

UNIVERSITÁ DEGLI STUDI DI TORINO
Area ricerca e Relazioni Internazionali

SEZIONE RICERCA E FORMAZIONE AVANZATA

Via Bogino, 9 – Torino

Tel +39/(0)11/670.4373/670.4388/670.4371 – Fax 011-670.4380

UNIVERSITÁ DEGLI STUDI DI:

Torino

DIPARTIMENTO DI:

Informatica

DOTTORATO DI RICERCA IN: Informatica

CICLO:

XVIII

TITOLO DELLA TESI:

Security, privacy and authentication
in shared access to restricted data

TESI PRESENTATA DA:

Paolo Dal Checco
TUTORS:

Prof. Francesco Bergadano
Dr. Davide Cavagnino

 COORDINATORE DEL CICLO:

Prof. Piero Torasso

ANNI ACCADEMICI:

2002/2003, 2003/2004, 2004/2005

SETTORE SCIENTIFICO-DISCIPLINARE DI AFFERENZA: INF/01

ii

CONTENTS

iii

Contents

Contents __iii

List of figures ___ vii

Abstract___ix

Acknowledgements__xi

Chapter 1 Introduction __ 1

Chapter 2 State of the art ___ 5

2.1 Introduction __ 5
2.1.1 Systems using dedicated hardware ___________________________________ 6
2.1.2 Systems based on cryptographic functions _____________________________ 6

2.2 Hash functions and hash chains________________________________ 9

2.3 Symmetric key encryption ___________________________________ 10

2.4 Public key cryptography_____________________________________ 12

2.5 Secret sharing ___ 13

2.6 Group signatures___ 15

Chapter 3 Secure logging for irrefutable administration_______________ 19

3.1 Introduction ___ 19

3.2 Preliminary considerations___________________________________ 20

3.3 Possible approaches___ 21

3.4 Encryption and exclusion/elusion _____________________________ 24

3.5 Group auditing __ 26

3.6 Group access to a log line ____________________________________ 26

3.7 Observations on multiple groups ______________________________ 28

Chapter 4 Group signatures______________________________________ 31

CONTENTS

iv

4.1 Description of group signatures _______________________________ 31

4.2 Definitions __ 32

4.3 A new solution for group signatures based on standard signatures __ 34
4.3.1 Introduction__ 34
4.3.2 Description __ 34
4.3.3 Elements of the system ___ 35
4.3.4 Communication between components________________________________ 37
4.3.5 Operations of the system __ 38
4.3.6 Validation/verification of system operations___________________________ 41
4.3.7 Benefits and drawbacks___ 41
4.3.8 Variant of the first solution __ 43

4.3.8.1 Pseudonym certificates ______________________________________ 43
4.3.8.2 Properties___ 46
4.3.8.3 Comparison of the variant to the original method __________________ 48

4.4 A new solution for group signatures based on one-way accumulators 50
4.4.1 Introduction__ 50
4.4.2 Description __ 50
4.4.3 Proposed Group Signature Scheme__________________________________ 51

4.4.3.1 System bootstrap ___ 51
4.4.3.2 Signing by Ai (SIGN)__ 52
4.4.3.3 Verification by anyone (VERIFY)______________________________ 52
4.4.3.4 Identification of signer (OPEN)________________________________ 53
4.4.3.5 Member addition ___ 53
4.4.3.6 A possible improvement: incremental group creation _______________ 54
4.4.3.7 Adding more keys for a group member __________________________ 55
4.4.3.8 Properties___ 55

4.4.4 Adding revocation to the current solution _____________________________ 55
4.4.4.1 System bootstrap ___ 56
4.4.4.2 Adding a member to the group ________________________________ 57
4.4.4.3 Signing of message M by Ai (SIGN)____________________________ 58
4.4.4.4 Adding more keys for a group member __________________________ 58
4.4.4.5 Revoking keys ___ 58
4.4.4.6 Verification by anyone (VERIFY)______________________________ 60
4.4.4.7 Identification of signer (OPEN)________________________________ 60

4.4.5 Observations and possible improvements _____________________________ 60
4.4.5.1 Observation I __ 61
4.4.5.2 Example of attack __ 61
4.4.5.3 Observation II ___ 63
4.4.5.4 Observation III___ 64
4.4.5.5 New JOIN __ 64

