circumstances get different 

when the use cases diverge from the “standard” aforementioned ones, and the 

game gets enriched by factors such as: 

 

• Reserved data access with authorization for group of users instead of single 

users 

• Group signature of stored data, with signer’s anonymity and the possibility 

of addition/revocation of members from groups – but later identity 

escrowing 

• Secure data storing with tamper-evidence service (the possibility of 

detecting manumissions but also addiction/removal of data) 

 

A practical example – and a use case I will be focusing on throughout this 

dissertation – is that of log files (i.e. electronic archives which keep track of 

actions, operations and transactions taking place on a system) with the 

aforementioned characteristics, and with distinctive emphasis on security and 

privacy issues. When more entities are involved in the logging activity and a 

single logging facility is in use, it’s clear that more issues arise: access to records 

must be shared, granting anonymous logging and the possibility of escrowing 

(identity disclosure) in case of need. Therefore, besides encryption/decryption 
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issues we have in this case also the capabilities offered by techniques such as 

Secret Sharing and Group Signatures. 

 

Secret Sharing has been studied and used in the design of the framework 

presented in Chapter 3. We’ve seen different solutions, but Shamir’s proposal 

seemed to fit better to our context. Group Signatures have been deeply worked on. 

Two solutions have been devised that allow an entity to sign on behalf of a group, 

without revealing his identity, with the possibility of later revocation and group 

members addition. Chapter 4 describes those solutions, with their benefits, 

drawbacks and possible future improvements. From the research point of view, 

this thesis includes topics of relevant scientific interest. Secret Sharing and Group 

Signatures techniques are now a field widely explored but yet quite challenging. 

 

The originality if this work is contained both in the pure research areas – which 

can be inserted in a context of never-ending growth and with yet to be explored 

fronts – and in the practical possibilities emerged by the proposed solutions. The 

field of reserved data management – e.g. log files – offers several points of 

interest, mainly when it comes to those real systems which could benefit from 

such a research. 

 

As for applicative possibilities, several practical contexts offer the results of 

this research to be tested “for real”, in real systems. An exemplary application 

resulting from the research is that of irrefutable administration. In many 

applications there are contexts in which it is necessary to check and verify the 

operations performed by some entity (possibly an administrator) on another entity 

(possibly a computer system). For example, in industrial environments some jobs 

are sent in outsourcing to external companies; the operations performed by the 

external personnel should be controlled in some way, and at the same time, the 

privacy of the workers must be guaranteed, with the ability to verify and link, in 

case of necessity, the operations performed to the person who made them. This 

not only goes in favor of the company, but also of the worker who is therefore 

more guaranteed in his tasks. 

 

The different technologies used in this research have therefore been analyzed 

and opportunely mixed together in order to produce a framework which will grant 

the irrefutable administration of a remote system through a secure (and privacy-

aware) logging with shared access. Of course, the framework can be extended and 
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improved so as to grant much more than simply the administration of remote 

systems, in a way we will see in details in the following. 

 

That system which has been implemented is related to the previously 

mentioned context, where system and network administrators, administered 

systems and networks are managed in order to provide a secure and reliable 

auditing system. The main characteristics of this system are the ability of logging 

all the operations that occur in a complex environment, linking these operations to 

the entities involved (namely, the administrator of the system and the system 

itself), with the guarantees that: 

 

• the log does not immediately disclose its content, for privacy reasons (i.e. it 

is encrypted); 

• the log’s content may be examined only by the entities having the rights to 

perform this operation (i.e. only the authorized people, administrators or 

third parties, may decrypt the log entries content, with some defined 

modes); 

• log entries cannot be directly related to the entities that are involved in the 

activity described in the log entry itself; 

• the log cannot be modified without detection (i.e., if the log is modified this 

can be discovered by the auditors that will eventually check the content). 

 

The research has therefore many fields of application, where the main problem 

to be solved is the logging of some activity for a subsequent control by whom is in 

charge of monitoring, with some important warrantees on authentication, 

anonymity and group/single access. 
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Chapter 2 

State of the art 

2.1 Introduction 

The literature contains several technologies that can be used in order to build a 

secure storing of log data. This section will present the most widely known and 

the most efficient. Moreover, the main encryption algorithms will be presented 

and compared, giving a justification for the design choices made for the 

developed secure storing system presented as implementation to the current 

research in Chapter 5. 

In modern systems, it is becoming more important keeping log files to be able 

to track down the actions taken by a system, to trace the accesses (authorized or 

not) to a computer or, as in our case, to keep track of all the actions made by 

certain users. In some cases, it is necessary to store this information in a secure 

and confidential manner. 

The commonly used definition of log has been given by Ruffin [RUF95], 

which describes a log file as "a plain file where data are stored sequentially as 

they arrive, by appending them to the end of the file. When a problem arises in the 

system (e.g. a fault or an intrusion), the log is reread to find its source and/or to 

correct its consequences". The case we will examine uses a similar definition of 

log file. In fact, leaving the implementation details that force to consider the log 

file as a binary file containing the network dump, also in the case at hand the data 

is stored according to the arrival order. The usefulness of these data is to allow, 

later in time, the possibility to perform some analysis and investigations on them. 

Ruffin makes a detailed description of logs related to the use with DBMS, but 

he does not examine the requirement to avoid the manipulation of the log files 

made by unauthorized people. Given that in modern computing systems it is often 

necessary to keep the log files on untrusted machines, it is important that the log 

file be intrinsically secure to avoid that unauthorized persons access the logs (that, 

in general, may contain important and confidential data). 
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Some approaches have been developed to authenticate or certify the content of 

different types of log files, possibly of large size. [BCE02] and [BCN01] present 

some possible methods. 

Different approaches have been studied to authenticate or certify log files 

containing different kind of information and generally having a large size. In 

particular, we may cite [BCE02] which presents a technique that allows a third 

party to certify a large file without examining all the file content (to speed up the 

certification operation and/or to protect the privacy of the creator of the file), but 

simply examining a file sample (i.e. a small number of records). 

This approach intrinsically requires that the log file already exists to proceed to 

authenticate it. It is also interesting to examine methodologies that are capable to 

keep secure every single entry of a log file while it is being created. 

2.1.1 Systems using dedicated hardware 

The first techniques used to prevent the modification of log file entries were 

not based on cryptography, but instead they used dedicated hardware. Among 

these methods we may recall the expensive method of printing the log on 

hardcopy or, equally, recording the log on WORM (Write Once Read Many) 

devices (also in this case having poor performance). 

Obviously, these approaches are not tailored to the requirements of entities that 

should keep large amounts of log data for a long time. This is due to economic 

(costs of supports) and space (required for storing the supports) considerations, 

but also to system performance reasons. 

For these reasons, it is necessary to find solutions that, by means of 

cryptographic systems, make the modification of a log file impossible without 

notice. 

2.1.2 Systems based on cryptographic functions 

A first hypothesis on the possibility to detect log file modifications has been 

made in [BY97] by M. Bellare and B. S. Yee: they propose to authenticate every 

log file entry with a Message Authentication Code (MAC). 

A MAC, also known as a cryptographic checksum, is the output of a function 

that takes a message (in the case at hand, a log line) and a secret key as input; 

when verifying the authenticity of the MAC, the same function should be applied 

to the message and the secret key (thus the verifier must know the key used to 

generate the MAC). In general, MACs are computed using hash functions 

(HMAC is a function of this kind) or symmetric encryption algorithms (like DES-

CBC). 
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The system by Bellare and Yee does not avoid log file manipulation, but 

guarantees that if an entity takes control of the system on which the logs are 

stored at a certain time, and tries to modify the previously logged entries, then this 

action will not go unnoticed. This is possible because it is foreseen that the MAC 

key changes over time, without leaving information about older keys. To obtain 

this result, the first generated key (the only one that must not be deleted and that 

must be kept in a safe place) is used to authenticate the log entries in a first time 

period of fixed duration. When the time period expires, it is generated a new key 

using a pseudo-random non-invertible function starting from the previous key. 

The previous key is then removed from the system (except the very first one). 

It is easy to see that an intruder is not able to get the previous keys used to 

authenticate the entries. Thus, he is not able to modify the log file without notice 

by an authorized person (who knows the keys used to compute the MACs), 

because he cannot create a correct MAC for the modified entries. To avoid 

deletion or insertion of entries, it is necessary that the entries are sequentially 

numbered. 

The system described is secure with respect to many known attacks (assuming 

the use of a robust authentication function), and also prevents the chosen message 

attack, given that it destroys the keys as soon as they are no more needed. 

It is important to notice that if an adversary gains control of the system at time 

t, then from that moment there should be no confidence on the authenticity of the 

logs. Moreover, given that the log entries are not encrypted, the log file may be 

read (without detection) by any adversary. 

The problem of the authentication of single log file entries by means of 

cryptography has been faced also by B. Schneier e J. Kelsey in [SK98] and 

refined in [SK99a]; they built a method to make log files unreadable for those not 

having the rights to access and control them, and also to detect in a fast way if the 

log file has been corrupted or modified. 

In particular, the environment for which the method has been developed is 

composed by a computer U not sufficiently protected against an attack, that must 

keep the log files containing confidential information, and by a trusted computer 

T that must manage the security of the log files on U. By means of a few 

interactions between these two entities it is possible to prevent an adversary taking 

control over U at time t from reading the logs generated before t and from 

modifying the logs generated before t without being detected afterwards. 

Also in this case, the system does not prevent an attacker from tampering with 

the log file, but it allows detecting whether the log file has been modified in some 

way. As in the paper from Bellare and Yee (not cited in the bibliography of the 
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paper from Schneier and Kelsey), the security of the system is increased by 

changing over time the authentication and encryption keys; more precisely, a new 

key pair is created for every new log entry by applying a hash function to the 

previously used keys. Moreover, to avoid that the insertion or deletion of entries 

goes undetected, the various entries are sequentially concatenated by means of a 

hash chain. Consequently, it is signed the "ring of the chain" corresponding to 

each entry only, and not the entire entry. The security of the system is nonetheless 

maintained. 

Schneier and Kelsey give a detailed description of the system, showing the 

initial creation of the log file, the proper closing of it, and how to react to sudden 

shutdowns of the computer keeping the log file. 

Given that every entry of the log file has an associated type, the discussed 

papers describe a method for differentiating the access of auditors having different 

privileges. The auditors communicate exclusively with the trusted computer T to 

obtain an unencrypted entry to which they have access rights. This latter property 

has been studied in depth by Schneier and Kelsey in [SK99b]: in that paper they 

describe how to minimize the bandwidth required by an auditor to verify the 

authenticity of the entries, decrypt and read them. 

The main problem of this approach, related to the access of auditors to the data, 

is that it is the trusted computer T to decide whether an auditor may access the log 

entries. It would be nice if the access rules could be enforced during the 

encryption phase instead, for example using different encryption keys for different 

auditors. In this way, even gaining control over T, it would be impossible for 

auditors to see entries, except for the ones they have authorization. On the other 

hand, even if T is a trusted machine, it would be useful to find methods that do not 

need critical nodes from the security viewpoint. 

The system described by Schneier and Kelsey has been patented in [SK99c]. In 

that patent it is introduced the possibility (not described in detail) to use 

asymmetric key algorithms for the encryption. The use of asymmetric encryption 

was not examined in their previous papers. 

One of the targets studied in this research is strictly related to the results 

presented in the papers from Schneier and Kelsey; in fact, the system we will 

discuss has some common ideas with the one just described. Nonetheless, 

important functionalities and characteristics will be added to increase the security 

and flexibility of the overall system. 

In 2002 C. N. Chong, Z. Peng and P. H. Hartel analyze the study from Schneier 

and Kelsey, and describe a possible implementation in [CPH02]. The system they 

describe is based on the use of a tamper-resistant hardware (iButton) that 
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generates and stores the secrets, avoiding to leave this critical duty to an untrusted 

computer (as was happening in the model described by the two previously cited 

authors). 

Recently B. R. Waters, D. Balfanz, G. Durfee and D. K. Smetters [WBD04] 

made a new study on secure audit log. The problem they want to solve is to create 

an encrypted log that could be searched using some keywords. The approach 

followed to encrypt and link the log entries is very similar to the method proposed 

by Schneier and Kelsey; the main difference is that this method extracts some 

keywords from the data to be logged before they’ll be encrypted. An auditor 

willing to search for some data has to send a keyword to a centralized trusted 

element; on the basis of the element’s authorization policy such element may 

grant him the necessary information to reconstruct a key to be used for decrypting 

the data itself. In this paper it is not discussed how keywords could be extracted 

from raw data. 

2.2 Hash functions and hash chains 

From the just presented state of the art section on secure storing of log files, it 

may be seen the particular importance of hash functions and hash chains when 

looking for a safe method to record data. Consequently, it is useful to describe the 

most widely known and most efficient methods for creating hashes. 

A hash function is a mapping from an arbitrary long data to a fixed length 

code, the so called "hash code". The implementation, be it hardware or software, 

shall compute the hash in a fast manner. The other constraints of a hash function 

are: a) to be non-invertible (i.e. one way); and b) to be collision-resistant (i.e. it is 

computationally hard to find a pair of values having the same hash value). 

There are many algorithms that are used to implement a hash function. They 

have become, thanks to their characteristics, widely accepted standards. We recall 

here the most widely known and used today, namely MD5, SHA-1 and RIPEMD-

160. 

MD5 was invented by Rivest and is published in RFC1321. It produces a 128 

bit hash code in 64 steps only. This algorithm has been used for years, but given 

the today available computers, a 128 bit hash code should not be considered 

sufficient. Moreover, some famous researchers of RIPE (European RACE 

Integrity Primitives Evaluation) have shown that it is relatively easy to find a 

collision for MD5. 

For these reasons, those researchers developed a project in [BDP97] providing 

a more robust hash function, called RIPEMD-160, derived from MD5. This new 
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function solves both the problems related to collisions and to brute-force attacks, 

given that the digest produced by the function is 160 bit long. 

Some years before, the National Institute of Standards and Technology (NIST) 

publishes in [NIST95] the definition of the algorithm SHA-1. This algorithm 

outputs a 160 bit hash in few computation steps, being very fast. SHA-1 seems to 

be also collision-resistant. Recently, a 160 bit hash seems to be inadequate for 

some possible attacks; for this reason, the NIST has published in [NIST02] the 

algorithms SHA-256, SHA-384 and SHA-512, that are able to produce hashes of 

length 256, 384 and 512 bit respectively. 

After having presented the characteristics of the most widely known hash 

functions, it is possible to analyze the main advantages deriving from the use of 

hash chains, namely the speed at which can be computed (both when generating 

and when verifying) and the unfeasibility to insert, delete or modify elements of 

the chain without this being detected with a rapid analysis. 

Hash chains have been introduced for the first time by L. Lamport in 

[LAM81], using them for authentication systems based on one-time passwords. In 

particular, the idea in [LAM81] is to generate, from a known password, a chain of 

hashes, and to use the sequence of hashes in reverse order as a set of keys. Each 

key will be used for a single access. The advantage of this approach resides in the 

fact that not all the passwords are to be stored, but only the origin of the chain (i.e. 

the password known to the two parties)and a counter that keeps track of the 

number of accesses. The speed of computation of a hash function allows to 

calculate many rings of the chain without introducing large delays. 

The idea from Lamport, thanks to its efficiency and effectiveness, has been 

applied in many contexts; besides the application in the context of secure logging, 

we may recall the novel system proposed by F. Bergadano, D. Cavagnino and B. 

Crispo in [BCC01], in which hash chains are used to authenticate a stream of data. 

2.3 Symmetric key encryption 

The requirement to encrypt large quantities of data has brought, in the latest 

years, to the development of many different cryptographic systems. Some of these 

systems may be useful for encrypting log files, thus in this section will be 

presented the main symmetric encryption algorithms, namely systems that use the 

same key for encrypting and decrypting data. 

The main advantage of symmetric encryption systems is the speed at which can 

be made encryption and decryption of data. This is different from the less 

performing asymmetric encryption systems which will be discussed later. 
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There exist two categories of symmetric ciphers, namely block ciphers and 

stream ciphers. Block ciphers subdivide data into blocks of fixed size and then 

encrypt the single blocks. Stream ciphers can encrypt single bytes or even single 

bits. Given that block ciphers obtained a greater success with respect to stream 

ciphers, in the following will be discussed only the former type. 

The most known symmetric encryption algorithm is DES (Data Encryption 

Standard), standardized by NIST in 1977, and improved until the latest definition 

in [NIST99]. DES is a block cipher that employs a 56 bit key. The encryption 

process is made up of 16 rounds, thus the key is used to generate 16 subkeys of 48 

bits each, and every subkey is used in a different round. The DES encryption and 

decryption phases are similar; in fact the same algorithm is used for both 

operations, only subkeys are used in reverse order in the decryption operation. 

DES has represented for many years the most secure and fastest encryption 

algorithm. But with the increased computing power of machines, this algorithm 

has become obsolete both because it uses a too small key (exposing it to brute-

force attacks) and because the encryption of two equal blocks with the same key 

produces the same encrypted text. The latter point exposes he result to possible 

encrypted text analyses. 

For the previous reasons, evolutions of DES have been developed. One of the 

most important is DES-CBC, which is based on the use of an encrypted block to 

modify the following block to be encrypted. This method is known in general as 

CBC, Cipher Block Chaining, and is widely used in many symmetric ciphers. 

Another important and widely used DES evolution is Triple DES. The name 

itself suggests the working of the algorithm that applies three times the encryption 

using two or three different keys. This leads to key length of 112 and 168 bits. 

At the same time DES improvements were proposed, some other algorithms 

were developed in order to substitute it. Among them, we may cite IDEA that uses 

128 but keys and block size 64 bits. 

A very interesting symmetric encryption algorithm is Blowfish, developed by 

B. Schneier [SCH94]. Its main features are its speed, its low memory 

requirements (about 5 Kbytes), the simplicity of the system (that allows easy and 

efficient implementations) and the possible use of different key lengths. In 

particular, Blowfish works on 64 bit blocks, and may use keys of length from 32 

bits to 448 bits, in steps of 32 bits. This allows for a high flexibility on the degree 

of security one may need. Probably Blowfish is the most adaptable, efficient and 

fast encryption algorithm. It is also strong against brute force attacks, when using 

sufficiently log keys (more than 128 bits). 
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The last algorithm we will analyze is the one proposed by J. Daemen e V. 

Rijmen in [DR00] and named Rijndael. This algorithm is important because it has 

been chosen by NIST as the actual encryption standard [NIST01] with the name 

of AES (Advanced Encryption Standard). The reasons for which it has been 

chosen as a standard reside in its security due to the block size it uses (128 bits, 

and a bigger block size means a bigger difficulty in making an analysis of the 

encrypted text) and to the possibility of using keys of different lengths. AES 

allows key of length 128, 192 or 256 bits. Moreover, even if it is not as fast as 

Blowfish, it has good performance and efficiency. 

2.4 Public key cryptography 

The development of public key cryptographic systems represents one of the 

bigger innovations in the field of computer security. In fact these systems do not 

base their strength on substitution and permutation of bytes, as in symmetric 

ciphers. Instead, they use mathematical properties of wisely chosen functions, and 

require two different keys to be used, one for encrypting and one for decrypting 

the data. It is this latter property that lead to their name of asymmetric ciphers. 