Chapter 5 Implementation _______________________________________ 67

5.1 Introduction ___ 67
5.1.1 Assolo __ 68

CONTENTS

v

5.2 Software architecture of the system____________________________ 70

5.3 Communication between Assolo and Log Manager_______________ 71

5.4 Selected algorithms ___ 74

5.5 Cryptographic libraries: Crypto++ ____________________________ 76

5.6 Log Manager functionalities__________________________________ 77
5.6.1 Session storage ___ 77
5.6.2 System initialization ___ 80
5.6.3 System stop __ 81

5.7 DBMS data storage ___ 81
5.7.1 Description of choices__ 81
5.7.2 Relational schema ___ 82
5.7.3 Table details ___ 83

5.8 System administration tools __________________________________ 88
5.8.1 Auditors anonymous access management _____________________________ 89

5.9 Group access management ___________________________________ 90

5.10 Group members management ________________________________ 91

5.11 Data integrity and authenticity _______________________________ 92

5.12 DBMS access management___________________________________ 93

Chapter 6 Conclusion and future work_____________________________ 97

6.1 Summing up the results _____________________________________ 97

6.2 Irrefutable administration and its ethical issues _________________ 98

6.3 Future work ___ 99

Chapter 7 Bibliography __ 101

CONTENTS

vi

LIST OF FIGURES

vii

List of figures

Figure 2-1: The polynomial Q...14

Figure 2-2: Evaluations of the polynomial Q..15

Figure 3-1: Common share of different polynomials..30

Figure 4-1: Interaction between entities..37

Figure 4-2: Schema of the interaction between components45

Figure 5-1: Sniffer-based architecture ..68

Figure 5-2: Gateway-based architecture ...68

Figure 5-3: Protocols stack..69

Figure 5-4: System architecture ..71

Figure 5-5: Protocols stack pointing out what is stored....................................74

Figure 5-6: Relational schema of the DBMS tables ...83

Figure 5-7: Privileges of the users on the single tables.....................................96

LIST OF FIGURES

viii

ABSTRACT

ix

Abstract

This thesis presents the results of the research on the fields of security, privacy

and authentication concerning specifically shared access to restricted data. Those

fields are strictly related, as we will see in the following, to what we call

irrefutable administration and its background. It is an interdisciplinary work,

bringing together concepts belonging to research areas such as Computer

Security, Network Security, Intrusion Detection Systems, Group Signatures and

Secret Sharing.

The work consists of four parts. In the first part (Chapter 1 and Chapter 2) we

introduce the subject of the research and we present the state of the art related to

our work. Each section here is related to a different technology underlying the

present research, summarizing the main results related to the concepts our study is

based on. This will not be a mere summing up, though, because we will try to

draw attention to the relationships of the studied concepts with their

corresponding use we’ve made of in the research.

The second part, presented in Chapter 3, studies the concepts of secure

logging related to what we call irrefutable administration, focusing on the

research we’ve carried on. The concept is presented keeping in mind that the

possible application is that of securely archiving log files related to systems

administration with elusion/exclusion properties, enforced anonymity, privacy and

security.

As for the third part of the work, as mentioned before the research topics cover

more than just one underlying technology, but the most important one concerns

group signatures. In order to provide a functional framework where irrefutable

administration can be built, we designed two solutions for group signatures,

described in details in the third part of the thesis (Chapter 4). Those two solutions

are based on different technologies and theoretical principles and suited to

different needs of a complex system.

ABSTRACT

x

In the third part, Chapter 5, we present the implementation we’ve developed

of a complex system for irrefutable administration, based on the solution

described in the second part of this work (Chapter 3). Here we show how the

concepts of securely archived encrypted log files, exclusion/elusion, single/group

authorized access can be integrated in order to provide a working framework.

Finally, the fourth part (Chapter 6) contains some conclusive observations and

a summary of what has been done during the present research. A short summary

of the improvements which could be applied on our current research is included,

together with some reasoning on the ethical issues related to the field of

irrefutable administration.

ACKNOWLEDGEMENTS

xi

Acknowledgements

I wish to thank all the people who helped me out during these years spent at the

Department of Computer Science of Turin.

Andrea Nesta, my PhD colleague and friend tragically gone in a motorbike

accident two years ago. Prof. Francesco Bergadano, my supervisor, for sharing his

knowledge with me and for trusting me in more than one difficult situation. Dr.

Davide Cavagnino, my supervisor and friend, for his support, encouragement and

kindness – a big special thank goes to him.

The whole Computer and Network Security Group: Francesco, Davide,

Federica, Alessandro, Michele, Rossano, Giancarlo, Marco, Daniele, Giuseppe

and all my friends and colleagues here at the Department for their kindness,

honesty and cooperation.

My family, for their constant love and support. My uncle Nino and my aunt

Matilde, for their example of true love which goes beyond life and death.

Samanta, for what she means to me and what – I hope ;-) – I mean to her.

Kim, for his constant presence, unconditioned friendship and love. Whether

they have two or four feet, friends are friends.

ACKNOWLEDGEMENTS

xii

CHAPTER 1 – INTRODUCTION

1

Chapter 1

Introduction

Restricted data management is an ever-growing research and development area

nowadays, mainly when it comes to standard use cases such as private documents

protection for personal use, encrypted data sharing or digital signatures. It’s not

hard to find resources on this subject: academic literature and software houses

have been dealing with the matter of data protection through encryption for some

years now, but mainly for what pertains to somehow “standard” situations.

Companies like PGP Corporation [PGP05] offer solutions for data

encryption/sharing commonly used as of now, and several products are available

for free or for commercial use. On the other hand, the circumstances get different

when the use cases diverge from the “standard” aforementioned ones, and the

game gets enriched by factors such as:

• Reserved data access with authorization for group of users instead of single

users

• Group signature of stored data, with signer’s anonymity and the possibility

of addition/revocation of members from groups – but later identity

escrowing

• Secure data storing with tamper-evidence service (the possibility of

detecting manumissions but also addiction/removal of data)

A practical example – and a use case I will be focusing on throughout this

dissertation – is that of log files (i.e. electronic archives which keep track of

actions, operations and transactions taking place on a system) with the

aforementioned characteristics, and with distinctive emphasis on security and

privacy issues. When more entities are involved in the logging activity and a

single logging facility is in use, it’s clear that more issues arise: access to records

must be shared, granting anonymous logging and the possibility of escrowing

(identity disclosure) in case of need. Therefore, besides encryption/decryption

CHAPTER 1 – INTRODUCTION

2

issues we have in this case also the capabilities offered by techniques such as

Secret Sharing and Group Signatures.

Secret Sharing has been studied and used in the design of the framework

presented in Chapter 3. We’ve seen different solutions, but Shamir’s proposal

seemed to fit better to our context. Group Signatures have been deeply worked on.

Two solutions have been devised that allow an entity to sign on behalf of a group,

without revealing his identity, with the possibility of later revocation and group

members addition. Chapter 4 describes those solutions, with their benefits,

drawbacks and possible future improvements. From the research point of view,

this thesis includes topics of relevant scientific interest. Secret Sharing and Group

Signatures techniques are now a field widely explored but yet quite challenging.

The originality if this work is contained both in the pure research areas – which

can be inserted in a context of never-ending growth and with yet to be explored

fronts – and in the practical possibilities emerged by the proposed solutions. The

field of reserved data management – e.g. log files – offers several points of

interest, mainly when it comes to those real systems which could benefit from

such a research.

As for applicative possibilities, several practical contexts offer the results of

this research to be tested “for real”, in real systems. An exemplary application

resulting from the research is that of irrefutable administration. In many

applications there are contexts in which it is necessary to check and verify the

operations performed by some entity (possibly an administrator) on another entity

(possibly a computer system). For example, in industrial environments some jobs

are sent in outsourcing to external companies; the operations performed by the

external personnel should be controlled in some way, and at the same time, the

privacy of the workers must be guaranteed, with the ability to verify and link, in

case of necessity, the operations performed to the person who made them. This

not only goes in favor of the company, but also of the worker who is therefore

more guaranteed in his tasks.

The different technologies used in this research have therefore been analyzed

and opportunely mixed together in order to produce a framework which will grant

the irrefutable administration of a remote system through a secure (and privacy-

aware) logging with shared access. Of course, the framework can be extended and

CHAPTER 1 – INTRODUCTION

3

improved so as to grant much more than simply the administration of remote

systems, in a way we will see in details in the following.

That system which has been implemented is related to the previously

mentioned context, where system and network administrators, administered

systems and networks are managed in order to provide a secure and reliable

auditing system. The main characteristics of this system are the ability of logging

all the operations that occur in a complex environment, linking these operations to

the entities involved (namely, the administrator of the system and the system

itself), with the guarantees that:

• the log does not immediately disclose its content, for privacy reasons (i.e. it

is encrypted);

• the log’s content may be examined only by the entities having the rights to

perform this operation (i.e. only the authorized people, administrators or

third parties, may decrypt the log entries content, with some defined

modes);

• log entries cannot be directly related to the entities that are involved in the

activity described in the log entry itself;

• the log cannot be modified without detection (i.e., if the log is modified this

can be discovered by the auditors that will eventually check the content).