The main characteristic of these systems is that even knowing one of the two 

keys, it is impossible to determine the other one. This allows distinguishing the 

two keys, having a public key known by everyone, and a private key that must be 

kept secret by its owner. 

This approach to cryptography gained a great success and has a widespread 

use, but has never substituted the symmetric cryptography systems. This is mainly 

due to the fact that the encryption and decryption operations with asymmetric 

systems are slower than the corresponding symmetric ones. 

The first public key encryption system has been proposed by W. Diffie and M. 

Hellman, which in 1976 published in [DH76] the first mathematical formalization 

of a cryptographic system using asymmetric keys. This system is useful for the 

exchange of symmetric keys between two entities. The security of the system is 

based on the difficulty of the prime number factorization of large numbers and in 

the properties of modular arithmetic. 

The first block cipher that uses asymmetric keys has been proposed in 1978 by 

R. Rivest, A. Shamir and L. Andelman in [RSA78], with the name RSA. Until 

today, this is the most widespread and used public key cryptosystem, given that it 

guarantees a high level of security. Also in this case the strength of the method is 

given by the difficulty of the factorization of a large number in primes. Moreover, 
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the use of keys of large length (1024 or 2048 bits) makes impossible attacks based 

on exhaustive search. 

The encryption of a message through RSA is made using the public key of the 

recipient; in this way, only the recipient is able to decrypt the message with his 

own private key. 

Another interesting thing to note is the use of the RSA algorithm for digitally 

signing messages. In this case the signer encrypts a message digest with his 

private key. Anyone will then be able to verify the integrity of the message and 

the signer of the message, using the sender's public key. 

RSA is not the only one public key cryptosystem. There is at least another 

approach, less known but more efficient from a computational viewpoint, named 

elliptic curves. The algorithms of this family have the great advantage that even 

using shorter keys (less than 300 bits), allowing for faster computations, they have 

a great degree of security. The main disadvantages are a more complex 

implementation and a more difficult mathematical analysis. Furthermore, the large 

diffusion of RSA has increased the users' degree of confidence in this algorithm, 

slowing the diffusion of other systems. 

2.5 Secret sharing 

It would be too limiting to study the techniques for making a log file 

inaccessible only. In fact, it is important to study also the methods that allow the 

auditing of the logged data. 

In this case it is necessary to allow for diverse kind of accesses to different 

auditors having different privileges in the visualization of the information. 

Furthermore, it is also important to allow the access to some kind of data only to a 

group of cooperating auditors. According to the requirements just presented, some 

proposals on secret sharing will be discussed. Secret sharing means the possibility 

to recreate a secret only with the collaboration of many people, each one owning a 

part of this secret. 

G. R. Blakley was the first to design in [BLA79] an abstract model useful for 

the sharing of a secret. His target was to find a method for keeping a copy of 

cryptographic keys avoiding to give many people the knowledge of the complete 

secret. With this aim, Blakley identifies a method based on some geometry 

elements. In the following a simple example will present this technique. 

Let’s see an example of this method from [MOV96]: suppose we want to share 

a secret among n parts, requiring at least 3 to reconstruct it. Suppose also that the 

secret may be represented as a point into the three dimensional space. Now, build 
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n non-parallel planes such that the intersection of any two planes defines a straight 

line, whilst the intersection of any three planes defines the point representing the 

secret. Thus, having any three out of n parts (i.e. three persons of the group put 

their secrets together) it is possible to discover the secret. 

A generalization of this scheme is possible, thinking of m-dimensional spaces. 

In this case, the cooperation of m users will allow the reconstruction of the secret. 

Almost at the same time as Blakley, A. Shamir presents in [SHA79] the 

possibility to share a secret among n individuals requiring m of them to recover 

the secret. His idea seems straightforward, and also effective and efficient. He 

presents in his short paper a still used solution to the problem, applying 

polynomial interpolation and some mathematical principles. The solution 

proposed assumes that the secret to be shared can be represented as a number. 

Let's call this secret D, and let's build a polynomial Q having degree m-1 and 

known term D. 

 

 
 

Figure 2-1: The polynomial Q 

 

Let's call Di the evaluation of Q in i, i.e. D1=Q(1), ..., Di=Q(i), ..., Dn=Q(n). 
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Figure 2-2: Evaluations of the polynomial Q 

 

It may be shown that, knowing m different evaluations (not necessarily sorted 

in ascending order), it is possible to interpolate the unique polynomial of degree 

m-1 and constant term D. It may also be demonstrated that the use of less than m 

evaluations makes it impossible to uniquely determine the shared secret. This is a 

protection against small group members collusions. In the same paper, Shamir 

develops improvements to show a computationally efficient solution, basing the 

operations on modular arithmetic. The modulus to be used is a prime p greater 

than D and n. 

The solution proposed by Shamir is intrinsically flexible to changes in the 

parameters n and m. Moreover, it allows to distinguish among group members, 

giving more priority to some members assigning them more than one different 

evaluation of the polynomial. 

The ideas from Shamir and from Blakley have represented for many 

researchers a motivation to start a deeper analysis of this problem. In fact, many 

papers have been published on this topic, giving ideas on possible optimizations, 

on effective variants or solutions having a lower computational cost. Furthermore, 

investigations have been made on possible applications of this protocol. 

2.6 Group signatures 

The concept of group signatures was introduced in 1991 by Chaum and Van 

Heyst [CHVH91]. In that paper the authors propose four different group signature 

schemes. The first one provides unconditional anonymity, while the others 

provide only anonymity under the computational constraint. One thing to note is 
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that it is not always possible to add new members to the group, and in some 

schemes the group manager needs to contact the group members to open a 

signature. Chaum and Van Heyst [CHVH91] introduced the notion of group 

signature that allows the members of a group to sign data on behalf of the group, 

in such a way that: 

 

• only group members can sign messages; 

• anyone is able to verify the validity of a group signature, but he is not able 

to know the identity of the signer 

• in case of dispute, it is possible to “open” (with or without the cooperation 

of the group members) the signature to reveal the identity of the person that 

signed on behalf of the group; 

 

In their paper are presented four schemes that satisfy the previously cited 

conditions; the proposed schemes are not all based on the same cryptographic 

assumptions. The same may be found analyzed in detail in [KPW96]. In some 

schemes it is necessary a centralized entity during the setup only; in other 

schemes every member may create autonomously his group. 

 

Another strong evolution is represented by the work of Camenish and Michels 

[CS97] that presents one of the best known schemes whose strength may be 

shown under a strong cryptographic assumption. More work has been made by 

Ateniese et al. in [ACJT00] as a prosecution of [CS97] with improvements in the 

security and efficiency. 

A big part of the proposed schemes have a signature length and/or a group 

public key size that depend on the group size: obviously these solutions are not 

adapt for large groups. Camenish has proposed some alternatives having fixed 

signature length and fixed group public key. These alternatives have been worked 

on by Ateniese et al. as previously said. Many other solutions having fixed 

signature size and fixed group size have been proposed, but most of them 

[ACJT00] revealed not provably secure (or not secure at all) or extremely 

inefficient. 

 

In [ACJT00] the proposal in [CS97] was improved by making it more secure 

and efficient, keeping the mathematical principle on which it is based similar. 

With respect to [CS97], [ACJT00] uses a more efficient JOIN method for new 

members, and uses a registration protocol statistically zero-knowledge regarding 

the group member’s secrets. By contrast, in fact, Camenish required the new 
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member send to the group manager a product of his secret (a prime number with a 

particular form) and a random prime number; this system may be attacked, as 

shown by Coppersmith [CO96]. 

Ateniese emphasizes how the system in [ACJT00] (defined by him as 

belonging to “Class II”) has fixed size public key and signatures. Nonetheless, 

that system lacks a good support to the revocation of members, and the paper 

discusses the issue only in the conclusions. Ateniese proposes an extension to the 

scheme towards a separation of works between a membership manager and a 

revocation manager. The revocation issue is deeply discussed in the paper 

[AST02], in which a CRL for the revocation of members is added to the signature 

scheme presented in [ACJT00]. The main disadvantages of that solution are that 

the CRL has a size proportional to the number of revoked members and the 

efficiency of the algorithm suffers for the double discrete logarithm operation 

needed for every signature. 

 

Going back to the solutions proposed by Chaum, it may be observed that those 

schemes are inefficient due to the signature size that increases linearly with the 

number of group members. Moreover, adding new members requires, as most of 

the schemes proposed so far, a modification in the group public key. In 1997 

Camenish and Stadler [CM98a] proposed a method that has a constant size for 

both the signatures and the group public key, using a normal signature scheme, a 

probabilistic encryption system semantically secure and a one-way function. With 

respect to the revocation, it is only mentioned the possible extension of splitting 

the different roles of the group manager, for example to a membership manager 

and a revocation manager: the first one manages the insertion of new members, 

the second ones deals with signature opening and revocation. In a similar way the 

problem is dealt with by Ateniese, Camenisch, Joye and Tsudik in [ACJT00]. 

Identity revocation (or group member elimination) [BRS01] is therefore a 

critical problem. Ateniese and Tsudik [AT99] have shown how CRLs (Certificate 

Revocation Lists) are not a good method for groups. They gave the following 

reasons: firstly, as group signatures are based on techniques for anonymity and 

unlinkability of signatures, a signature made (illegally) by a revoked member may 

be discovered only by the group manager, through signature opening, and this is 

not practical. Secondly, if the central authority reveals some secret information on 

a revoked member, to immediately notice more signature misuses, then the 

anonymity and the unlinkability of his previous signatures cannot be maintained. 

Thirdly, the decision to modify the group public key is not desirable in large 

groups, or in groups with frequent member turnover. Bresson and Stern [BRS01] 
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have partially solved the problem inserting revocation information in the group 

signatures. The disadvantage is that in every change in the group size, the 

signatures increase in size (therefore not having a constant size). 

As previously said, Ateniese has proposed [ACJT00] a solution to the 

revocation that uses a CRL. When a member performs a group signature, then he 

must prove not to belong to that CRL. 

Another problem about revocation is that no information should be disclosed 

on previous signatures of revoked members. If revoked members may still be able 

to sign, it is necessary – to preserve anonymity and unlinkability – that no secret 

information on revoked members is disclosed. 

 

What is needed by a group signature scheme is the ability to immediately 

revoke group members. This means that revoked members must not be able to 

sign on behalf of the group since the very moment in which they have been 

removed the group member list. In the solution proposed by Ding, Tsudik and Xu 

in [DTX04] the revocation of a group member is immediate; thus, he is no more 

able to sign after being removed from the group member list. 

 

Another scheme based on accumulators has been proposed by Camenish and 

Lysyanskaya [CL02]. Their solution uses dynamic accumulators (that allow 

efficient authorization-proofs) together with the scheme by Ateniese et al. 

[ACJT00] (the latter gives efficient ownership-proofs). The concept of dynamic 

accumulator introduced in [CL02] is a variation of the accumulator proposed by 

Baric and Pfizmann [BP97]. The scheme allows a group member to produce a 

simplified authorization proof, that is, having the property that the complexity of 

the signature verification and group membership verification are independent 

from the number of currently revoked group members or total group members. 

The solution presented by Baric and Pfizmann in [BP97] is a generalization of the 

work by Benaloh and De Mare with their one-way accumulator presented in 

[BM94].  
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Chapter 3 

Secure logging for irrefutable administration 

This chapter presents our results on the subject of secure logging, converging 

in the newly born concept of irrefutable administration. Some possible 

approaches are analyzed, in order to converge into a framework which allows the 

logging of system administration with the constraints of privacy, authentication 

and anonymity mixed to some warranties about the revelation of the identity of 

the administrator. Let’s see in details, in the following, what those concepts mean. 

3.1 Introduction 

In many applications there are contexts in which it is necessary to check and 

verify the operations performed by some entity (possibly an administrator) on 

another entity (possibly a computer system). For example, in industrial 

environments some jobs are left in outsourcing to external companies; the 

operations performed by the external personnel should be controlled in some way, 

and at the same time, the privacy of the workers must be guaranteed, with the 

ability to verify and link, in case of necessity, the operations performed with the 

person who made them. 

 

The system proposed in the present chapter is related to the previously 

discussed context, considering system and network administrators, administered 

systems and networks, with the objective of giving a secure and reliable auditing 

system. The main characteristics of this system are the ability of logging all the 

operations that occur in a complex environment, linking these operations to the 

entities involved (namely, the administrator of the system and the system itself), 

with the guarantees that: 

 

• the log does not immediately disclose its content (for privacy reasons), i.e. 

it is encrypted; 



CHAPTER 3 – SECURE LOGGING 

20 

• the log’s content may be examined only by the entities having the rights to 

perform this operation (i.e. only the authorized people, administrators or 

third parties, may decrypt the log entries content, with some defined 

modes); 

• log entries cannot be directly related to the entities that are involved in the 

activity described in the log entry itself; 

• the log cannot be modified without detection (i.e., if the log is modified this 

can be discovered by the auditors that will eventually check the content). 

 

The ideas presented in this chapter have many fields of application, where the 

main problem to be solved is the logging of some activity for a subsequent 

control. The discussion is organized as follows: section 3.2 presents the terms of 

the problem and foresees some solutions, deeply discussed in section 3.3. Section 

3.4 shows some characteristics of the solution we propose, whilst section 3.6 deals 

with the specific problem to allow to a set of users the access to a log line. 

3.2 Preliminary considerations 

In our approach we consider a log file as a journal in which information 

coming from various activities is stored in a set of lines; each line refers to a 

particular event of interest in each activity. We do not consider the physical 

implementation, and refer to the definition given in [RUF95]. 

The environment of our system is composed by administrators that perform 

activities on objects: these activities are logged by an entity. The job of this entity 

is to ensure that the content of parts of the log file is available only to the 

authorized people (auditors) and that this content cannot be modified without 

detection. We want to propose a method where there is no need for a centralized 

element that authorizes any new people to access a previously produced log entry. 

The set of people which is authorized to access stored data has to remain the same 

as it was when a log entry was produced. In the following we discuss techniques 

that can be used to obtain these objectives. 

The first consideration relates to data encryption. The objective of data 

encryption is to allow the access to particular data only to set of users. This set 

may change for every logged line. Moreover, it must be possible to allow access 

to groups of users in which the presence of at least n users over N is required to 

reveal the content of a line. The chosen approach is to encrypt each line with a 

different key. This key is generated automatically by the system, and access to 
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this key is given according to the kind of access we want for each user, in a 

exclusion/elusion strategy for the log file auditing that will be presented later. 

Another goal of the system we propose is to ensure that the file cannot be 

altered without possible successive detection by a verifier. Thus, one objective is 

to avoid data forging. A solution to this requirement is to use a hash chain. A hash 

chain keeps the log lines linked, in the same order they were originally written, 

and prevents the insertion of a line between two other lines. One of the first 

proposals of the use of chains to connect a sequence of data is presented in 

[LAM81]. [BCC01] use a hash chain to link a set of data transmitted in streaming; 

in that paper the point that remains to be solved is how to make sure that the last 

element of the chain is not modified. 

3.3 Possible approaches 

As previously seen, for privacy reasons the data section of the log line is 

encrypted [BCD+04] with a randomly generated key. To record this random key 

for later use in auditing, we consider two possible approaches: 

 

a. Each auditor has his own symmetric secret key: the system encrypts the 

random key for each auditor with his secret key; 

b. Each auditor has his own pair of asymmetric public/private keys: the 

system encrypts the random key for each auditor with his public key. The 

auditor will use his private key to decrypt the random key and access the 

log line data; 

 

The approach of directly encrypting the log line data with the auditor’s public 

keys was considered, but discarded due to the computational complexity of the 

asymmetric encryption and the amount of data that were required to be encrypted 

and stored. 

Let’s see the structure of the log lines in the two cases a. and b. The index i 

runs over the log lines; k is an index that runs over the identifiers of the entities 

involved in the logged transaction, and j indexes the various auditors. (In this 

example of line structure, auditors from 0 to j-1 have access to the line content, 

auditors from j to n have not. This will become clearer throughout the rest of the 

chapter.) 
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Notice, in the preceding lines, that some parts are underlined whose particular 

functions will be discussed deeply. In the following the meaning of the various 

parts is presented: 

 

• iTS is the timestamp issued by a Time Stamping Authority
1
 or it is a 

timestamp assigned by the system. If a Time Stamping Authority comes 

into play, then TSi is calculated on the result of an hash function (e.g. like 

SHA-1 [NIST95]) applied to Si-1
2

 concatenated with all of the data in Li 

except TSi, HCi and Si. It may express the time of logging or the time of the 

reception of the line. Both are possible approaches. Even if the data 

contained in the log line already contains a timestamp, TSi may be useful 

for some cross checks on the data.  

• kU is a set of data related to the log entry; in our environment it represents 

the identifier of the user (i.e. the administrator) that generated the data in 

the log line, along with an identifier of the administered system. As for the 

responses from the systems, this may be an identifier of the system and of 

the user to whom this response is sent. In order to enforce the secrecy of 

this field the method proposed in [WBD04] could be used. 

• iλ represents the length of data in cryptographic blocks. 

• iD  are the data to be logged for the i-th line. 

• iA  is the symmetric key, randomly generated, used to encrypt the data of 

the i-th log line. 

                                                 
1
 The decision about whether and how often a Time Stamping Authority has to be involved 

must be made according to the effectiveness of the vulnerability and threats associated with the 

system.  
2
 This field prevents an attacker that obtains B

-
 at a certain point in time from being able to 

successfully forge any previously stored log lines.  
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• nKK ...0  are the auditor’s secret keys, used in the approach a. that uses 

symmetric encryption of Ai. 

• ++

nKK ...0 are the auditor’s public keys, used in the approach b. that uses 

asymmetric encryption of Ai.  

• nRR ...0  are random values used to preserve the elusion property we will 

discuss in a following section. 

• )(yEx represents a symmetric encryption function that uses the key x to 

encrypt data y; it returns the encrypted data. A good candidate function 

could be AES [NIST01]. 

• )(y
x

+α  represents an asymmetric encryption function that uses the key x
+
 

to encrypt data y; it returns the encrypted data. A function that may be used 

is RSA [RSA78]. 

• )(xH  is a one-way hash function (like SHA-1 [NIST95]). 

• iHC  is the element of the hash chain for the i-th log line (see below). 

• iS is the signature of the element of the hash chain, that is, it corresponds to 

)/( iHCBSign
− , that is the function of digital signing iHC  with the 

logging system private key B
-
; it returns the signature. Functions that may 

be used are, for example, RSA [RSA78] or DSA [NIST94]. 

 

Let’s see how the element iHC  of the hash chain is computed. It is the hash of 

the previous log line hash (i.e. 1−iHC ) concatenated with all the elements of the 

current line, except iHC  and iS  (obviously, because the first one is what we are 

computing, and the second one will depend on the first one). In formulas, we may 

write that (for both proposals): 

 

a) 
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The first element of the hash chain, namely 1HC , is computed using as previous 

element a fixed and known value for 0HC  which may be recorded, without 

encryption, in the beginning of the log file. When a line is verified, the hash of the 

previous line should be trusted, thus a verification of the signature of the previous 

line should be performed. 

3.4 Encryption and exclusion/elusion 

The objective of this section is to introduce the intrinsic security of the log file 

when it is stored on any device. In fact, it has to be taken into account that the 

security of the log file should not change even if it is saved and copied for backup 

purposes. That is, the log file content should not be alterable (by anyone) and 

should not be visible by non-authorized people. 