The research has therefore many fields of application, where the main problem

to be solved is the logging of some activity for a subsequent control by whom is in

charge of monitoring, with some important warrantees on authentication,

anonymity and group/single access.

CHAPTER 1 – INTRODUCTION

4

CHAPTER 2 – STATE OF THE ART

5

Chapter 2

State of the art

2.1 Introduction

The literature contains several technologies that can be used in order to build a

secure storing of log data. This section will present the most widely known and

the most efficient. Moreover, the main encryption algorithms will be presented

and compared, giving a justification for the design choices made for the

developed secure storing system presented as implementation to the current

research in Chapter 5.

In modern systems, it is becoming more important keeping log files to be able

to track down the actions taken by a system, to trace the accesses (authorized or

not) to a computer or, as in our case, to keep track of all the actions made by

certain users. In some cases, it is necessary to store this information in a secure

and confidential manner.

The commonly used definition of log has been given by Ruffin [RUF95],

which describes a log file as "a plain file where data are stored sequentially as

they arrive, by appending them to the end of the file. When a problem arises in the

system (e.g. a fault or an intrusion), the log is reread to find its source and/or to

correct its consequences". The case we will examine uses a similar definition of

log file. In fact, leaving the implementation details that force to consider the log

file as a binary file containing the network dump, also in the case at hand the data

is stored according to the arrival order. The usefulness of these data is to allow,

later in time, the possibility to perform some analysis and investigations on them.

Ruffin makes a detailed description of logs related to the use with DBMS, but

he does not examine the requirement to avoid the manipulation of the log files

made by unauthorized people. Given that in modern computing systems it is often

necessary to keep the log files on untrusted machines, it is important that the log

file be intrinsically secure to avoid that unauthorized persons access the logs (that,

in general, may contain important and confidential data).

CHAPTER 2 – STATE OF THE ART

6

Some approaches have been developed to authenticate or certify the content of

different types of log files, possibly of large size. [BCE02] and [BCN01] present

some possible methods.

Different approaches have been studied to authenticate or certify log files

containing different kind of information and generally having a large size. In

particular, we may cite [BCE02] which presents a technique that allows a third

party to certify a large file without examining all the file content (to speed up the

certification operation and/or to protect the privacy of the creator of the file), but

simply examining a file sample (i.e. a small number of records).

This approach intrinsically requires that the log file already exists to proceed to

authenticate it. It is also interesting to examine methodologies that are capable to

keep secure every single entry of a log file while it is being created.

2.1.1 Systems using dedicated hardware

The first techniques used to prevent the modification of log file entries were

not based on cryptography, but instead they used dedicated hardware. Among

these methods we may recall the expensive method of printing the log on

hardcopy or, equally, recording the log on WORM (Write Once Read Many)

devices (also in this case having poor performance).

Obviously, these approaches are not tailored to the requirements of entities that

should keep large amounts of log data for a long time. This is due to economic

(costs of supports) and space (required for storing the supports) considerations,

but also to system performance reasons.

For these reasons, it is necessary to find solutions that, by means of

cryptographic systems, make the modification of a log file impossible without

notice.

2.1.2 Systems based on cryptographic functions

A first hypothesis on the possibility to detect log file modifications has been

made in [BY97] by M. Bellare and B. S. Yee: they propose to authenticate every

log file entry with a Message Authentication Code (MAC).

A MAC, also known as a cryptographic checksum, is the output of a function

that takes a message (in the case at hand, a log line) and a secret key as input;

when verifying the authenticity of the MAC, the same function should be applied

to the message and the secret key (thus the verifier must know the key used to

generate the MAC). In general, MACs are computed using hash functions

(HMAC is a function of this kind) or symmetric encryption algorithms (like DES-

CBC).

CHAPTER 2 – STATE OF THE ART

7

The system by Bellare and Yee does not avoid log file manipulation, but

guarantees that if an entity takes control of the system on which the logs are

stored at a certain time, and tries to modify the previously logged entries, then this

action will not go unnoticed. This is possible because it is foreseen that the MAC

key changes over time, without leaving information about older keys. To obtain

this result, the first generated key (the only one that must not be deleted and that

must be kept in a safe place) is used to authenticate the log entries in a first time

period of fixed duration. When the time period expires, it is generated a new key

using a pseudo-random non-invertible function starting from the previous key.