 

To avoid the disclosure of the content to non-authorized people we already 

introduced the idea of encrypting the data with a random key Ai (that changes for 

every line): thus, this key is used to encipher the data; afterwards, the key Ai is 

made available to the various auditors encrypting it with the personal key of every 

auditor that should have access to that data. When the key has been encrypted, 

then it is destroyed, and only the authorized auditors will be able to reconstruct 

the original data. If there are auditors that should not have access to a particular 

log line, then Ai is not encrypted for them; instead: 

 

a. )H(Ai , a one-way hash of the key, is encrypted in case of approach a. 

b. a random value Rr
3
 (different for every auditor) is encrypted with the 

public key in case of approach b. 

 

This is done for the following two reasons: 

 

1. Exclusion: it is easy to exclude one or more auditors from accessing 

the log line data, simply giving them a fake key: a random number in 

approach b. or obtained from the right key, but through a non-invertible 

function, in approach a.. In the literature are presented many one-way 

hash functions easy to compute. The use of a different Ai for every line 

allows for a fine granularity in giving access to every log line only to a 

                                                 
3
 In some embodiments, in place of Rr the concatenation of H(Ai) and a random number Rr 

(different for every auditor) can be used. 
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subset of auditors. Thus the exclusion is local to every log line. We 

used a one-way hash function in approach a. because we considered it 

as an efficient source of randomness. Due to the elusion property 

discussed below, we had to use a different random number for every 

auditor in approach b. 

 

2. Elusion: it is easy to see that simply looking at the log file it is not 

possible to understand which auditors have access to which log lines. 

This is due to the fact that we encrypt the key Ai for every auditor. At 

this point we distinguish the two approaches a. and b. previously 

introduced. 

 

a. Access to a line depends on the possession of iA , useful to 

decrypt the line, or )H(Ai , that does not allow access to the 

line. But, for the properties of symmetric encryption, it is 

impossible to deduce which case (if iA  or )H(Ai ) has been 

encrypted for an auditor. Note that it is important to use )H(Ai  

that changes for every line. In fact, suppose to use a constant 

value for those auditors that should not have access to a line. 

Then, encrypting a constant value using a fixed key (the secret 

key of the auditor) will disclose the lines that are not accessible 

to an auditor, simply by inspection of the log file looking for a 

repeated value for an auditor. Note also that the use of )H(Ai  

has the only objective to create a random number in an efficient 

manner; that is, instead it could be used a random number iB  

different from iA . 

b. From the properties of asymmetric encryption it is impossible 

to deduce which auditor is able to decrypt the key Ai. Note the 

use of the random values Rr to ensure the elusion property. For 

those auditors having rights to access to the log line, then the 

key Ai is encrypted along with a random number (different for 

every auditor) to ensure that an auditor decrypting the key Ai is 

not able, through asymmetric encryption using the other’s 

auditors public key, to deduce which of them has access to the 

log line. At the same time, for auditors that do not have access 

to a line, a random value (also in this case, different for every 

auditor) is encrypted with the public key of each auditor, thus 
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the resulting value is undistinguishable from the encryption of 

the correct key Ai and a random value. 

3.5 Group auditing 

One of the objectives of the system is to give different access modes to 

different auditors. We have already presented a method for allowing or not the 

access to a line. In this section we present how to give access to a single line to a 

group of auditors. For example, some log lines should be decrypted only when a 

set of at least three auditors out of five agree on looking at its content; in this way 

it is possible to access the data even if not all of the auditors belonging the same 

group are available. 

3.6 Group access to a log line 

In our application, we use the method from [SHA79], with the following 

constraints: 

 

• each auditor should be able to access the content of a log line both 

alone (if he has the rights) or with the cooperation of other auditors (if 

he belongs to a group of auditors that should have access to the line); 

• when a group of auditors has used a secret to disclose the content of a 

line, then this secret must be useless if used to disclose the content of 

other lines; the reason lies in the fact that when a group of auditors 

agree in looking at the content of a line, then some of them may not 

agree in disclosing the content of other lines to the members of the 

same group; 

• each auditor may belong to any number of groups (also none). 

 

We obtain the previous results by distributing to the auditors that need a group 

access to a log line, a share to determine the secret Ai. That is, instead of 

encrypting the secret Ai for an auditor, we encrypt a part that allows the 

reconstruction of the complete secret Ai. This implies that to decrypt a line there 

may be: 
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• users that have access to the line as alone entities, i.e. they have 

)(AE iK
j

 or )R ,(A ji+
jK

α 4
; 

• users that do not have access to the line as alone entities, i.e. they have 

))(H(AE iK j
or )R ,(A ji+

jK
α 4 

; 

• users that have access to the line only with the collaboration of at least 

k users, i.e. they have )(E
ij AK Σ or )(

iAΣ+
jK

α , where ΣAi is the share of a 

secret that allows disclosing Ai with the collaboration of other k-1 

users. Users may belong to many groups, thus having many shares of 

the secret (obviously, the various shares will be related to different 

polynomials); 

 

Note that the three sets of users may be not disjoint (the first two are obviously 

disjoint). Thus, our system allows for users that may access a log line by 

themselves, or in collaboration with other users also, or only when other group 

members agree in disclosing the content of a line. 

Let’s see which data is saved for every auditor that potentially has access to a 

line: 

 

a. ( )... , ,ID , ,ID , )H(AE ''

Agroup

'

AgroupiK i
''

i
'

j
ΣΣ  

b. ( )... , ,ID , ,ID ),(R ''

Agroup

'

AgroupjK i
''

i
'

j

ΣΣ+α 4
 

 

or, for some embodiments: 

 

( )r

''

Agroup

'

AgroupjiK
R|... , ,ID , ,ID ,R ),H(A

i
''

i
'

j

ΣΣ+α 4
 

 

In this example the j-th auditor has not access as individual, but only as 

belonging to some groups. If a user does not belong to a group (or a group does 

not have access to the line) then Σ  may be left as a set of zeroes of the right size 

(using a proper encryption function, all this data will preserve the elusion 

property). 

To add an auditor to the group of auditors, it is sufficient to give him a new 

share based on the polynomial, encrypting this share with the auditor’s key. To 

exclude an auditor from a group it is sufficient not to give him his share anymore. 

                                                 
4
 If each auditor has his own pair of asymmetric public/private keys. 
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To modify the minimum number of auditors necessary to disclose a log line, a 

different polynomial should be used, according to [SHA79]. 

To work properly and to be able to decrypt correctly a log line for a group, the 

system requires at least the following information for each group: 

 

• a group identifier; 

• the minimum number of auditors that are required to disclose the secret; 

• the identifiers of all the auditors belonging to the group. 

3.7 Observations on multiple groups 

A question that may arise on the security of the method applied on multiple 

groups is: what happens if shares of different groups on the secret Ai are joined 

together? Do these parts allow the determination of Ai? That is, let’s suppose the 

worst case. Imagine m’-1 auditors of a group (requiring m’ auditors to compute 

Ai) colluding with m”-1 auditors of another group (requiring m” auditors to 

compute Ai). Moreover, note that the two groups may overlap. 

Let’s write the two polynomials we want to determine: 

 

i1

2m'

2'm

1m'

1m' A x α  ...  xα  xα y ++++= −
−

−
−  

i1

2'm'

2'm'

1'm'

1'm' A x β  ...  xβ  xβ y ++++= −
−

−
−  

 

The target is to determine the α values, the β values and Ai; that is, overall 

m’+m”-1 values. The colluding auditors have m’+m”-2 points (possibly not 

distinct), m’-1 from one polynomial, and m”-1 from the other polynomial. This 

allows to write a system of m’+m”-2 equations in m’+m”-1 variables, with the 

following structure: 
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i1"1

2'm

1"2'm'

1'm'

1"1'm'1"

i'1m'-1

2'm

'1m'-2'm

1m'

'1m'-1m''1m'-

i2'1

2m'

2'2m'

1m'

2'1m'2'

i1'1

2m'

1'2m'

1m'

1'1m'1'

A  xβ  ...  xβ  xβ  y

...

A  xβ  ...  xβ  xβ  y

A  xα  ...  xα  xα  y

...

A  xα  ...  xα  xα  y

A  xα  ...  xα  xα  y

 

 

 The target may not be reached because the system of equations is 

undetermined if we make the assumption that a single polynomial of degree m is 

undetermined if only m-1 points are available. But, to discover the shared key, it 

is sufficient to determine Ai: we show that this is not possible. Call the set of 

equations coming from the first polynomial Π and the set of equations coming 

from the second polynomial Θ. 

Given that Ai cannot be determined from Π ([SHA79]), then reducing this set 

should bring to an equation of this kind: 

 

1i2j1 b  Ac  αc =+  

 

For the same reason, reducing Θ will lead to 

 

2i4k3 b  Ac  βc =+  

 

where the cm and bn are constant values. 

The system of these two equations does not allow to determine Ai because jα  

and kβ  are different unknown (they are coefficients from different polynomials). 

Thus, to answer the question we posed in the beginning of this section, even if 

different auditors from different groups collude to determine the shared key, they 

will not be able to get it unless the required number of auditors in one of the 

groups is reached. 

The same demonstration holds also in the case in which two auditors belonging 

to different groups own the same share (i.e. the same point in the plane, where two 

distinct polynomials intersect). 
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Figure 3-1: Common share of different polynomials 
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Chapter 4 

Group signatures 

This chapter illustrates the technology of “group signatures”, whose state of the 

art has been already presented in chapter 2.6, and some innovative solutions 

we’ve devised during the research we’ve carried on. Chapter 4.3 presents the first 

solution, based on standard signatures, putting forward in the conclusion benefits 

and drawbacks of the method. Chapter 4.3.8 contains a variation of the method for 

building group signatures mentioned above. In chapter 4.4 we describe the second 

solution, based on one-way accumulators, a newly born concept described 

thoroughly in this dissertation and used to build complex group signatures 

schemes. 

4.1 Description of group signatures 

Firstly, let’s precise that the term “Group Signature” (or also “Group–oriented 

Signatures) is not used, in this context, to denote the kind of signature in which 

there are groups of n participants and it’s necessary the presence of at least k out 

of n members to issue a valid signature. In this case, the ability to issue signatures, 

is granted only to a large coalition of members of a group, as introduced for the 

first time by Boyd under the name of Multisignatures. According to Desmedt 

[DES93], those type of signatures is nowadays usually called “Treshold 

signatures”, that is signatures where a minimal threshold of users is needed in 

order to issue a valid signature. 

 

Group signature schemes are a relatively recent cryptographic concept 

introduced by Chaum and van Heyst [CHVH91] in 1991. In contrast to ordinary 

signatures they provide anonymity to the signer, i.e., a verifier can only tell that a 

member of some group signed. However, in exceptional cases such as a legal 

dispute, any group signature can be ``opened'' by a designated group manager to 

reveal unambiguously the identity of the signature's originator. At the same time, 

no one - including the group manager - can misattribute a valid group signature. 
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The salient features of group signatures make them attractive for many 

specialized applications, such as voting and bidding. They can, for example, be 

used in invitations to submit tenders. All companies submitting a tender form a 

group and each company signs its tender anonymously using the group signature. 

Once the preferred tender is selected, the winner can be traced while the other 

bidders remain anonymous. More generally, group signatures can be used to 

conceal organizational structures, e.g., when a company or a government agency 

issues a signed statement. Group signatures can also be integrated with an 

electronic cash system whereby several banks can securely distribute anonymous 

and untraceable e-cash. This offers concealing of the cash-issuing banks' 

identities. 

 

A concept dual to group signature schemes is identity escrow. It can be 

regarded as a group-member identification scheme with revocable anonymity. A 

group signature scheme can be turned into an identity escrow scheme by signing a 

random message and then proving the knowledge of a group signature on the 

chosen message. 

4.2 Definitions 

A group signature scheme involves a group manager, a set of group members, 

and a set of verifiers. The group manager (for short, GM) is responsible for 

admitting/revoking group members, and for opening group signatures to reveal 

the true signers. When a potential user registers with GM, he/she becomes a group 

member and then can sign messages on behalf of the group. A verifier checks the 

validity of a group signature by using the unique group public key. We now 

review the definitions of group signature schemes and their security requirements 

as follows.  

 

A group signature scheme is comprised of the following procedures: 

 

• SETUP: on input of a security parameter, this probabilistic algorithm 

outputs the initial group public key and the secret key for the group 

manager; 

• JOIN: An interactive protocol between the group manager and a user 

that results in the user becoming a new group member. The user’s 

output is a group signing key; 
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• SIGN: A probabilistic algorithm that on input a group public key, a 

group signing key, and a message m outputs a group signature on m; 

• VERIFY: An algorithm for establishing the validity of an alleged 

group signature of a message with respect to a group public key; 

• OPEN: An algorithm that, given a message, a valid group signature on 

it, a group public key and the corresponding group manger’s secret key, 

determines the identity of the signer; 

 

The following properties must be satisfied by any group signatures scheme: 

 

• Correctness: Signatures produced by a group member using SIGN 

procedure must be accepted by VERIFY procedure; 

• Unforgeability: Only group members are able to sign messages on 

behalf of the group.; 

• Anonymity (or Untraceability): Given a valid group signature for 

some message, identifying the actual signer is computationally hard for 

everyone but the group manager; 

• Unlinkability: Deciding whether two different valid signatures were 

generated by the same group member is computationally hard for 

everyone but the group manager; 

• Exculpability: Even if the group manager and some of the group 

members collude, they cannot sign on behalf of non-involved group 

members; 

• Traceability: The group manager can always open a valid group 

signature using OPEN procedure and then identify the actual signer; 

• Coalition-resistance: A colluding subset of group members cannot 

generate a valid group signature that cannot be traced by the group 

manager; 

• Unforgeability of traceability: the secrets provided by the group 

manager must unambiguously attest who is the real signer among two 

or more members that affirm to have issued a signature, even if the 

excluded member and the group manager are in league; 
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4.3 A new solution for group signatures based on standard 
signatures 

4.3.1 Introduction 

In this section we will illustrate a method for building group signatures, created 

in collaboration with the Network and Security Group of the Department of 

Computer Science of Turin. This method fits into all the required titles in terms of 

security, reliability and usability for the Irrefutable Administration System 

developed as implementation part of this thesis. 

4.3.2 Description 

The approach is based on standard signatures (i.e. signatures issued by a single 

entity, such as RSA signatures) and on a set of entities. Those entities interact in 

order to fulfill the properties stated in chapter [chap. Ref.]: correctness, 

unforgeability, anonymity, unlinkability, exculpability, traceability and coalition-

resistance. Besides, thanks to the presence of an intermediate entity between the 

signer and the applicant, the solution here exposed owns the feature of immediate 

revocation: the revocation of a member of the group is instantaneous, unlike the 

traditional systems where the revoked members maintain the ability of signing 

even after being excluded from the group – the revocation comes out only while 

verifying or opening a signature. 

 

The aforementioned properties are fulfilled considering an approach oriented to 

the system, more than using pure cryptography, where efficiency, security and 

easiness of implementation are based on the state of the art of the single 

components and make it easier to implement a prototype. To be more precise, 

although we are using an approach oriented to the system, the cryptographic side 

has not been left behind, as it takes a big part in the whole solution. It will be 

explained in detail how, with this approach, the system may adopt any public or 

private signature algorithm. This means that the underlying technology will, with 

high probability, be based on solutions which have already been analyzed and 

verified. The whole method will then take the correctness and principles of the 

underlying algorithms. 

 

The immediacy of revocation is a definitely positive feature in a group 

signature context, as Ding, Tsudik and Xu illustrate in [DTX04]. In the same 

article they expound a solution whose model shares some basic ideas with the 

scheme proposed in this part of the thesis. That model, as a matter of fact, fulfills 
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the property of immediate revocation by means of an intermediate entity (they call 

it “Mediation Server”) which filters the group signatures demands. With a single 

intermediate entity, however, problems connected to security and reliability of the 

system may arise. As a solution to this issue, also called “Single point of failure” 

of the intermediate entity, they introduce a secondary entity – called Group 

Manager – which shares with the first the role of group coordinator. A similar 

principle of separation of duty has been followed in our solution as well, as will 

be illustrated in the following, delegating the decision task to an entity of group 

managing (GME), the task of signature production to the authentication and 

anonymity entity (AAE) and the verification and control task to an entity of 

process verification (PVE). 

A further difference lays, in [DTX04], into the Mediation Server, which 

contains also a dynamic database used for recording the signature transactions 

issued by the system: once a record has been recorded, it cannot be deleted. The 

drawback of this solution is, obviously, that the Mediation Server becomes a 

critical step into the system chain, because it contains all of the issued signatures. 

The solution I will expose in the following, on the other hand, doesn’t suffer from 

the same problem because the signatures themselves contain all the information 

necessary for their own verification and opening. Therefore, they don’t require 

databases or signatures archives to be put into the single entities of the system. 

 

4.3.3 Elements of the system 

In order to obtain group signature complying to the aforementioned properties, 

the following entities need to be introduced: 

 

• A Group Management Entity (GME): it’s the entity who verifies the 

correct membership of the entities to the group, giving them the 

permission to issue signatures on behalf of the group; when a new 

member wants to join the group, he must first subscribe at the GME. 

Furthermore, when a group member wants to be removed (or must be 

removed) from the group, the GME attends to the removal operations; 

• An Authentication and Anonymity Entity (AAE): it’s the entity who 

issues group signatures according to the group members requests; 

basically, it’s task is that of issuing group signatures basing on 

signature requests originating from a valid (i.e. an authorized member 

whose membership can be verified through methods such as 

public/private key authentication) group member; the peculiarity of 
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such a signature is that – as will be discussed in details in the following 

– the information is signed with a group key (owned by AAE only) but 

it’s always possible, for the AAE, to uncover the identity of the group 

member who sent out the signature request. The AAE is the exclusive 

owner of the group key; 

• A Process Verification Entity (PVE): it’s the entity who is in charge of 

randomly testing – by means of random samples – the group signatures 

and verifying the correctness of it’s contents; this entity can be seen as 

an AAE operations checker, it should therefore be managed by a stand-

alone and separate entity; nevertheless, the owner of the PVE should 

shortly get rid of the pieces of information obtained during the 

verification process, in order to avoid the disclosure of information and 

hence violate the unlinkability property of the signatures (i.e. the 

inability of linking together two different signatures issued by the same 

entity); 

• The group members (Mi): they must subscribe at the GME as group 

members; if the GME accepts his membership, Mi will be able to issue 

signature on behalf of the group, through the participation of AAE 

which is the real issuer of the group signature; 

 

 

The AAE and the group members must possess a pair of private/public keys for 

this group signature scheme to be working, in a way that will be described in the 

following. Each public key must be put into a public key certificate, in order that 

the signature and therefore the real identity of the group member might be easily 

verified. 

The correlation and interplay between the previously described entities is 

shown in Figure 4-1; the arrows denote the direction of the information flow, the 

cylinder stands for a logging device – a disk drive, for instance – where group 

signatures are stored in order to be retrieved in a subsequent moment. 

Depending on the way in which group signatures will be used, this device 

could be kept always on-line and backed up at fixed time intervals. 