The previous key is then removed from the system (except the very first one).

It is easy to see that an intruder is not able to get the previous keys used to

authenticate the entries. Thus, he is not able to modify the log file without notice

by an authorized person (who knows the keys used to compute the MACs),

because he cannot create a correct MAC for the modified entries. To avoid

deletion or insertion of entries, it is necessary that the entries are sequentially

numbered.

The system described is secure with respect to many known attacks (assuming

the use of a robust authentication function), and also prevents the chosen message

attack, given that it destroys the keys as soon as they are no more needed.

It is important to notice that if an adversary gains control of the system at time

t, then from that moment there should be no confidence on the authenticity of the

logs. Moreover, given that the log entries are not encrypted, the log file may be

read (without detection) by any adversary.

The problem of the authentication of single log file entries by means of

cryptography has been faced also by B. Schneier e J. Kelsey in [SK98] and

refined in [SK99a]; they built a method to make log files unreadable for those not

having the rights to access and control them, and also to detect in a fast way if the

log file has been corrupted or modified.

In particular, the environment for which the method has been developed is

composed by a computer U not sufficiently protected against an attack, that must

keep the log files containing confidential information, and by a trusted computer

T that must manage the security of the log files on U. By means of a few

interactions between these two entities it is possible to prevent an adversary taking

control over U at time t from reading the logs generated before t and from

modifying the logs generated before t without being detected afterwards.

Also in this case, the system does not prevent an attacker from tampering with

the log file, but it allows detecting whether the log file has been modified in some

way. As in the paper from Bellare and Yee (not cited in the bibliography of the

CHAPTER 2 – STATE OF THE ART

8

paper from Schneier and Kelsey), the security of the system is increased by

changing over time the authentication and encryption keys; more precisely, a new

key pair is created for every new log entry by applying a hash function to the

previously used keys. Moreover, to avoid that the insertion or deletion of entries

goes undetected, the various entries are sequentially concatenated by means of a

hash chain. Consequently, it is signed the "ring of the chain" corresponding to

each entry only, and not the entire entry. The security of the system is nonetheless

maintained.

Schneier and Kelsey give a detailed description of the system, showing the

initial creation of the log file, the proper closing of it, and how to react to sudden

shutdowns of the computer keeping the log file.

Given that every entry of the log file has an associated type, the discussed

papers describe a method for differentiating the access of auditors having different

privileges. The auditors communicate exclusively with the trusted computer T to

obtain an unencrypted entry to which they have access rights. This latter property

has been studied in depth by Schneier and Kelsey in [SK99b]: in that paper they

describe how to minimize the bandwidth required by an auditor to verify the

authenticity of the entries, decrypt and read them.

The main problem of this approach, related to the access of auditors to the data,

is that it is the trusted computer T to decide whether an auditor may access the log

entries. It would be nice if the access rules could be enforced during the

encryption phase instead, for example using different encryption keys for different

auditors. In this way, even gaining control over T, it would be impossible for

auditors to see entries, except for the ones they have authorization. On the other

hand, even if T is a trusted machine, it would be useful to find methods that do not

need critical nodes from the security viewpoint.

The system described by Schneier and Kelsey has been patented in [SK99c]. In

that patent it is introduced the possibility (not described in detail) to use

asymmetric key algorithms for the encryption. The use of asymmetric encryption

was not examined in their previous papers.

One of the targets studied in this research is strictly related to the results

presented in the papers from Schneier and Kelsey; in fact, the system we will

discuss has some common ideas with the one just described. Nonetheless,

important functionalities and characteristics will be added to increase the security

and flexibility of the overall system.

In 2002 C. N. Chong, Z. Peng and P. H. Hartel analyze the study from Schneier

and Kelsey, and describe a possible implementation in [CPH02]. The system they

describe is based on the use of a tamper-resistant hardware (iButton) that

CHAPTER 2 – STATE OF THE ART

9

generates and stores the secrets, avoiding to leave this critical duty to an untrusted

computer (as was happening in the model described by the two previously cited

authors).

Recently B. R. Waters, D. Balfanz, G. Durfee and D. K. Smetters [WBD04]

made a new study on secure audit log. The problem they want to solve is to create

an encrypted log that could be searched using some keywords. The approach

followed to encrypt and link the log entries is very similar to the method proposed

by Schneier and Kelsey; the main difference is that this method extracts some

keywords from the data to be logged before they’ll be encrypted. An auditor

willing to search for some data has to send a keyword to a centralized trusted

element; on the basis of the element’s authorization policy such element may

grant him the necessary information to reconstruct a key to be used for decrypting

the data itself. In this paper it is not discussed how keywords could be extracted

from raw data.