A component not shown in Figure 4-1 is the PKI (Public Key Infrastructure), 

indispensable to publish the certificates containing the public keys used by the 

entities to make their signatures. 
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Figure 4-1: Interaction between entities 

 

When dealing with systems where high availability is required in addition to 

reliability, we suggest adding some redundancy to the components required for 

the good operation of the system, such as in the specific context the AAE and the 

PVE. To make the whole process even more strong and fault tolerant it’s 

recommended a redundancy of the GME as well. Such a redundancy becomes 

necessary because, in order to issue signatures, group members depend on the 

active real-time collaboration of the AAE, whilst the PVE should be up and 

running to vouch for the correctness of the whole system and of the AAE itself. 

4.3.4 Communication between components 

In the following we give a more detailed description of the communication 

taking place between the entities of the system and of the method used by the 

group members to issue group signatures. Firstly, the communication between the 

GME and the AAE must be encrypted and authenticated for those reasons: 

 

• The encryption of the communication keeps the data exchange between 

the GME and the AAE private, hiding at any time the secret 

composition of each group (this is true for all the entities but the GME 

and the AAE, of course) retaining the property of unlinkability of 

signatures; 

• The authentication of the communication guarantees the identity of the 

entities taking place in the data exchange and the source of the 

information received; 
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Using the channel which joins the GME to the AAE, the former gives the latter 

information about the group membership of each member by means of – for 

instance – an “ADD” message containing the public key certificate of the member 

to be inserted into the group. 

Furthermore, the GME is entitled to remove members from groups by sending 

a “DELETE” message to the AAE containing the unique identification of the 

group member who, for a period of time stated in the message itself, will not be 

able to issue signatures on behalf of the group. 

  

The communication between the different Mi and the AAE must be 

consequently: 

 

• Encrypted, in order to prevent the a-posteriori linking of the signature 

requests arrived at the AAE to the group signatures it has produced; 

• Authenticated, in order to ensure the identity of the entities involved 

into the communication; 

 

For analogous reasons, the communication between the AAE and the PVE 

must be encrypted and authenticated. 

 

Group signatures are written in plain text, without encryption, on the logging 

device, consequently the communication with this entity may be unencrypted and 

not authenticated because, as we will illustrate in the following, the source of the 

signature and the signature itself cannot be modified without positive evidence; 

furthermore, the group signature archived on the device doesn’t provide any clues 

about the entity which issued it. 

4.3.5 Operations of the system 

In this paragraph we describe the operations the system takes charge of to issue 

group signatures, starting from the signature request advanced by a group 

member. 

When a member Mi wants to sign a message m on behalf of the group, he sends 

a signature request for the message m to the AAE through the 

encrypted/authenticated channel, signing it with his private key. 

The information sent to the AAE is therefore: 

 

m, Sigi(m) 
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Sigi(m) is the signature of the message m issued by Mi with his private key. In 

general, Sigi may be a signature made with RSA or DSA or whichever is the 

preferred algorithm. The message m may be, as an improvement, composed line 

this: 

  

mo | t 

 

In the previous suggestion, t is a timestamp or an increasing unique 

identification number, necessary to avoid replay attacks and mo is the message 

itself. 

When the AAE receives such message, it carries out those operations: 

 

• It verifies how recent and “fresh” the message m is by means of the t 

component associated coupled with the message itself; 

• In case of verification failure, the AAE sends a NACK (negative ACK) 

to Mi and closes the transaction; 

• It verifies the message signature against the public key Mi gave to the 

PKI 

• In case of verification failure, the AAE sends a NACK (negative ACK) 

to Mi and closes the transaction; 

• In case of verification success, the AAE checks whether Mi is entitled 

to sign messages (i.e. it’s not been revoked) against the list build by 

means of the ADD and DELETE messages received by GME; 

• If Mi has turns out to have been revoked, the AAR sends back a 

negative acknowledge (NACK) and concludes the transaction; 

• If Mi is entitled to issue signatures, the AAE encrypts – with a 

symmetrical key – the signature Sigi(m) concatenated with the group 

member Mi identification number (producing a data block denoted in 

the following as E[Sigi(m) | i]), and signs with the group key the 

message concatenated with the encrypted block and a timestamp T (or 

alternatively an increasing identification number) used to avoid 

signatures replay attacks. This is the block: 

 

m, E[Sigi(m) | i], T, SigG(m | E[Sigi(m) | i] | T) 

 

The symbol | stands for concatenation of components, while the 

symbol i represents a unique identification code (unique with respect to 

the identification numbers connected to the certificates issued by the 
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CA). In a different embodiment, the identification code could as well be 

filled with the certificate itself. 

The three elements concatenated in such way embody the group 

signature which the system issues on the message m. Everyone may 

easily verify this signature by means of the public key of the group 

(made publicly available by the PKI), and ignoring the encrypted part. 

The signature may hereby be stored on permanent storage devices – 

for instance on hard drives as we suggested before. 

In order to avoid possible coincidental correlation between a 

signature request advanced by a member Mi and a signature stored on 

disk, the AAE could, for instance, keep the signature requests arrived in 

the last n minutes in a memory location and, when a sufficient number 

of requests has been received (at least one for each entity), only then 

write down on disk the whole bunch of group signatures. 

Particular attention must be paid to the waiting for a certain amount 

of time or to the necessity of messing up the signature requests, because 

those simple cares might be of use to avoid a correlation between the 

time (or the order) of the requests and a corresponding group signature. 

In some cases, the information like date, time, minute and second (all of 

them contained in T) could be removed from the group signature for 

safety, considering that the system might be liable to replay attacks, 

unless a unique increasing identification number is used for each signed 

object. 

 

In case of dispute, the AAE may “open” the signature and thus give evidence 

of the group member identity who issued the signature. The opening request 

should come from an authorize entity, to prevent attacks and private information 

disclosure. The opening of the signature is carried on by the AAE according to 

those steps: 

 

• He verifies the external signature issued by himself.  

• He decrypts (with a secret symmetrical key) the encrypted part 

contained in the signature 

 

The second item allows the AAE to retrieve the identification code associated 

to the signer of the message m and his original signature. This is necessary to 

unfold the real identity of the signer. 
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Notice that any modification to the group signature subsequent to it’s creation 

(while, for instance, it’s stored on a storage device) immediately invalidates the 

signature, in a way similar to what happens to standard signatures. 

This latter observation must be kept in mind when considering the 

responsibility of the AAE entity, which is limited to the correct execution of the 

task above mentioned of creating the group signature. It’s of course impossible for 

anyone to produce valid group signatures without the intermediation of the AAE. 

4.3.6 Validation/verification of system operations 

The system here exposed contains a stand-alone entity with the sole duty of 

verifying by means of random samples the signature and consequently the correct 

efficiency of the AAE. The PVE (Process Verification Entity) checks the 

consistency of the signatures asking the AAE to open a small and randomly 

chosen number of group signatures issued in different times. Put in practice, the 

PVE obtains with a random decision a signature issued by the AAE, verifies the 

external signature (SigG) and, in case of correctness, asks the AAE (through the 

encrypted communication channel) to open such signature. The opening of the 

signature gives the PVE the unencrypted signature Sigi of the group member, 

signature which is immediately verified. If the signature turns out to be correct, 

the AAE is regarded as safe and reliable, otherwise it’s regarded as broken and the 

whole system must be immediately stopped. If Sigi or SigG are revealed as corrupt, 

in fact, that could mean that the group signature is not valid (and the AAE could 

therefore be corrupted). 

Just after the correctness verification of a signature, the PVE must destroy the 

information concerning the open signature, so as to avoid any possibility of 

linking between signatures. 

Notice that, because of the criticality of the operations executed by the PVE, all 

the data exchanged between the PVE and the AAE must be encrypted and 

authenticated. 

4.3.7 Benefits and drawbacks 

In this section we will discuss the system described in the previous paragraphs, 

taking into account benefits and drawbacks. In the following there is a list of the 

benefits of the above described solution: 

 

• It is possible to add or remove members to/from the group in real time: 

the GME is in direct communication with the AAE and is entitled to 

send to the latter the information about the group structure; 
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• It is possible to verify, by means of random samples, the issued 

signatures, so as to detect eventual manumissions; 

• The issued group signature requires a small amount of space where will 

be stored the original, encrypted signature of the group member. 

Consequently, the total size of the resulting group signature depends 

only on the size of the standard signatures used for signing; 

• Concerning the previous item, the signature of the above exposed 

schema requires a small amount of space, mainly when compared to 

some other group signatures schemes; furthermore, the system may 

adopt any signature algorithm whose properties have already been – for 

instance – analyzed and verified. There is no need, therefore, of a new 

implementation of signature algorithm and the consequent robustness 

test; 

• By means of the group public key only and of the data stored on the 

repository (which may be for instance a disk drive) it’s possible to 

verify the group signature issued on a message, without taking into 

account the encrypted part of the signature which will be indispensable 

for the opening of the signature. Furthermore, the signature contains 

also, encrypted, the information necessary to reveal the identity (also 

referred to as “identity escrowing”) of the group member who has 

signed the message (for the decryption process the collaboration with 

the AAE is mandatory). Notice that the encrypted part contains the 

original first signature of the group member, and hence his identity as 

well. 

 

The main drawback of this method is the necessity of an intermediate entity, 

the AAE, entitled to sign on behalf of the group. As discussed before, this entity is 

involved in the process for each and every signature. As a consequence, the AAE 

is prone to become a kind of bottleneck during the operations of the system but, 

on the other hand, it must be clear that there is the possibility of implementing 

such entity on an independent device, where the whole computational strength can 

be devoted to the signature process. 

This trick makes up for the before mentioned drawback and helps keeping 

secret the key used for the encryption and for the signatures in a secure and 

protected environment (for instance in a tamper-evident device). 

 

Further remark about the suggested method is that the computational power of 

the group signature algorithm is directly proportional to the complexity of the 
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algorithm. More precisely, a group signature thus requires two standard signature, 

one encryption and one signature verification process. 

4.3.8 Variant of the first solution 

As described in the previous paragraph, the solution is based on an 

intermediate entity (the AAE) with the constraint of being always on-line and 

reachable, because the signature process requires its direct intervention. 

In the situation where it’s more desirable to release the constraint of the AAE 

availability, in exchange of less guaranties about the unlinkability property above 

described, a variant of the solution may be adopted. That variant has been 

designed in order to decrease the necessity of a repeated contact with external 

entities for each and every signature, the whole operation results therefore more 

independent. 

4.3.8.1 Pseudonym certificates 

The modifications to the above described solution consist in joining together 

the AAE and the GME encompassing them in a sort of “Pseudonym Certificates 

Emitter” (from now on referred to as PCE) with the charge of giving the group 

members entitled to sign on behalf of the group some certificates. There will be 

no more AAE signing messages on behalf of a group member Ai, but the member 

itself will sign by means of the pseudonym certificate (called for briefness PsC) 

received from the PCE. In details, the group member will sign using the private 

key connected to the public key certificated by the PsC. 

For the initial request, the group member will testify his identity by means of a 

personal certificate (here called CRT) released by a CA authorized and 

acknowledged by the PCE. This latter will provide the group member with a 

pseudonym certificate only in the case in which there is no revocation upon the 

partnership and if the certificate turns out to be valid. This means that, in practice, 

the group member has been recognized by the system and he is entitled to sign on 

behalf of the group. 

 

The relevant feature of this variant is that the PsC received from the PCE can 

be used by the user Ai for the signature of more than one message. This becomes 

a point of strength because it solves the problem of unreachability of the PCE and 

makes more easy the signature process. The more self-evident drawback is that, in 

case of re-use of the PsC received for more than just one signature, the property of 

unlinkability of the issued signatures is not kept true. However, this is a parameter 

which can be adjusted to the requirement, as it is always possible to ask for a new 
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PsC whenever the need arises. Of course, the duration of the PsC emitted by the 

PCE must not be too extended in time or number of allowed signatures, in order to 

permit an easy and immediate revocation of the group members as will be 

described in the following. 

 

Let’s summarize, in general, the steps which are necessary for the signature of 

one or more messages by a member Ai: 

 

1. The member Ai generates a pair of keys (N
+
, N

-
), which will be used to 

sign the messages on behalf of the group; 

2. The member Ai asks the PCE for a PsC, providing together with the 

request )R) the public key created during step 1 (N
+
). The request is 

signed by Ai with his private key K
-
 (not to be confused with the key 

generated during step 1) and attaching the public key certificate 

acknowledged by the CA (CRT). Attached is sent also the signature 

made with the private key produced at step 1 of the signature made by 

Ai with his own private key K
-
; 

 

PsC-Request = )))((()),((),(, +++
−−− NRSigSigNRSigNRCRT

KNK
 

 

3. The PCE provides the member Ai
 
with a pseudonym certificate PsC 

containing the public key generated during step 1 (N
+
), possibly a 

timestamp (T), and some encrypted data. Those encrypted data must 

contain the identity of Ai, the request and pertinent signatures and 

certificate received by Ai during step 2 (PsC-Request). The symmetrical 

key (PCES) used for the encryption of the above listed data must be 

exclusive property of the PCE and generated on that purpose and 

different for each PsC issued. That symmetrical key must then be 

encrypted with a public key PCEK
+
 whose corresponding private key is 

kept secret by the entity which is entitled to open the signatures. 

Immediately after issuing the PsC, both the PCES and the PsC-Request 

ought to be removed from the system PCE. The PsC may then be made 

public or if needed also attached to the signature itself. That cerfificate 

will in fact be necessary for the signature verification process. In the 

following are listed the fields which make up the PsC certificate: 
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LengthExtensionLengthExtensionVersionExtension

PCESEExtension

questPsCEExtension

NPublicKey

PCEK

PCES
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=

=

−=

=

+

+

 

 

4. The group member Ai will then be able to issue his signature on 

messages using the private key generated during step 1; 

5. The verification of validity of the signature is made using the PsC 

certificate produced at step 3; 

6. The opening of the signature involves the decryption of the 

symmetrical key contained in the PsC with the private key of the 

authority which is entitled to open signatures. The symmetrical key 

hereby obtained will be used to decode the encrypted data contained in 

the pseudonym certificate PsC coupled with the signed messages; 

 

The schematic representation of the solution variant is sketched in Figure 4-2. 

 

PCECA

Ai

CRT

CRT
++
--

++

PsC+PsC++

PsC

+P
sC

++

M1M1 M2M2 MkMk

...

-- -- --

Ai

 

 

Figure 4-2: Schema of the interaction between components 
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As pointed out by step 6, the pseudonym certificate is sufficient to reveal 

the real identity of the signer, because it contains in encrypted form the original 

request issued by the group member. One immediate benefit is that now the 

AAE no longer exists, in favor of what is now called “PCE”, an entity with 

lower responsibility because the signature is in this variant issued by the 

member itself. 

The self-evident drawback is in this case the possibility, for a group 

member, to keep on signing messages even after being revoked – because with 

this variant the signatures do not require direct intermediation of any entity. Of 

course, although they are practically doable, the signatures issued with revoked 

certificates will not pass the verification process later on. The idea is, indeed, 

that of emitting certificates with short validity duration, so as to let the 

verification be made basing on the duration of the certificate, containing by 

itself a time value issued by the PCE and verified by some central server. 

Setting, for instance, a one day duration, it’s possible to revoke group members 

with effect starting from the day following the revocation. 

4.3.8.2 Properties 

We’ll see now how the variation of the solution presented in the previous 

chapters complies with the properties of the group signatures, failing only in some 

cases when it comes to the property of unlinkability: 

 

• Correctness: signatures generated by group members are valid and 

verifiable by means of the PsC issued by the PCE. The PsC is obtained 

in exchange following the request – signed with his own certificate 

acknowledged by the CA – issued by the group member; 

• Unforgeability: only the group members are entitled to produce valid 

signatures for messages on behalf of the group. Revoked members can 

still issue signatures, but they are not verifiable after the time slice of 

validity of the PsC assigned; 

• Anonymity (or Untraceability): given a group signature, it’s under 

computational constraint infeasible for anyone but for the PCE 

retrieving the real identity of the signer. Such information is, in fact, 

stored in the PsC associated with the signature, encrypted with a 

symmetrical key known only to the PCE; 

• Exculpability: neither a coalition of members nor the group manager 

itself may be able to sign on behalf of other members of the group. The 

PCE, in fact, issues a PsC only after receiving a valid certificate request 



CHAPTER 4 – GROUP SIGNATURES 

47 

authenticated through a Certification Authority known both to the 

signer and to the PCE. Furthermore, the PsC contains the real request 

sent (and signed with his own private key acknowledged by the CA) by 

the group member to the PCE, encrypted symmetrically with a 

password known to the PCE only. As a consequence, even if the PCE 

happened to issue corrupted certificates, it would not be able to put into 

those certificates the fake member requests – he doesn’t possess their 

private keys as a matter of fact; 

• Traceability: the group manager is in all cases able to open valid group 

signatures and to reveal the real identity of the signer (identity 

escrowing). The PsC contains, indeed, the identity of the signer paired 

with the original request he issued to the PCE in order to obtain the PsC 

(plus some data such as for instance the period of validity of the 

certificate). Notice that those data are encrypted with a symmetrical key 

– or the private asymmetrical key in case of different embodiment – 

known only to the PCE; 

• Unforgeability of traceability: the secrets involved in the signature 

and in a part managed by the group manager is sufficient to prove 

without ambiguity who is the real signer of a signature whose property 

is asserted by two members. This must be true even if the excluded 

member and the group manager were found to be allied; 

• Coalition-resistance: no subset of group members is able, joining and 

mixing together their secrets, to produce a valid group signature that the 

group manager is not capable of opening. The signature has, to be 

considered valid, to be associated to a valid PsC, issued by the PCE and 

with timestamping coherent with the validity period. It’s not therefore 

possible for any member to forge a PsC because he doesn’t possess the 

private key of the PCE with which he should sign the certificate; 

 

We conclude with the unlinkability property, which results in this case 

dependent on the signature policy and PsC assignment adopted. 

 

• Unlinkability: given two group signatures, it’s under computational 

constraint infeasible for anyone but for the PCE telling whether the two 

signatures have been issued by the same signer only if the signature 

policy adopted is that of requiring a different PsC for each and every 

signature. In case of re-use of the same PsC, the property is not kept, 
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because getting the PsC means being able to tell whether two signatures 

have been issued by the same entity 

4.3.8.3 Comparison of the variant to the original method 

In this section the variant to the system is analyzed under the 

benefits/drawbacks point of view showing how, roughly speaking, this variant 

comes out to be quite similar to the original version but for the tradeoff between 

unlinkability and high availability of the signing process. 

 

• As in the original schema, it’s still possible adding or revoking member 

to/from the group in real-time: the PCE assigns the pseudonym 

certificates only to those who are entitled to sign on behalf of the group; 

• Unlike the original schema, the group signature issued doesn’t require 

additional slots to keep trace of the original, encrypted, group 

member’s signature. It’s the group member itself who issues the real 

signature on the document, not an intermediate entity on behalf of him; 

• The signature issued in the latter variant takes considerably less space 

(mainly when compared to other group signature schemes); 

furthermore, the solution here exposed may adopt any signature 

algorithm without complications, with the advantage that such 

algorithms should be chosen among those which have been proved and 

tested to be robust and efficient. As in the previous solution, there is no 

need of implementing a brand new signature algorithm, and to perform 

any kind of robustness test; 

• By means of the group public key only and of the Pseudonym 

Certificate (in addition to the CA certificate, of course) it’s possible to 

verify the group signature issued on a message, without taking into 

account the encrypted part of the signature which will be indispensable 

for the opening of the signature. Furthermore, the PsC contains also, 

encrypted, the information necessary to reveal the identity (also referred 

to as “identity escrowing”) of the group member who has signed the 

message (for the decryption process the collaboration with the PCE is 

mandatory). Notice that the encrypted part contains the original first 

signature of the group member, and hence his identity as well. 

 

The main drawback of the original solution is the need of an intermediate 

entity, the AAE, with the task of signing on behalf of the group (and of the 

member who required the signature, of course). We showed how the presence of 
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this entity could turn out to be – if no additional care was taken – a sort of 

bottleneck or single failure point for the whole system. The variant above 

described can overcome the unreachability of the intermediate entity allowing the 

member to sign more than one document with the same private key, and therefore 

the same pseudonym certificate. It’s consequently possible to implement a policy 

which forces the member to require a new PsC each n signatures, or for instance 

once every beginning of day. What’s more, the policy could state that members 

should ask for new PsC for each signature but when there are connectivity 

problems with the PCE. This latter example is worthy of being chosen first, 

because the re-use of the same key and of the same certificate invalidates the 

property of unlinkability of signatures: the certificate in fact may allow an entity 

to tell which signatures have been issued by the same member (with the same 

certificate). In conclusion, it’s plain clear how the two solution are based on a 

tradeoff between unlinkability and availability of the signature process. 

 

Further consideration, similar to the original approach, is that also in this case 

the computational complexity of the algorithm is directly proportional to that of 

the standard signature algorithm chosen for the “low-level” signatures. 
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4.4 A new solution for group signatures based on one-way 
accumulators 

4.4.1 Introduction 

In this section we will present a second method (third actually, as the variant of 

the previous method can be considered as a second version) for building group 

signatures, created in collaboration with the Network and Security Group of the 

Department of Computer Science of Turin. This method is not based on standard 

signatures but, as we will see in the following, evolves a concept quite new in the 

field of computer research called one-way accumulators. 

4.4.2 Description 

The group signature scheme we propose [BCD+05] in this second solution is 

based on the concept of one-way accumulators, as presented in [BM94]
 
(in the last 

section, this paper briefly comments on an “effective method of forming 

collective signatures”). A function g that is a one-way accumulator produces a 

value w computed by the application of g which is independent from the order of 

the yj values (note also the starting x). 

 

)),),,...),,),,((((...(( 12321 ttt yyyyyyxggggggw −−=  

 

As function g [BM94] suggests to use 

 

nxyxg
y

n mod),( =  

 

where n is a large rigid integer (n = (2p’+1)(2q’+1), with 2p’+1 and 

2q’+1 primes, p’ and q’ odd primes, |2p’+1| = |2q’+1|). 

 

In our application we propose to use a modified function for g, to avoid 

possible attacks due to the use we do of this function (see observation I in 

chapter 4.4.5.1). The modified function is: 

 

fn(x, y) = x
b(y)

 mod n 
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where b is an appropriately chosen hash function (as we will see later, 

the result of this hash function should be an odd number; thus, b(y) may be 

equal to h(y) OR 1, where h(y) is a standard hash function): 

 

b(y) = h(y) OR 1 

4.4.3 Proposed Group Signature Scheme 

The generic i-th member of m group members is Ai. GM is the group manager. 

Let’s see in the following the description of the steps of the process. 

4.4.3.1 System bootstrap 

The system bootstrap basically consists of the following steps: 

 

1. Ai generates a set of N asymmetric key pairs (e.g., for One Time Signatures, 

RSA, or DSA). 

2. Ai sends (through an encrypted channel) to GM the set of public keys Ki,1, 

Ki,2, ..., Ki,N. These keys are to be used to issue the group signatures. Each 

key is signed with the member’s secret key Si and with the corresponding 

secret key
5
 S

jiK , (the secret key corresponding to the public key jiK , ): 

 

NjforKKSigKSSigAE ji

S

jijiiji ≤≤= 1),(),,( ,,,,  

where Sig(x,y) is the signature of y using private key x.
6
 

 

3. GM collects all the public keys from all members, verifying all the 

signatures using the members’ public keys Pi’s. 

4. GM generates the One-Way Accumulator [BM94] of the public keys, using 

a secret X (X is considered ‘mod n’). GK is the group public key, then it is 

signed by GM and published along with the modulo n. 

 

GK = fn(X, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N) 

 

                                                 
5
 The certificate of Ai’s public key Pi is made available through a PKI. 

6
 This is a bit different from Observation II in chapter 4.4.5.3, where it was suggested to use 

the private key associated with Ki,j to sign Ki,j. 
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5. GM sends (encrypted and authenticated) to every group member a partial 

accumulator, using all of the other m-1 group member’s public keys. Ai 

receives: 

 

Ci = fn(X, K1,1, ..., K1,N, ... Ki-1,1, ..., Ki-1,N, Ki+1,1, ..., Ki+1,N, ..., Km,1, ..., Km,N) 

 

6. Moreover, GM sends (encrypted and authenticated) to every member Ai: 

 

EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j))  for 1 ≤ j ≤ N 

where Enc(x) is the symmetric encryption of x. 

4.4.3.2 Signing by Ai (SIGN) 

Ai uses one of the private keys S

jiK ,  to sign a message M (to enforce the 

unlinkability property, Ai uses a key that was never used before), producing 

Sig(M). Ai computes the One-Way Accumulator of Ci along with its public keys, 

except for the public key jiK , , associated with S

jiK , . 

 

Ai publishes (without any contact with GM): 

 

• M, Sig(Ki,j, M) [i.e. the message M and the signature of the message 

with the public key Ki,j] 

• Ki,j, PGKi,j = fn(Ci, Ki,1, ..., Ki,j-1, Ki,j+1, ..., Ki,N) [i.e. the public key Ki,j 

and the one-way accumulator of Ci and all of the public keys but Ki,j, 

the one used to issue the signature] 

• EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j)) [i.e. the token related to Ki,j 

received together with the others by the GM at step 6 of the previous 

paragraph] 

4.4.3.3 Verification by anyone (VERIFY) 

It is possible to verify the signature produced by any group member by 

checking: 

 

• that Sig(Ki,j, M) is the signature of M using Ki,j 

• that GK = fn(PGKi,j, Ki,j) 

• that SigGM(Ki,j, EncGM(AEi,j)) is valid. 
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4.4.3.4 Identification of signer (OPEN) 

GM verifies the signature (as would have done anyone, see previous section), 

then decrypts EncGM(AEi,j), and using the identifier field of the signature identifies 

the signer. Using AEi,j GM may prove to a third party that AEi,j contains the 

signature of Ki,j made by Ai, and that Ai possesses the secret key associated with 

Ki,j. 

4.4.3.5 Member addition 

When a new member A
z wants to be added to the group, it produces W 

asymmetric key pairs (e.g., for One Time Signatures [REY02] [PER01], RSA, or 

DSA), and sends the necessary data to GM, as has every other member did at 

system bootstrap. 

GM prepares the Cz for the new member A
z
: 

 

Cz = fn(Y, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N) 

 

Cz is computed with all the other member keys and a starting value Y obtained 

as follows: 

 

Y’ = rad(b(Kz,1), X) mod n 

Y’’ = rad(b(Kz,2), Y’) mod n 

Y’’’ = rad(b(Kz,3), Y’’) mod n 

...... 

Y = Y
(W)

 = rad(b(Kz,W), Y
(W-1)

) mod n 

 

Y is the root modulo n of X computed using all the (hashed) new keys Kz,1, Kz,2, 

..., Kz,W, that is: 

 

X = fn(Y, Kz,1, Kz,2, ..., Kz,W) 

 

The meaning of the function rad() is the following: 

 

u = rad(s, t) mod n  implies that  t ≡ u
s
 (mod n) 

 

Computing rad() is feasible only if knowing the factorization of n. This is 

known as the RSA problem, as we can find described, for example, in [MOV96] § 

3.3: “Given a positive integer n product of two distinct odd primes p and q, an 
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integer c, and a positive integer e such that gcd(e, (p-1)(q-1)) = 1, find m integer 

such that m
e
 ≡ c (mod n). 

 

As shown in [MOV96] § 8.2.2, this problem can be easily solved if the 

factoring of n is known. GM knows the factoring of n. In our case, to compute the 

e-th root we need that gcd(e, (2p’+1-1)(2q’+1-1)) = gcd(e, 4p’q’) = 1, where e = 

b(y). It is then possible to determine the inverse d of e modulo φ(n), and compute 

m = c
d
 mod n, being m the e-th root of c. To reduce the probability of having a gcd 

different from 1, then the result of the hash function is OR-ed with 1, giving an 

odd number. If the gcd is different from 1 (and equal to p’ or q’), then the key 

used to compute the hash should be discarded. This event should be very 

improbable, if p’ and q’ are large primes, or impossible if, for example p’ and q’ 

are 512 bit long and the result of the hash function is 256 bit long. 

 

Given that the group public key GK is now the one-way accumulator of Cz 

together with all of A
z
’s public keys Kz,1, Kz,2, ..., Kz,W: 

 

GK = fn(X, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N) = 

= fn(Y, Kz,1, Kz,2, ..., Kz,W, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., 

Ki,N, ..., Km,1, Km,2, ..., Km,N) = 

= fn(Y, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., 

Km,1, Km,2, ..., Km,N, Kz,1, Kz,2, ..., Kz,W) = 

= fn(Cz, Kz,1, Kz,2, ..., Kz,W) 

 

then 

 

Cz = rad(b(Kz,W),..., rad(b(Kz,2), rad(b(Kz,1),GK) mod n) mod n) ... ) mod n 

 
(*)

 

4.4.3.6 A possible improvement: incremental group creation 

These considerations suggest a method for creating the group which might be 

used instead of the bootstrap previously described in chapter 4.4.3.1. The group 

manager chooses a public key GK (mod n), and publishes it as previously 

detailed. Every time a member asks to be added to the group, then that member is 

requested to send the keys to GM, that replies with the same information, but 

computes the value Cz as in 
(*)

. This mode of operation implies that GM does not 
need to store the public keys of the group members. 
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The value of Ci for any other group member Ai obviously does not change, as 

well as the group public key GK. 

4.4.3.7 Adding more keys for a group member 

The addition of more keys to a group member is dealt with as adding a new 

group member, so for this subject please refer to paragraph 4.4.3.5. 

4.4.3.8 Properties 

The proposed group signature scheme owns the following properties: 

 

a. Signing does not require any contact with GM. 

b. The group public key GK has a fixed size. 

c. The signature has a fixed size. 

d. Private keys do not change when new members are added. 

e. Private keys do not change when more keys are given to members. 

f. The group public key GK does not change when new members are 

added. 

g. The group public key GK does not change when more keys are given to 

members. 

h. The group members need not change their private keys when new 

members are added. 

i. The group members need not change their private keys when more keys 

are given to a member. 

 

4.4.4 Adding revocation to the current solution 

The revocation feature can be added to the current solution by slightly 

modifying the functions and the principles used in it. In this paragraph, we will 

discuss our suggestion on how the revocation can be realized and what differences 

are introduced with respect to the current solution. Some properties must be listed 

first: 

 

Property 1 
 

Given gcd(a, n) = 1, (i.e. a and n relatively prime), 

 

if z = t mod φ(n), then a
z
 = a

t
 mod n. 
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Obviously property 1 can be applied iteratively, that is, having a
z
, 

 

(a
z
)
w
 = a

zw
, gcd(a, n) = 1 

implies that 

if s = (zw) mod φ(n) then a
s
 = (a

z
)
w
 mod n 

 

Property 2 
 

(d mod n)(e mod n) = (de) mod n 

 

Property 3 
 

(a
b
 mod n)

c
 mod n = 

((a mod n) (a mod n) ... (a mod n))
c
 mod n 

= ((a mod n)
b
)
c
 mod n = 

= (a mod n)
bc

 mod n = 

(a
bc

 mod n) mod n = 

a
bc

 mod n 

 

Property 4 
 

Computing roots modulo n is related to the RSA problem (see, for example, 

[MOV96] § 3.3 or chapter 4.4.3.5). As mentioned before, it may be shown that 

this problem is easily solved if the factors of n are known, and GM knows them. 

We will now see how the functions previously described can be modified to 

support revocation. 

4.4.4.1 System bootstrap 

GM computes the large rigid integer n (n = pq = (2p’+1)(2q’+1), with p = 

2p’+1 and q = 2q’+1 primes, p’ and q’ odd primes, |2p’+1| = |2q’+1|). We may 

choose |p| = |q| = 512 bit. 

 

Let’s define the notation partially used in the previous paragraphs as well: 

 

• h : hash function, h: {0,1}
k
 → {0,1}

256
 

• b : b(x) = h(x) OR 1 (see later) 

• Sig : Sig(a, e) represents the signature of e made using the private key a. 

• Enc : EncA(x) is the encryption of value x using a secret key known to A. 
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• R : R(a, e) mod n represents the a-th root of e computed modulo n, i.e. e = 

R(a, b)
a
 mod n. 

• fn(x, y) = x
b(y)

 mod n : one-way accumulator as defined in [BM94], with 

slight modification, for the application at hand; 

 

nnxyyxff
ybyb

nn mod)mod()),,((
)()(

21
21=  

 

and sometimes we will write 

 

),,()),,(( 2121 yyxfasyyxff nnn  

 

From property 3: 

 

nxyyxff
ybyb

nn mod)),,((
)()(

21
21=  

 

Moreover, from property 1, if gcd(x, n) = 1 then it is possible to find 

)(mod))()(( 21 nybyb φβ = such that 

 
β

xnxyyxff
ybyb

nn == mod)),,((
)()(

21
21  

 

To create the group, GM must choose a random GK (mod n) such that 

1),gcd( =nGK (the reason for this restriction will be clear later) and publish it 

signed, along with an empty CRL (Certificate Revocation List). 

4.4.4.2 Adding a member to the group 

When a participant Ai wants to join the group, Ai generates a set of N 

asymmetric key pairs that will be used in the various signatures. 

Ai encrypts and sends to GM the set of N public keys Ki,1, Ki,2, ..., Ki,N, each 

one signed with Ai’s secret key Si (with certificate of Ai’s public key Pi) and also 

signed with the corresponding secret key: 

 

NjforKKSigKSSigAE ji

S

jijiiji ≤≤= 1),(),,( ,,,,  

where Sig(x,y) is the signature of y using private key x  

 

At the reception of the N public keys, GM computes: 
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Y’ = R(b(Ki,1), GK) mod n 

Y” = R(b(Ki,2), Y’) mod n 

Y
(3)

 = R(b(Ki,3), Y”) mod n 

...... 

Ci = Y
(N)

 = R(b(Ki,N), Y
(N-1)

) mod n 

 

It is easy to see that: 

 

GK = fn(Ci, Ki,1, ..., Ki,N) 

 

The construction of b() ensures that gcd(b(), n) = 1, hence the existence of the 

roots. GM sends to Ai the value Ci through an encrypted and authenticated channel 

along with 

EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j))  for 1 ≤ j ≤ N 

 

GM stores the value Ci. 

4.4.4.3 Signing of message M by Ai (SIGN) 

Ai publishes (without any contact with GM): 

 

• M, Sig(Ki,j, M) 

• Ki,j, PGKi,j = fn(Ci, Ki,1, ..., Ki,j-1, Ki,j+1, ..., Ki,N) 

• EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j)) 

4.4.4.4 Adding more keys for a group member 

Dealt with as the addition of a new group member. 

4.4.4.5 Revoking keys 

Suppose the GM wants to revoke the keys Ki,1, Ki,2, Ki,3 of member Ai. GM 

computes and publishes the new group key: 

 

Y’ = R(b(Ki,1), GK) mod n 

Y” = R(b(Ki,2), Y’) mod n 

GK’ = R(b(Ki,3), Y”) mod n 

 

and sends to each other participant Az 
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Z’ = R(b(Ki,1), Cz) mod n 

Z” = R(b(Ki,2), Z’) mod n 

Cz’ = R(b(Ki,3), Z”) mod n 

 

This calculation produces a different Cz’ for each participant Az. The new 

value Cz’ is to be used by the participants who received it in the production of the 

signatures, while Ai should not use the keys Ki,1, Ki,2, Ki,3 in the production of the 

signatures (note the use of the value Cz belonging to each participant in the 

computation of Cz’). 

The computation of the roots modulo n resolves in the determination of the 

inverses modulo φ(n) of the b()’s. Let’s call these inverses c()’s. Then the value 

Cz’ may be computed as (from property 3): 

 

nCC iii kckckc

zz mod'
)()()( 3,2,1,=  

 

From property 1, if gcd(Cz, n) = 1, then it is possible to compute once 

 

s = c(Ki,1)c(Ki,2)c(Ki,3) mod φ(n) 

and then 

nCC s

zz mod'=  

 

for every participant Az using the proper Cz. 

From the latter consideration in property 1 it is possible to have gcd(Cz, n) = 1 

if gcd(GK, n) = 1, as previously requested in the generation of GK (note that Cz is 

obtained from GK with exponentiations with the inverses modulo φ(n) of the b()’s 

on the member public keys). 

It is easy to see that for every z ≠ i (therefore for every participant but the one 

whose keys were revoked), from 

 

GK = fn(Cz, Kz,1, ..., Kz,N) 

then 

GK’ = fn(Cz’, Kz,1, ..., Kz,N) 

 

but it is not possible to obtain GK’ with any combination of Ai’s revoked keys, 

thus those keys cannot be used to compute any signature. 
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In case the GM is not able to contact a group member to send him the new 

value Cz’, then that group member will use the old Cz. To verify that signature, it 

is needed the value s previously computed, that may be signed and published by 

GM in the CRL associated with GK’. 

4.4.4.6 Verification by anyone (VERIFY) 

To verify the signature produced by any group member the following steps 

have to be followed: 

 

• verify that Sig(Kz,j, M) is the signature of message M using Kz,j 

• verify that SigGM(AEz,j, EncGM(AEz,j)) is valid. 

• verify that GK’ = fn(PGKz,j, Kz,j) if the signer already used the latest Cz’. 

Otherwise verify that )),mod(' ,, jz

s

jzn KnPGKfGK =  if the signer used Cz. 

In fact: 

 

nC

nsKKKKCfnPGK

skbkbkbkb

z

Nzjzjzzzn
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4.4.4.7 Identification of signer (OPEN) 

GM verifies the signature to be opened. Then, using its secret key decrypts 

EncGM(AEi,j) and using the fields in the decrypted signatures GM may identify the 

signer and prove to a third party that Ai signed the public key Ki,j and knows the 

secret key s

jiK , . 

4.4.5 Observations and possible improvements 

In this paragraph we will discuss some suggestions and possible improvements 

to our solution. Some of them have been integrated, some are considered as a 

good subject for future work. Firstly, let’s consider the hashing algorithm 

described in chapter 4.4.2. When describing it, we went through the question of 

which is the one with the feature of optimality and security for calculating a one-

way accumulator. In this chapter we describe how the original simple function 
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may lead to security issues and how it has been easily improved, as suggested in 

[ML05]. Some observations are also described for what concerns the OPEN 

process and also the JOIN process. 

4.4.5.1 Observation I 

The first observation concerns the hashing function used to produce the one-

way accumulator, as described in [BM94] for security reasons. 

 

Specifically, the one-way accumulator function cited is this: 

 

nxyxe
y

n mod),( =  

 

The suggestion is to modify that function in such way: 

 

nxyxe
yh

n mod),( )(=  

 

where h() is a hash function with fixed-length output and opportunely chosen 

dimension, taking into account that the “exponential” arithmetic is executed in 

modulo Ф(n). 

 

This variant is aimed at reducing the possibilities of attack due to the 

representation of the members public keys used for the calculation of the one-way 

accumulators in the group signature scheme. Indeed, the possibility of 

implementing such attacks is connected to the kind of representation chosen for 

those keys. In the following chapter we will provide an example of attack, but 

they there can easily be found different kind of attacks. It seems wise, therefore, 

opting for a solution which cuts out the vulnerability since the beginning, instead 

of being forced to run security analysis for each implementation. 

4.4.5.2 Example of attack 

Let’s suppose, for simplicity, that N = m = 3. Let’s suppose also that as public 

key cryptosystem be used the discrete logarithm on Zp, with p of type strong 

prime. The member’s keys become then: 

 

pgk
S

jik

ji mod,

, =  
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Let’s suppose that members A1 and A3 are conspiring, therefore they generate 

their keys in this way: 

 

SS

SS

kkx

kkxx

gkgkgk

gkgkgk

3,32,31

3,12,121

3,32,31,3

3,12,11,1

,,

,,

===

=== +

 

 

Where pg ix < and the various exponentiations are meant mod p. Let’s 

suppose now that member A3 is revoked. He aims now at being able to issue valid 

signatures in spite of the revocation. The GM (Group Manager), after the 

revocation of member A3, updates the parameters and sends them to A1: 

 

),,,( 3,22,21,21 KKKXfC =  

 

A2 receives, differently, this parameter: 

 

),,,( 3,12,11,12 KKKXfC =  

 

while the new group public key is updated by signing the value: 

 

),,,,,,( 3,22,21,23,12,11,1 KKKKKKXfGK =  

 

Now, let’s suppose that A3, in spite of the revocation, wants to sign with the 

key K3,1 the message M. To do so, A3 calculates (with C1 provided by member 

A1): 

 

))3,(,(),3,(

),,,(),(,

11,31

3,12,111,31,3
2

1,3

REncKSigREnc

KKgCfPGKKMSigM

GM

x

K S =
 

 

Notice, in fact, that: 

 

),,,,,,(

),,,(
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from hence: 
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Conclusion: here is demonstrated the necessity of preventing such attacks by 

representing the public keys in a different way. That’s why it’s suggested the use 

of a hash function in the en function. The above illustrated attack is feasible when 

it’s possible to generate two private keys whose corresponding public keys may 

factorize. The example with the discrete logarithm shows how the overall security 

of the whole system is lower than expected (it’s sufficient finding some x such 

that ppg
x <mod  to be able to generate any factorization of public key, 

selecting, for instance, couples of keys x1 = x – a, x2 = x + a). It’s possible that 

there exist other circumstances on p and n by which the attack can be carried on, 

in addition to further representations as well. This is one more reason why we 

decided to modify the function en, in order to break the possibility of factorization 

of public keys. 

4.4.5.3 Observation II 

In order to render the function OPEN more effective, it’s suggested the 

insertion in the signature of each group member some kind of information which 

connects the signature itself to the member who issued the signature. This 

information should be shown to a third party in case of dispute, and the third party 

should be convinced by the correctness of such data. In this direction, the set of 

information: 

 

)),(,(),,( , iREncKSigiREnc jjiGMj  

 

ought to make use of Rj different from random data. For instance, it could be 

the signature of the member i who asks for the insertion into the one-way 

accumulator, and then into the public key of the group, of his own key Ki,j. Such 

request must, in fact, prove also the real possession of the corresponding private 

key S

jiK , . 
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The non-traceability may be preserved by means of a symmetrical algorithm, 

for instance in CBC mode with random IV. 

 

Conclusion: the opening of the signature may reveal the real identity of the 

member who signed by means of some data which can be used to persuade a third 

party. 

4.4.5.4 Observation III 

The Group Manager (GM) should provide each member with the list of signed 

keys, in a way similar to what is already known as certificate. The hash 

accumulator should provide the system with a more effective bandwidth and 

speed benefit, besides the unpleasant event of keys exhaustion, event which could 

possibly lead to DoS attacks. 

The best scenario is that in which the members need not be reached by the GM, 

or get in touch with him, for each group adjustment operation. For instance, there 

could be some benefits trying to limit the connection with the GM for every JOIN, 

as described in a rough and intuitive way in the following. Notice that it’s just an 

idea and not a well defined schema, but it could lead to some notable 

improvements. 

4.4.5.5 New JOIN 

Let’s assume that when the system is up and running there are only 3 group 

members. The GM calculates: 

 

)',',',',',',',',',( 3,32,31,33,22,21,23,12,11,1 KKKKKKKKKXfGK =  

 

Join member A1. The member generates 3 public keys K1,1, K1,2, K1,3 and sends 

the signed requests to the GM, receiving back from him: 

 

))1,(,(

)',',',',',',/',/',/',(

,1

3,32,31,33,22,21,23,13,12,12,11,11,11

jjGM REncKSig

KKKKKKKKKKKKXfC =
 

with j = 1, 2, 3. 

 

Join member A2. The member generates 3 public keys K2,1, K2,2, K2,3 and sends 

the signed requests to the GM, receiving back from him: 
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))1,(,(

)',',',/',/',/',',',',(

,1

3,32,31,33,23,22,22,21,21,23,12,11,12

jjGM REncKSig

KKKKKKKKKKKKXfC =
 

In this formula, j = 1, 2, 3. In this approach there’s no need to provide a new C1 

to the member A1. Actually, this method requires that the GM be able to 

calculate )(mod1

, nK ji φ− . The GM only knows the factorization of n, then it’s the 

only entity who is able to compute Φ(n). However, in order to do so, it’s 

necessary that 1))(,gcd( , =nK ji φ . For instance, the member who is joining the 

group could send his keys to the GM, and the latter could select and sign only 

those prime with Φ(n). Notice that if n is a rigid integer (as suggested in paper 

[BM94] together with the definition of one-way accumulator) then n = pq, where 

p = 2p’+1 and q = 2q’+1 with p’ and q’ safe primes, in addiction to distinct. In 

this situation, in order to apply the protocol New JOIN, it’s sufficient that the 

public keys generated by the members (or their hashes if the variant described 

above is applied) are not divisible by 2, p’ and q’, an easily verified condition. 

 

Conclusion: some features of the discussed method can be improved, such as 

the necessity of being reached by a PUSH at every group adjustment, and the 

possibility of being victim of DoS attacks based on keys exhaustion. The 

observation above proposed may therefore be evaluated (in terms of correctness, 

security and feasibility) in order to try to reduce the necessity of communication 

with the GM for each group modification. 
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Chapter 5 

Implementation 

5.1 Introduction 

The method used by Assolo to store the network traffic towards the 

administered systems has been presented. The stored data are non-repudiable by 

the system administrator. It arises the necessity to store these data (which are 

essentially a log file) in a secure format. That is, the logged data should be stored 

in such a way that maintains the privacy of the administrators and, at the same 

time, cannot be modified/erased without notice. 

 

Since January 2004, we have worked in collaboration with Telecom Italia Labs 

in order to find an effective solution to the issue of irrefutable administration, and 

consequently non repudiation of data, described in the previous sections. We used 

part of the research contained in this volume in order to develop such system, 

where commands issued by system administrators are securely archived and only 

some auditors are, in certain conditions, able to verify what the log contain. The 

developed system contains the following features: 

 

• Non-repudiation: the administrators must not be able to refuse to 

acknowledge the contents, the order and the time in which data and 

commands have been issued to the administered system; this must be true 

for he who sends but also for he who receives data; 

• Anonymity: the administrators must be able to hide their identity so as to 

protect their right to privacy; at the same time, on the other hand, it must be 

possible, in case of dispute and only by means of authorized personnel, to 

reveal the identity of the administrator and the log of his work; 
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These two features are obtained by means of cryptographic system, which 

include among the others one-time signatures, group signature, pseudonyms and 

receipts. 

5.1.1 Assolo  

Assolo [MI04] is the name of the system developed in collaboration with 

Telecom Italia Labs to grant the non-repudiation of sent/received data. It. While 

most of the network forensics tools nowadays (e.g. Infinistream Forensics 

Security or NetIntercept) act as sniffers on the network, Assolo acts as a gateway 

on the network. When a user wants to connect to an administered system, his 

connection is redirecter through Assolo, which takes care, in turn, to connect to 

the final endpoint. The first benefit of this approach is that Assolo is able to store 

all the data traveling on the network, no packet is lost. At the same time, on the 

other hand, gateways introduce some issues on some well-known protocols, such 

as FTP, which have to be used in different ways. 

 

 

Figure 5-1: Sniffer-based architecture 

 

 

Figure 5-2: Gateway-based architecture 

 

In order to grant the non-repudiation of data, the system makes use of one-time 

signatures and receipt, building on that a protocol which is inserted into the 

TCP/IP stack, between the TCP and the application level. More precisely, the 
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whole protocol is encapsulated inside a SSH tunnel, in order to benefit from the 

encrypted data channel SSH builds as part of the protocol. 

 

 

IP 

TCP 

SSH Tunnel 

Assolo protocol 

Application 

 

Figure 5-3: Protocols stack 

 

As mentioned before, Assolo stores all packets traveling on the network 

through its gateway. More precisely, it stores on memory devices the SSH tunnel 

payload, that is the Assolo protocol and the application protocol. The archived 

data can be therefore analyzed or kept for a-posteriori inquiries, for that reason the 

application protocols must not be encrypted (for instance telnet or ftp). 

In case of encrypted application protocols, there is the need of some key 

escrow or key recovery methods, or yet encryptions made by third trusted parties, 

in order to be able to decrypt the archived data a-posteriori. Those approaches 

have been discarded because of the difficult infrastructure they require and of the 

risks they can lead to; in [AAB98] the limits connected with this infrastructure are 

discussed in details.  

The communication between the client (i.e. the administrator) and Assolo is 

kept encrypted by the aforementioned SSH tunnel. In order to encrypt also the 

communication between Assolo and the administered server we need a further 

step. The user who wants to get connected to a server through the SSH protocol 

will, therefore, have to connect to a known port on the Assolo server via telnet, 

hence he will access a shell where he will specify the endpoint he wants to 

securely connect to. 
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5.2 Software architecture of the system 

In the previous chapters some methods and principles have been shown that 

together can take part in a secure data storage with group access privileges and 

high privacy enforcement. In this section we will describe the implementation of 

such system, developed in collaboration with the Computer Science Department 

of Turin and Telecom Italia Labs in 2004. Some decisions have been taken in 

order to make the system as much efficient and effective as possible, keeping into 

consideration the constraints of a real implementation. 

In particular, we will describe the system architecture, the modules which 

concur to give strength to the whole solution, the single features and how stored 

data are archived into a database. 

This project has been called “Assolo”, and this name denotes also the module 

which contains the Log Manager Interface and which is in charge of capturing 

data from administrators/systems transactions, as we will see in the following. 

 

The secure archiving system we are designing, which will be called Log 

Manager, is in charge of communicating with the Assolo module and to store all 

the data the latter captured during his job. 

As described in chapter 5.1.1 Assolo becomes a sort of gateway between the 

remote administered computer and the administrator, and its operation is that of 

capturing all the packets traveling between those two entities in order to keep 

trace of what it’s being going on. In a second place or time, therefore, it will be 

possible to check the correctness of the operations which the administrator has 

issued on the remote computer. This means that in case of dispute – in which the 

administrator could be the prosecutor or the prosecuted – there will be a secure 

and certified data stream to be opened and used as probation for the cause. 

The whole of the captured data is placed into temporary files sent by Assolo to 

the Log Manager, in order for the latter to take the charge of encrypting and 

securely storing the data. This transmission is made using the TCP/IP protocol, 

and we can put forward that it will be required to attach some context information 

useful to the Log Manager for a correct storing process. 

The Log Manager, after the encryption of data, takes the charge of sending 

those data to a DBMS; in the following we will discuss the reasons why a 

database becomes necessary to the storing process and what is the relational 

scheme of the tables which will be used. 

Notice that the DBMS must be reachable also from other remote systems, in 

particular from the auditors’ workstations. The auditors will, in fact, be able to 
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issue queries and retrieve archived transactions data. For this reason it’s necessary 

to introduce some techniques to distinguish the privileges of the single users, 

considering also the Log Manager and the DBMS administrator, who must be able 

to manage the configuration by means of some tools designed for the purpose. 

Assolo, Log Manager and DMBS must not necessarily be installed on the same 

physical computer, but it’s desirable that between those entities there exist some 

secure and single-purpose connections. In particular, the data traveling between 

Assolo and Log Manger are not encrypted, therefore it’s necessary to prevent 

possible attacks based on packet sniffing. 

 

 

Assolo   Log Manager 

DBMS 

 

Log Manager 
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Figure 5-4: System architecture 

 

As shown in the figure, the Log Manager is made up of several logical 

modules, more in details: 

 

• Log Daemon, which waits for the data from Assolo; 

• Session Encrypt, which attends to encrypt those data and to prepare the 

secrets for the auditors (i.e. group members); 

• DBcomm, which is in charge of the communication with the DBMS, of 

the signature of the inserted data and of the authenticity check of the 

received data; 

• Other tools, which represent the interfaces provided to the Log 

Manager administrator to configure the auditor’s personal data, 

archived in the database as well;  

5.3 Communication between Assolo and Log Manager 

In this section we will analyze the data Assolo sends to the Log Manager and 

the size and format they must obey to. 
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Assolo takes the role of an intermediate entity between the administered 

element and the administrator, and deals with capturing all the IP packets 

(belonging to a whole work session) traveling between them. In particular, it has 

to reassemble in a single bit stream the packets payload relative to a whole 

session, and then send this stream via TCP/IP to the Log Manager. 

Attached to the stream are the data characterizing the work session, denoted in 

Chapter 3 simply with hU . We can now list with more details the data which 

concur to identify a whole session: 

 

• type of session (correctly concluded session, not correctly concluded 

session) 

• IP address of the administered server 

• applicative protocol used for the administration (it can be deduced by 

the port the connection to the administered server has been addressed 

to) 

• administrator pseudonym 

• work session beginning and ending time 

 

Furthermore, Assolo is also engaged in the task of preparing the list of the 

auditors and of the groups which are entitled to access a given record of 

information. That list is created by means of three pieces of information: the 

administered server, the real identity of the operator/administrator and the type of 

protocol used in the administration process. Once this list has been assembled, 

Assolo sends it to the Log Manager. 

The format of the packet Assolo uses to send data to the Log Manager is the 

following: 

 

0 8 16 24 31 

type auditor_num port_ae 
ip_ae 

nym_id 

start_time 

end_time 

session_num 

Auditor 
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Figure 5.4: Format of the packets Assolo uses to send data to the Log Manger 

 

The fields involved in this packet are the following: 

- type (8): type of session (normal, bad); 

- auditor_num (8): number of auditors and groups entitled to acces the data 

(this value multiplied for 16 gives the length in bit of the auditor field); 

- port_ae (16): TCP port used for the administration of the remote system; 

this port gives a hint on the protocol used for the administration; 

- ip_ae (32): IP address of the administered system; 

- nym_id (32): administrator pseudonym; 

- start_time (32): exact time identifying the beginning of the session; 

- end_time (32): exact time identifying the ending of the session; 

- session_num (32): session number; it’s a numerical unique identification 

Assolo assigns to each work session of the administrators: 

- auditor (variable length): list of the auditors and of the groups who are 

entitled to access the recorded data; both auditors and groups are 

unambiguously identified by 16 bits codes, where the first bit gives the 

discrimination between auditors and groups;  

 

Notice that the data which must be actually recorded is not present in the 

payload of the packet Assolo sends to the Log Manager. The explanation is that 

the temporary files Assolo employs to save captured packets in are stored in an 

area where the Log Manager has read access rights. The Log Manager is, 

therefore, able to retrieve autonomously the file whose name is identified by the 

hexadecimal codification of the session number and whose location is fixed. 

The file Assolo assembles does not contain the whole IP or TPC captured 

packets, but only the data payload encapsulated in the SSH tunnel, as shown in 

figure: 
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Figure 5-5: Protocols stack pointing out what is stored 

 

More precisely, the payloads of all the packets are chained in a whole data 

flow. It’s not necessary to introduce, when saving the data, specific headers to the 

file or to the single packets, since all the information which is necessary to the 

auditing process is already included in the packets header of the Assolo protocol. 

5.4 Selected algorithms 

In Chapter 2 we introduced several algorithms concerning symmetrical and 

asymmetrical encryption, secret sharing and hashing functions, and in Chapter 3 

we described how to use them to develop a secure storage facility. 

We did not specify, however, which among all those possible alternatives we 

would choose for the implementation. Some observations must be made on the 

reasons which have led to the choice of particular methods among the ones we 

had at disposal. 

Notice furthermore that, among the two alternatives described in paragraphs 

2.3 and 2.4 (symmetrical or asymmetrical keys for each auditor) we preferred the 

asymmetrical solution. That’s because by means of public key encryption systems 

there is no need of keeping a shared secret (i.e. the symmetrical key) in the Log 

Manager area, providing more security mainly in case of system attacks. 

The various features of the designed system require the use of symmetrical and 

asymmetrical algorithms, hash functions, secret sharing methods, random 

numbers generators, text-binary conversion functions and data compression 

solutions. 

In paragraph 3.3 and following, we stated the necessity of using – to encrypt 

the file to be stored – a symmetrical key with length equal to the hash output. 
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Consequently, we need to find an symmetrical encryption algorithm with a key 

dimension equal to the length of the digest issued by a hashing function. The 

reason of this choice is the uniformity of structure: it’s advisable to keep a well 

defined structure for the secrets belonging to each auditor, because the data to be 

encoded is simply made of bit strings, without headers or formatting information. 

We want to provide a high security level for the designed system, therefore 

much more consideration has been laid on the security features of the chosen 

algorithm than on their performance values. 

For this reason we evaluated the symmetrical keys as long as the digest 

produced by MD5 or SHA-1 (respectively 128 and 160 bits) not sufficient. On the 

other hand, the algorithm chosen for the symmetrical encryption is AES because it 

works on blocks of 128 bit (although Blowfish would have had higher 

performance). In conclusion, the chosen algorithms are SHA-256 and AES – the 

latter may adopt 256 bits keys. 

Those features allow for a good level of security also for the non-immediate 

future. This is particularly relevant if we consider that a dangerous attack to 

cryptosystems is the possibility of decrypting, in a future when computational 

power will be much higher than now, data encrypted at present. 

For analogous reasons, we chose asymmetrical 2048 bits keys instead of the 

more common 1024 bits keys; some researchers (e.g. H. H. Orman e P. Hoffman 

in http://www.ietf.org/internet-drafts/draft-orman-public-key-lengths-08.txt), 

assert that RSA-1024 is less safe than a symmetrical cryptosystem with 80 bits 

keys. 

As for the random number generation, we evaluated the method described in 

ANSI X9.17 appendix C as quite good: this algorithm, in fact, states optimal 

distribution properties and independence between the generated values, and it’s 

widely used in many common cryptographic applications. 

As before discussed, Shamir’s solution has been adopted when it comes to 

secret sharing: it combines simplicity, efficiency and reliability. From what we 

illustrated in the previous sections it should be clear how this solution may be 

optimal in terms of features for the designed system. 

In conclusion, for data compression the Gzip algorithm has been chosen, while 

for the binary-text-binary conversion the Base64 method seemed to be well 

suitable for the designed system. 
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5.5 Cryptographic libraries: Crypto++ 

The implementation of the designed system required a library which contained 

all of the functions involved in the process: symmetrical and asymmetrical 

encryption, hash functions, random numbers generator, etc… In particular, those 

libraries had to implement the algorithms listed in the previous sections. 

Several cryptographic [CE04] libraries are available in the public domain – the 

open source community has released a lot of code concerning cryptography – but 

the most known are the OpenSSL (http://www.openssl.org/) libraries. They are 

largely used in a wide number of applications concerning signatures and data 

encryption: they include hash and MAC functions, symmetrical and asymmetrical 

encryption algorithms, data compression and conversion code. 

As for the implementation of the system, however, those libraries are limited in 

that they include neither secret sharing functions nor an implementation of SHA-

256; as stated in the previous section, those two methods are necessary for the 

implementation of the designed system. 

For that reason, we decided to use a different implementation of cryptographic 

libraries, open source as well, offering high levels of security standards. We found 

the Crypto++ (http://www.cryptopp.com/) to be a good candidate. They are less 

known than OpenSSL, but efficient and complete to the same extent. The 

programming language used for those libraries is the C++, and they include most 

of the algorithms we need for the development: symmetrical and asymmetrical 

encryption, signatures, hash and random numbers generator functions. In those 

libraries we find also an implementation of Shamir’s secret sharing method 

described [SHA79], method more than indispensable for the correct operation of 

the system. 

The completeness of those libraries is such that they include also data 

compression functions – such as Gzip and Deflate – and data conversion methods 

– for instance Base64; those implementations are very useful during the 

development process, as described in the previous section. 

Another reason why we chose the Crypto++ libraries is that a version of those 

libraries has been certified by NIST: Crypto++ were compliant to the 

specifications stated in FIPS 140-2. Since NIST does not certificate source code, 

but only binary code or howsoever pre-compiled modules, the only version to be 

certified is the 5.0.4. More precisely, NIST has certified a DLL library, available 

only for Microsoft OS, which does not include all those algorithm that NIST 

retains unnecessary for a cryptographic library. Crypto++ include, indeed, a lot of 

functions and variations of well known methods widely used. It’s possible, during 
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the compilation process, to include all of those functionalities (thus compiling the 

standard version, the one with all the libraries available) or to exclude them, 

obtaining a library with the functions certified by NIST and nothing more. 

Notice, however, that when the library is compiled in the autonomous way it 

cannot be considered as certified. In the official homepage there is, on the other 

hand, the DLL version that NIST considered compliant to FIPS 140-2. 

In order to get the code to run both in Windows and in Unix-like (e.g. Linux) 

OSs we had to compile the libraries, thus losing the official NIST certification. 

Nevertheless, the code may be regarded as safe, at least the part of the code which 

implements the functions NIST certified. 

5.6 Log Manager functionalities 

In this chapter we will describe the functionalities implemented by the Log 

Manager, focusing our attention on its tasks and their sequence. In particular, we 

will concentrate on the three more relevant functionalities of the Log Manager, 

that is: 

 

• Session storage 

• System initialization 

• System halt 

 

5.6.1 Session storage 

The Log Manager is made up by three main modules: Log Daemon, Session 

Encrypt and DBcomm. They have different specific tasks and, more precisely, all 

of them output the results of their task to the following module in the chain. 

As for the new session storing process, the first module involved is the Log 

Daemon: it waits on a TCP port for the data to be stored and behaves like a 

common daemon process. In details, the Log Manager itself is a multi-thread 

program, therefore the Log Daemon, upon receiving a TCP connection, starts a 

new ‘child’ thread for the management of that connection. In the meantime, the 

‘parent’ thread stays on waiting for new connections on the same port.  

One of the tasks of the ‘parent’ thread is that of keeping in a shared memory 

area with semaphores access, the last ring of the hash chain which has been used. 

In the following we will discuss the reason which justifies such a behavior. 
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The ‘child’ thread receives the data from Assolo and stores them on a 

temporary file, which will be deleted upon their correct archiving on the DBMS. 

Therefore it invokes the Session Encrypt module, which takes in input those data. 

The Session Encrypt module is then in charge of checking whether there exists 

a file whose name is the hexadecimal codification of the session number: this file 

must contain the data received from Assolo and exist in the shared memory area. 

If that file exists, the module will proceed with the generation of the secrets for 

each auditor. If the file is not present, it will send back to Assolo an error message 

stating that the file could not be found. 

The Session Encrypt must now retrieve from the DB the information about the 

active auditors; this is done through the collaboration of the DBcomm which, 

upon executing the queries and retrieving the required information, frames those 

data in an agreed upon structure. 

At this point the Session Encrypt can generate with a pseudo-random algorithm 

the session key Ai and calculate its hash )H(Ai . Using the data received from 

Assolo, in particular the list of auditors and groups entitled to access data, the 

module can calculate the secrets relative to each auditor and then encrypt them 

with the corresponding public key. 

More precisely, the module will calculate the sub-secrets belonging to each 

auditor of a group, then he will concatenate them with the key – real or fake – 

assigned to each one of them, obtaining the structure described in paragraph 3.6. 

If an auditor does not belong to any group, or he belongs only to groups not 

entitled to access that particular record, the information relative to those groups is 

omitted, because it’s not necessary (to assure the elusion property) to assign fake 

data to these auditors. 

In order to allow an auditor to be part of more than one group (potentially 

infinite groups), during the implementation process we chose to let each auditor 

have more than just one encrypted block in the record. More precisely, a 

configuration file is used to set the number of blocks RSA-2048 destined to each 

auditor: each auditor can belong to a number of groups equal to 5 multiplied for 

the number of blocks he’s been assigned to. This value is computed considering 

the decryption key length its hash length (256 bits) and considering the length of 

each sub-secret (336 bit). Notice that all the auditors must take the same number 

of blocks, also those who wouldn’t need such amount of space, in order to enforce 

the elusion property. Without this ‘trick’ it would be, in fact, easy to tell how 

many groups an auditor is in simply by analyzing the encrypted data. 

Let’s recap: the module computes the sub-secret s, it concatenates them to the 

real or fake key, and it encrypts them with the public keys of all the active 
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auditors. Optionally, data can now be packed to reduce their size. This step is 

optional because it could, in some cases, affect the overall system performance 

and should then be avoided. The algorithm by default for data compression is 

Gzip, but it’s easy modifying it by editing the Log Manager configuration file. 

Such data is now ready to be symmetrically encrypted with the key Ai. The 

encryption step should always be subsequent to the compression, because the 

encryption process removes all the structures and regularities present in a file thus 

preventing the compression from reducing the effective size of the file. The 

reason is that compression is often based on regularities and repetitions in the file; 

encryption, on the other hand, makes the file much similar to random data stream. 

The file is now archived in a storage area both Log Manager and DBMS have 

access to, while in the DBMS tables are stored the path and hash of the file itself. 

Notice that the implementations is slightly different from the process described 

in Chapter 3. For efficiency reasons, in fact, it was chosen not to insert the 

encrypted data straight into a BLOB field (Binary Large Object) of the table 

containing the logs. It was decided, on the other hand, to store only the file path 

and its hash. Consequently, the method used to calculate each ring of the hash 

chain has to be modified as well: in this computation the system will not make use 

of the whole file but only of its path and hash. This slight modification does not 

affects the security of the whole process, its only aim is that of avoiding to store 

big sized data straight into a DBMS table. 

At this point the Session Encrypt can compute the new ring of the hash chain. 

More precisely, the hash will be computed on the concatenation of the following 

data: 

 

• Session identification data (elements which can be used to identify 

correctly the session); 

• Secrets assigned to each auditor; 

• File session path and hash; 

• Previous ring of the hash chain; 

 

The last ring of the hash chain correctly archived in the DBMS is stored in the 

shared memory area (whose access is governed by semaphores) previously 

described. 

The lapse of time occurring between the Session Encrypt access to this area 

and the confirmation of the DBcomm about the correctness of the session data 

storing process is contained in a critical section. The other executing thread will 

therefore be suspended when trying to get access to the last ring of the hash chain. 
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The Session Encrypt, upon receiving the DBcomm confirmation about the 

correct data insertion, will update the value of the last ring of the hash chain so as 

to make it available for the waiting threads. 

As discussed before, the Session Encrypt sends the DBcomm the data to be 

inserted into the DBMS, which in turn will take care of the insertion and of the 

signature of the data received (this signature will be issued with the private key of 

the system itself). 

Notice that the DBcomm, upon receiving data from the database, takes care of 

checking the authenticity of the signature as well. 

After the correct insertion of the received data into the database, the Session 

Encrypt proceeds deleting the temporary file created the Log Daemon, containing 

the data necessary for the encryption and for the identification of the archived 

data, and the temporary file created by Assolo, containing the unencrypted data to 

be archived. 

5.6.2 System initialization 

During the system initialization some operations must be carried on: firstly, the 

system must check the DBMS activity (it must be active and reachable in order to 

receive the data), then it must check that the tables where data will be archived 

exist and are built according to the expected structure. The system must 

subsequently check whether the table containing log files is filled with data, and 

in case getting the last ring of the hash chain correctly stored. This hash value will 

be stored in the shared memory area previously described, and will be used as 

starting value for the following rings computed on data to be archived. 

 

It’s also possible that, for unpredictable reasons, the Log Manager crashes and 

stops working. That’s why, after an unpredicted stop, the Log Manager must 

check that all the files Assolo sent are correctly stored into the DBMS. In order to 

do that the Log Manager must check whether the temporary files, containing the 

data sent by Assolo and concerning a whole session, have already been used to 

store data. This check can be carried on by searching into the DBMS for the 

sessions concerning those files. If they can be found the temporary files are 

deleted, otherwise the files will be passed as input to the Session Encrypt module 

which will then take care of retrieving the session file from the memory area 

shared with Assolo and proceed with encrypting and inserting data into the DBMS 

as described in the previous sections. 

After those operations have been carried on, the system will open again the 

TCP port where it will listen for connections coming from Assolo. 
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5.6.3 System stop 

It’s important being able to plan a correct stop to the archiving system, because 

it may turn out to be necessary sometimes: for instance in case of maintenance. 

In order to terminate correctly, the Log Manger must firstly not accept 

connections coming from Assolo. In this way he will not receive further data to be 

archived, encoded and sent to the DBMS. 

Next, the system will have to wait for the correct termination of all the 

encryption processes occurring at the time the stop command was issued; by 

doing so no computed data will be lost. 

Only after having completed correctly such procedures, the Log Manager 

execution can be safely interrupted. 

5.7 DBMS data storage 

In this section we will describe the reasons and the benefits of the employment 

of a DBMS for data storage. We will include in the description also the relational 

scheme of the tables used for the storage of logs and of the data concerning 

groups and auditors. 

5.7.1 Description of choices 

The system we are describing, as afore illustrated, stores data into a DBMS. 

The main reason for this is the need for an easy to use and to access archiving 

system, crash resistant and with features such as stability and transactional support 

(for instance correct termination of writing operations). 

The possibility of using a simple file managed directly by the Log Manager has 

been considered but eventually discarded, firstly because the file structure would 

have been too complex. A database, on the contrary, allows for quick and easy 

queries on archived data (i.e. the queries issued by auditors), mostly when indexes 

and data caching techniques are used to improve system performances. 

Furthermore, the DBMS supports privilege, therefore it’s quite easy assigning 

users different privileges according to their role and managing automatically the 

concurrent access of several users. 

Quite a few DBMS systems are available on the market, each one with its 

several features and its different costs. Oracle is, by far, one of the most reliable 

and complete, mainly when it comes to security; unluckily, the cost for each 

license is too high. Therefore, when the target is the first implementation of a new 

system, most organizations adopt products with good features but lower costs. 



CHAPTER 5 – IMPLEMENTATION 

82 

For the implementation of this system, which may at this stage be easily 

regarded as a prototype, we chose to adopt an open source DBMS, which 

obviously has no costs but can offer lots of necessary functionalities all the same. 

Among the different open source DBMS available on the public domain, 

MySQL was the one we decided to adopt for the prototype of the system. MySQL 

is widely used, stable, reliable and well tested with the help of years of practice 

and thousands of users all around the world. As for performance, MySQL is one 

of the best choices, both because it’s been around for some years and therefore it’s 

been refined and because it doesn’t offer, in its standard distribution version, some 

of the typical advanced DBMS features. In particular, the default installation does 

not allow for referential integrity rules (foreign keys) and cannot make use of the 

protocol of commit/rollback for the queries. 

However, those functionalities can be activated by editing the system 

configuration file, but in this case system performances are negatively affected. 

During the implementation, we decided to make use of foreign keys for tables 

relationships all the same, while we didn’t evaluate as necessary the 

commit/rollback feature. 

5.7.2 Relational schema 

In the following are described the tables which will be stored in the DBMS, 

starting from the tables and relationships scheme. 
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Figure 5-6: Relational schema of the DBMS tables 

 

In the figure, the underlined attributes represent the primary keys of the tables, 

while the lines which link together the tables stand for the referential integrity 

rules with the corresponding cardinalities. 

In the following we will detail the tables showed in the figure. 

5.7.3 Table details 

The first table described here is the one containing the data concerning the 

auditors: the “Auditors” table. Its attributes have the following format and 

meaning: 

- auditor_id: it’s a 16 bit code, whose first bit vale is equal to 0; it 

unambiguously identifies each auditor and is the primary key of the table; 

- personal_data: this attribute contains the auditors’ personal information: 

name, surname, address, tax code; the format doesn’t affect the behavior 

of the Log Manager, to the extent that this field could also be empty or 

contain lots of data;  
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- activation_date: it contains the date in which the auditor has received the 

access grant to the logs; 

- deactivation_date: it contains the date in which the auditor has been 

revoked the access to the logs; when the auditor has not been revoked, this 

field contains a NULL value, which means a not valid date; 

- public_key: this attribute contains the auditor’s certificate; the certificate 

contains, in turn, the public key of the auditor: 

- signature: this field contains the digital signature which DBcomm issues 

to data when they are inserted of modified; 

- pubkey_certificate: it contains the certificate of the public key used to 

create the signature of the previous field; 

 

The attributes of the table “Groups” have the following format and meaning: 

 

- group_id: this is a 16 bit value, whose first bit is equal to 1; it 

unambiguously identifies a group and is the primary key of the table; 

- group_info: this attribute contains all of the data characterizing a group; 

as it was for the “personal_data” attribute, its format or size does not affect 

the behavior of the Log Manager; 

- total_auditors: this field contains the number of auditors belonging to a 

specific group in that moment; if the value of this field is modified, a new 

record must be added containing the old value in the table 

“Groups_history”; the reasons of this addition are detailed in the 

following. 

- minimum_auditors: it contains the minimum number of auditors 

belonging to a group whose collaboration is necessary to decrypt the 

record (the data contained in the record); if a modification to this field 

occurs, the same behavior as the preceding field is applied; 

- activation_date: it’s the date when the group was built; 
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- deactivation_date: it contains the date since when the group is not 

allowed anymore to have access to the log; if the group is still entitled to 

access the data, this field contains a NULL value; 

- signature: it contains the digital signature DBcomm issues on data when 

they are inserted or modified; 

- pubkey_certificate: it contains the certificate of the public key which has 

been used to create the signature contained in the preceding field; 

 

In the table “Groups_aud” there is the list of the auditors who are members of 

each group; the key of this table is composed by the couple group_id and 

auditor_id which, on top of that, must obey to the foreign key rule with the 

homonymic fields of the tables “Groups” and “Auditors”. The attributes of this 

table have the following structure and meaning: 

 

- group_id: as this field is the foreign key for the table, it submits to the 

same rules of the homonymic field in the “Groups” table; 

- auditor_id: as in the previous item, this attribute is a foreign key, 

therefore it has got the same structure as its homonymic field in the 

“Auditors” table; 

- activation_date: it contains the date in which the auditor, identified by the 

“auditor_id” value, entered the group identified by “group_id”; 

- deactivation_date: it contains the date in which the auditor, identified by 

the “auditor_id” value, was revoked from the group identified by 

“group_id”; 

- signature: this field contains the digital signature the DBcomm issues on 

data when they are inserted or modified; 

- pubkey_certificate: it contains the certificate of the public key used in the 

signature contained in the previous field. 

 

The table “Groups_history” contains the historical list of changes which 

occurred to the table “Groups”. More precisely, are kept in this table the changes 

occurred to the attributes “total_auditors” and “minimum_auditors”. Those data 

must be kept because, as discussed in Chapter 3 the changes of these values can’t 
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have retroactive validity. Consequently, when during the auditing process an 

auditor wants to access data as member of a group, the system must know 

whether the user was member of that group when the record was inserted in the 

database. 

The key of this table is made up by the two attributes “group_id” and 

“modification_date”. The format and meaning of the attributes of this table are the 

following: 

 

- group_id: this field represents the foreign key of the table, therefore it’s 

similar to the homonym field in the “Groups” table; 

- modification_date: it contains the date in which the parameters 

concerning a group have been modified; 

- total_auditors: it contains the number of the auditors belonging to the 

group when the modification (see previous field) took place; 

- minimum_auditors: it contains the minimum number of auditors – 

belonging to the group when the modification took place – whose 

collaboration is necessary to access to the archived data; 

- signature: this field contains the digital signature the DBcomm issues on 

data when they are inserted or modified; 

- pubkey_certificate: it contains the certificate of the public key used in the 

signature contained in the previous field. 

 

The table “Logs” maintains the data concerning each archived session; its 

primary key is composed by the attributes “session_id” and “session_start”. 

Session identifiers are randomly generated and it’s highly improbable, though still 

possible, that two session identifiers assume the same value. The attributes of the 

value have the following format and meaning: 

 

- session_id: it’s a 32 bit code which, together with the field 

“session_start”, identifies unambiguously the work session; 

- user_pseudonym: it’s the administrator’s pseudonym relative to the 

session; 
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- administered_server: this field contains unambiguously the administered 

server and the administration protocol used; in general it coincides with 

the IP address of the administered calculator and the TCP port used; 

- session_start: it contains the time in which the work session started and, 

together with the field “session_id”, identifies unambiguously the work 

session; 

- session_end: it contains the time in which the session was closed; 

- session_termination: this field signals whether the session has been 

correctly closed or there have been anomalies; 

- timestamp: this attribute, typically administrated automatically by the 

DBMS, contains the time in which the data concerning a defined session 

have been inserted into the table; 

- path: it represents the logical path where the encrypted file containing the 

packets concerning a session is stored; 

- encrypted_data_hash: in this field there is the hash of the encrypted file 

containing the packets concerning a session; 

- hash_chain: this attribute contains the hash chain computed as shown in 

paragraph 5.6.1; 

- signature: this field contains the digital signature the DBcomm issus on 

data when they are inserted or modified; 

- pubkey_certificate: it contains the certificate of the public key used in the 

signature contained in the previous field. 

 

In conclusion, the table “Logs_aud” is that which contains the secrets 

pertaining to each auditor, useful during the session decryption process. More 

precisely, whenever a session is stored in the table “Logs” previously discussed, 

in this table for each active auditor a record is inserted. This record contains the 

data (actually the ‘keys’) pertaining to each auditor who is entitled to decrypt the 

session – fake data is used for non-entitled auditors. The attributes of the table 

have the following format and meaning: 
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- session_id: this attribute is the foreign key of the table, therefore it’s 

similar in format to its homonymic field in the table “Logs”; 

- auditor_id: this field represents a foreign key for the table, therefore it’s 

similar in format to its homonymic field in the table “Auditors”; 

- session_start: as for the previous two fields, this attribute is a foreign key 

for the table, consequently it’s similar in format to the field “session_start” 

(to whom it refers) in the table “Logs”; 

- encrypted_key: this field contains the data used by the Auditor to decrypt 

– when entitled to – a specific file relative to a session. Auditors who are 

not entitled to access the record are assigned fake data, as discussed in 

paragraph 3.3. Notice that the secrets pertaining to each auditor are 

encrypted with his public key before being archived in the DBMS; 

 

Notice, lastly, that this is the only table where records are not signed with the 

private key assigned by the Log Manager. The reason of that difference is that the 

information inserted in this table is used to compute the hash chain whose rings, 

and whose related signatures, are inserted in the table “Logs” previously 

described. Consequently, a slight modification to this table would be detected 

simply by checking the integrity and authenticity of the chain itself. 

5.8 System administration tools 

Always focusing on the implementation, this section presents some system 

administration and configuration tools and their features. The system management 

requires, in fact, some tools which can be used by the Log Manager administrator 

to insert or edit – through the use of the DBcomm module – data concerning 

auditors and groups. 

Notice that these tools must necessarily reside on the same computer where the 

Log Manager is installed. Furthermore, it’s essential that the administrator may 

not be able to work on data concerning auditors and group without these tools. 

The reason is that by editing the auditors and groups tables an administrator could 

grant access to auditors who are not entitled to. What’s worst, all of this could be 

done without being logged or controlled.  

By forcing the administrators to use the provided tools, we are able to detect (a 

posteriori) and consequently eventually prevent unfair behaviors through the use 

of the system Assolo itself. 
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The tools designed to administer the Log Manger can be subdivided into 4 

main areas, which are now described in details: 

5.8.1 Auditors anonymous access management 

It’s necessary to implement some tools the administrators will be entitled to 

use to grant or deny access to the single auditors or groups. 

To grant the access to an auditor the administrator must fill the table 

“Auditors” in the database with his personal data. More precisely, the tool will 

have to require as input all the data pertaining to the auditor (personal data, public 

key certificate, etc…), to assign him a 16 bit unambiguous identification number 

whose first bit must be 0, and finally to send all the data received to the DBcomm. 

The latter will, in turn, take care of signing the data with its private key and then 

sending them to the DBMS. 

Notice that when access is granted to an auditor, the field “activation_date” of 

the table “Auditors” contains the time in which the auditor has been added, while 

the field “deactivation_date” will be set to NULL. 

Data pertaining to users in the table “Auditors” must never be deleted, because 

it’s necessary to maintain an historical list of auditors which have been entitled to 

access data, even if only for a short period of time. Consequently, when the 

administrator must revoke the access to an auditor, the revocation data must be 

inserted in the field “deactivation_date” related to that auditor. From this date on, 

the Log Manager will not generate secrets pertaining to the revoked auditor. 

Notice that when an auditor is revoke, it must be removed also from the groups 

he belongs to, taking care not to break – with the removal – the minimum number 

of group elements necessary to build the secret information. This process is 

described in details in the following paragraphs, where group access management 

tools will be presented. 

Notice, furthermore, that when an auditor is revoked access privileges, he will 

not be able to be reinserted with the same unambiguous identification number. 

The reason is that there is no record removal in the historical list of auditors which 

have been entitled (and of periods in which they were entitled). In case of auditor 

reinsertion, a new record in the table “Auditors” must be inserted, it would be 

wrong modifying the record previously belonging to him, editing the attributes 

values “activation_date” and “deactivation_date”. 

Also, when a new record pertaining to an auditor is added, the DBcomm must 

sign it. Further observation: only the personal data and the attribute 

“activation_date” are editable. 
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5.9 Group access management 

As already stated in chapter 5.8 it’s necessary to implement tools userful to 

add/remove groups from the system. In this chapter we will describe those tools. 

In order to insert a new group into the system, it’s necessary that all the 

auditors belonging to that group are already part of the system database. This is 

motivated by the fact that even if an auditor of the group is not entitled to access 

data by himself, he will be treated exactly as the others, hence preserving the 

property of elusion described in paragraph 3.4. 

The tool used to insert the new group into the system will, firstly, have to take 

as input the number of elements belonging to the group and the minimum number 

of elements who have to collaborate to obtain the shared secret. By means of 

those two values, the Log Manger can create the exact number of sub-secrets 

pertaining to each auditor. Those sub-secrets must be generate in such a way that 

a sub-set of those secrets may lead to the key with whom the data were encrypted. 

Subsequently, the tool will have to require as input all the identification 

numbers of the auditors belonging to the group. He will then check that they are 

all active and put them into the table “Groups_aud” accordingly. 

As already stated for the auditors, when new records are inserted in the table 

“Groups” and “Groups_aud”, it’s necessary to sign them with the Log Manager’s 

private key and to set the fields “activation_date” of the two tables respectively to 

the date in which the group was inserted and to the date in which the user has 

been inserted into the group. Again, the field “activation_date” will be set to 

NULL. 

Also in this case, data pertaining to a group cannot be delete from the DBMS, 

therefore to revoke a group it’s necessary to set the field “deactivation_date” to 

the date starting from which the group has no access privileges to data. At the 

same time, it’s necessary to set the homonymic field contained in the table 

“Groups_aud” and pertaining to auditors belonging to that group, to the same 

value. 

Notice that also in this case, when a record is modified must be anew signed; to 

be precise, the only attributes which can be modified are “group_info” (which 

contains generic information concerning a group) and “minimum_auditors” (the 

minimum number of auditors necessary to unfold/build a secret). 

It must be observed that, when the field “minimum_auditors” is modified, it’s 

necessary to check that the new value is lower or equal to the value of 

“total_auditors”. Furthermore it’s necessary to maintain an historical list of the 

characteristics of each group during its life (i.e. its activation period). For that 
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reason, when the field “minimum_auditors” is modified, the preceding values are 

stored in the table “Groups_history”, setting the field “modification_date” 

accordingly.  

The value of the field “total_auditors” is not immediately editable; we will 

show in the following chapter the way how it’s changed when an auditor is added 

or removed from a group. 

5.10 Group members management 

The system must include a tool to modify the composition of the single groups: 

it must be possible to add an auditor to a group or remove him from one of the 

groups he belongs to.  

When an auditor has to be added to an existing group, his data must be already 

present in the table “Auditors” and the auditor itself must be active. The tool 

developed to make such modifications takes as input the identification of the 

group the auditor is joining to and the identification of the auditor itself. 

Data concerning this association will be inserted into the table “Groups_aud”, 

and the value in the field “total_auditors” of the table “Groups” will be increased 

by one. Notice that, as stated before, it’s necessary to maintain an historical list of 

each group composition, consequently the previous data concerning the group 

members are inserted in the table “Groups_history”, setting accordingly the field 

“modification_date”. 

When and auditor must be removed from a group, it’s necessary to fill the field 

“deactivation_date” of the table “Groups_aud” accordingly, in order to maintain 

an historical list of the composition of the groups. Similarly to the addition of a 

new auditor in the group, it’s now necessary to modify the field “total_auditors” 

pertaining to the group the auditor belong to in the table “Groups”: in this case, 

this field must be decreased by one. 

Notice that, before allowing the removal operation of an auditor from a group, 

the tool must make sure that the new value of the field “total_auditors” is greater 

or equal than the value of “minimum_auditors”; on the contrary, the tool will have 

to prevent the auditor from being revoked. If this should happen, the administrator 

must simply decrease the value of the field “minimum_auditors” by one and then 

launch the modification of the group composition. 

Similarly to the insertion of a new auditor, when deleting an auditor from a 

group (and therefore modifying the field “total_auditors” of the table) it’s 

necessary to store in the table “Groups_history” the previous value pertaining to 

the group. 



CHAPTER 5 – IMPLEMENTATION 

92 

5.11 Data integrity and authenticity 

The tool described in this chapter is the one used to check the integrity and 

authenticity of data contained in the database tables. 

The administrator must be able to check whether the contents of the tables 

“Auditors”, “Groups”, “Groups_aud” and “Groups_history” is genuine. In order 

to do se, the system must check whether all the records contained in those tables 

are correctly signed. The signature must be verified against the Log Manger’s 

public key, checking that the signatures are authentic. Of course, the administrator 

must be able to carry on those tests both on all the tables and or one single table. 

In order to check the authenticity and integrity of data contained in the tables 

“Logs” and “Logs_aud”, on the other hand, the hash chain (stored in the field 

“hash_chain” of the table “Logs”) must be verified. In particular, two kind of 

checks must be carried on: the first, less detailed, is the check on data contained in 

the tables of the DBMS; the second, more detailed, is the check on the single files. 

The less detailed check is carried on by re-computing the hash chain and 

verifying that each ring is authentic. More precisely, starting from the first ring of 

the chain, it’s necessary to compute the next rings in the same way as it’s done 

during the storing phase, and then, each time a new ring is computed, the system 

must check whether the related signature – stored in the field “signature” of the 

table “Logs”, is authentic. 

The more detailed check, on the other hand, affects also the files containing 

data related to each session. More precisely, this check can be carried on by 

executing the hash chain verification afore described, and then by verifying 

whether the hashes contained in the field “encrypted_data_hash” of the table 

“Logs” are the same as the hashes of the files stored in the path stated in the field 

“path” of the same table. This kind of check is of course much more exhaustive, 

but it’s also more expensive in terms of time an resources occupied. 

Notice that only the auditors must be entitled to check data integrity and 

authenticity. As auditors may access the data contained in the DBMS also from 

remote workstations, the verification procedure must be invoked and executed 

locally to the Log Manager. The reason is that the movement of all the data 

contained in the database on the auditor’s workstation might require too much 

time, considering that the integrity and authenticity verification involves all the 

data and not only a small part. 
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5.12 DBMS access management 

As introduced before it’s necessary, in order to raise the security level of the 

whole system, to create restrictive access policy to the DBMS. 

In particular, it turned out to be necessary to introduce different DBMS users, 

each one with different privileges concerning his specific task. Three distinct 

users have hence been created: 

 

• u_logmanager: it’s the user the Log Manager makes use of to access the 

DBMS; 

• u_tool: it’s the user the several tools described in the previous sections 

make use of in order to manage the data contained in the database; 

• u_auditor: it’s the user the auditors make use of in order to retrieve data 

from the database; 

 

The first limitation enforced to these users is based on their location. We 

thought it was more safe to allow the users u_logmanager and u_tool to have 

access to the DBMS only if their IP address is the same as the computer the Log 

Manager is running on (notice that the access to the DBMS is carried out through 

a TCP/IP connection). The user u_auditor, on the other hand, can be used to 

access the DBMS from any workstation, because auditors are allowed to access 

the system from remote locations. 

For security reasons, these three users are granted with the sole and only 

privileges they may need to engage correctly the archiving and visualization 

operations. 

In particular, the user utilized by the auditors during the verification phase 

must have only the capability of reading the database tables. Auditors must, in 

fact, only be able to retrieve, by means of appropriate queries, the data pertaining 

to the groups composition, the auditors and data archived in the tables “Logs” and 

“Logs_aud”. At the same time, auditors must not be able to edit, delete and add 

records to the DBMS. 

The user u_logmanager, on the other hand, must be able to insert data in the 

tables “Logs” and “Logs_aud”, other than reading the data pertaining to groups 

and auditors. In this way, the Log Manager can generate accordingly the secrets 

pertaining to each auditor. Notice that this user must not, nevertheless, be able to 

edit or delete records from the table “Logs” and “Logs_aud”, because this could 

lead to the compromising of the hash chain. 
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Finally, the user who can be utilized for system management must be able to 

add to the DBMS data concerning auditors and groups, conversely he must not be 

entitled to access (read or write) data archived by the Log Manager. Notice that 

the management tools can be used also to modify some fields of the tables 

“Auditors”, “Groups” and “Groups_aud”; for that reason, we decided to provide 

the user u_tool with the edit privileges only on those fields. Further observation: 

this user must not be entitled to delete data from any of the DBMS tables, not 

even those containing the data concerning groups and auditors. The removal of a 

user or a group, as described in the previous sections, does not cause the removal 

of data from the database, but the modification of the field “deactivation_date” of 

the record pertaining to the auditor or the group at issue. 

MySQL – the DBMS adopted for this implementation – consents data 

management with granularity as subtle as the single table attribute. For each 

attribute we can specify, in relation with each user, any combination of the four 

available types of performable operations, that are: 

 

• SELECT: used to read data from the database; 

• INSERT: used to insert new data into the database; 

• UPDATE: used to edit data already present in the database; 

• DELETE: used to delete data from the database; 

 

In the following figures there is a summarization of the privileges of the three 

users described above on the single tables of the DBMS: 

 

Table “Auditors” 

Attribute u_auditor u_logmanager u_tool 

auditor_id  select select select, insert 

personal_data  select select select, insert, update 

activation_date  select select select, insert 

deactivation_date  select select select, insert, update 

public_key  select select select, insert 

signature  select select select, insert, update 

pubkey_certificate  select select select, insert, update 

 

Table “Groups” 

Attribute u_auditor u_logmanager u_tool 

group_id  select select select, insert 
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group_info  select select select, insert, update 

total_auditors  select select select, insert, update 

minimum_auditors  select select select, insert, update 

activation_date  select select select, insert 

deactivation_date  select select select, insert, update 

signature  select select select, insert, update 

pubkey_certificate  select select select, insert, update 

 

Table “Groups_aud” 

Attribute u_auditor u_logmanager u_tool 

group_id  select select select, insert 

auditor_id  select select select, insert 

activation_date  select select select, insert 

deactivation_date  select select select, insert, update 

signature  select select select, insert, update 

pubkey_certificate  select select select, insert, update 

 

Table “Groups_history” 

Attribute u_auditor u_logmanager u_tool 

group_id  select / select, insert 

modification_date  select / select, insert 

total_auditors  select / select, insert 

minimum_auditors  select / select, insert 

signature  select / select, insert 

pubkey_certificate  select / select, insert 
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Table “Logs” 

Attribute u_auditor u_logmanager u_tool 

session_id  select select, insert / 

user_pseudonym  select select, insert / 

administered_server  select select, insert / 

session_start  select select, insert / 

session_end  select select, insert / 

session_termination  select select, insert / 

timestamp  select select, insert / 

path  select select, insert / 

encrypted_data_hash  select select, insert / 

hash_chain  select select, insert / 

signature  select select, insert / 

pubkey_certificate  select select, insert / 

 

Table “Logs_aud” 

Attribute u_auditor u_logmanager u_tool 

session_id  select select, insert / 

auditor_id  select select, insert / 

session_start  select select, insert / 

encrypted_key  select select, insert / 

 

Figure 5-7: Privileges of the users on the single tables 
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Chapter 6 

Conclusion and future work 

In this chapter we present a short discussion about what has been done so far 

and what can still be done starting from the present work. Furthermore, some 

reasoning on the ethical issues related to the field of irrefutable administration is 

put forward.  

6.1 Summing up the results 

In this thesis we’ve presented the newly-born concept of irrefutable 

administration and it’s links to the background technologies involved in the 

process. The state of the art found in the first part introduces us into the world of 

cryptology and related concepts: hash functions, symmetrical/asymmetrical 

encryption, public key cryptography, secret sharing and group signatures. 

Starting from general concepts, going up to group signatures, we’ve faced the 

subject of restricted data access with anonymity, privacy and authentication 

moving our steps through concepts like encryption/exclusion/elusion/group-

access. 

We’ve devised two new methods for group signatures and a complete 

framework concerning secure logging for irrefutable administration. The two 

group signatures schemes are based on different technologies and theoretical 

principles: the first (paragraph 4.3) is based on standard signatures arranged in a 

framework which allows signatures to be made by singles on behalf of a group 

and allows also the group manager to revoke group members. The same goes for 

the second scheme (paragraph 4.4) which is, on the other hand, based on 

completely different theoretical basis, i.e. a concept known as one-way 

accumulators. The irrefutable administration scheme is, indeed, a complete 

framework for building a system which archives logs in a secure and anonymous 

manner, allowing set of users to have access to those logs under some precise 

constraints. The system here conceptually described has been implemented, in 
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collaboration with the Department of Computer Science, University of Turin, into 

a working environment called Assolo, described in details in Chapter 5. 

6.2 Irrefutable administration and its ethical issues 

We are conscious that the field we’ve so far called irrefutable administration 

offers a lot of hints not only on what can and what can’t be done or improved, but 

also on what is ethically correct and what is not. A lot of fuss is coming out 

nowadays on the problem of employees monitoring, mainly about email messages 

and network activities. According to [RJ05] last year ZDNet reported on a 

Proofpoint-sponsored Forrester survey stating that 44 percent of companies read 

outgoing email. Currently, most of those companies employ human beings to read 

that email, but automated processes to scan content aren't far behind. To show 

how fast the trend is spreading, a newer survey from Forrester Consulting recently 

states that 63 percent plan to monitor outgoing mail. The survey also states that as 

Instant Messaging becomes more prevalent, those companies plan to monitor IM 

traffic as well. Employers are spying on their employees because they don't trust 

them. And worse, they're not spying only on employees that they suspect of 

breaking trust and leaking information — they're spying on everyone, because 

technology lets them do so. 

 

Irrefutable administration goes a step further, because it’s more specific but 

also more ethical, in our opinion and in the framework we devised. What we mean 

is, there are contexts in which an appropriate monitoring and archiving – under 

the constraints of encryption and group access which guarantee non disclosure of 

critical information – is advisable both for the company and for the employees. 

Resuming the example cited in Chapter 1, in industrial environments some jobs 

are left in outsourcing to external companies; the operations performed by the 

external personnel should be controlled in some way, and at the same time, the 

privacy of the workers must be guaranteed, with the ability to verify and link, in 

case of necessity, the operations performed to the person who made them. The 

“case of necessity” might be a court action against the employee but also – and 

here lays the counterpart of the whole idea – a defense of the employee or even a 

court action against the company. Companies have their right to be protected, but 

the same right is owned by the employees. Irrefutable administration must be 

conceived in that spirit, of ambivalent protection of both sides. 
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6.3 Future work 

The solutions devised in this thesis are complete but, in some cases, some 

improvements can be conceived in order to fix some drawbacks keeping, at the 

same time, the benefits of the methods. This paragraph contains a simple and 

short summary of the point which have been deeply analyzed in the dissertation. 

 

The solutions presented for group signatures still suffers from some minor 

drawbacks, such as the need of an intermediate entity in the first method and the 

need of a sort of CLR (Certificate Revocation List) of the second method. Some 

investigation can be made on those subjects, in order to provide a better group 

signatures scheme, keeping in mind the tradeoffs between performance, 

availability, key distribution, key dimension, etc… The irrefutable administration 

subject can be improved working on the intermediate entity as well, or analyzing 

more in details the archiving/logging function other than the auditing and data-

retrieving side. 
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