2.2 Hash functions and hash chains

From the just presented state of the art section on secure storing of log files, it

may be seen the particular importance of hash functions and hash chains when

looking for a safe method to record data. Consequently, it is useful to describe the

most widely known and most efficient methods for creating hashes.

A hash function is a mapping from an arbitrary long data to a fixed length

code, the so called "hash code". The implementation, be it hardware or software,

shall compute the hash in a fast manner. The other constraints of a hash function

are: a) to be non-invertible (i.e. one way); and b) to be collision-resistant (i.e. it is

computationally hard to find a pair of values having the same hash value).

There are many algorithms that are used to implement a hash function. They

have become, thanks to their characteristics, widely accepted standards. We recall

here the most widely known and used today, namely MD5, SHA-1 and RIPEMD-

160.

MD5 was invented by Rivest and is published in RFC1321. It produces a 128

bit hash code in 64 steps only. This algorithm has been used for years, but given

the today available computers, a 128 bit hash code should not be considered

sufficient. Moreover, some famous researchers of RIPE (European RACE

Integrity Primitives Evaluation) have shown that it is relatively easy to find a

collision for MD5.

For these reasons, those researchers developed a project in [BDP97] providing

a more robust hash function, called RIPEMD-160, derived from MD5. This new

CHAPTER 2 – STATE OF THE ART

10

function solves both the problems related to collisions and to brute-force attacks,

given that the digest produced by the function is 160 bit long.

Some years before, the National Institute of Standards and Technology (NIST)

publishes in [NIST95] the definition of the algorithm SHA-1. This algorithm

outputs a 160 bit hash in few computation steps, being very fast. SHA-1 seems to

be also collision-resistant. Recently, a 160 bit hash seems to be inadequate for

some possible attacks; for this reason, the NIST has published in [NIST02] the

algorithms SHA-256, SHA-384 and SHA-512, that are able to produce hashes of

length 256, 384 and 512 bit respectively.

After having presented the characteristics of the most widely known hash

functions, it is possible to analyze the main advantages deriving from the use of

hash chains, namely the speed at which can be computed (both when generating

and when verifying) and the unfeasibility to insert, delete or modify elements of

the chain without this being detected with a rapid analysis.

Hash chains have been introduced for the first time by L. Lamport in

[LAM81], using them for authentication systems based on one-time passwords. In

particular, the idea in [LAM81] is to generate, from a known password, a chain of

hashes, and to use the sequence of hashes in reverse order as a set of keys. Each

key will be used for a single access. The advantage of this approach resides in the

fact that not all the passwords are to be stored, but only the origin of the chain (i.e.

the password known to the two parties)and a counter that keeps track of the

number of accesses. The speed of computation of a hash function allows to

calculate many rings of the chain without introducing large delays.

The idea from Lamport, thanks to its efficiency and effectiveness, has been

applied in many contexts; besides the application in the context of secure logging,

we may recall the novel system proposed by F. Bergadano, D. Cavagnino and B.

Crispo in [BCC01], in which hash chains are used to authenticate a stream of data.

2.3 Symmetric key encryption

The requirement to encrypt large quantities of data has brought, in the latest

years, to the development of many different cryptographic systems. Some of these

systems may be useful for encrypting log files, thus in this section will be

presented the main symmetric encryption algorithms, namely systems that use the

same key for encrypting and decrypting data.

The main advantage of symmetric encryption systems is the speed at which can

be made encryption and decryption of data. This is different from the less

performing asymmetric encryption systems which will be discussed later.

CHAPTER 2 – STATE OF THE ART

11

There exist two categories of symmetric ciphers, namely block ciphers and

stream ciphers. Block ciphers subdivide data into blocks of fixed size and then

encrypt the single blocks. Stream ciphers can encrypt single bytes or even single

bits. Given that block ciphers obtained a greater success with respect to stream

ciphers, in the following will be discussed only the former type.

The most known symmetric encryption algorithm is DES (Data Encryption

Standard), standardized by NIST in 1977, and improved until the latest definition

in [NIST99]. DES is a block cipher that employs a 56 bit key. The encryption

process is made up of 16 rounds, thus the key is used to generate 16 subkeys of 48

bits each, and every subkey is used in a different round. The DES encryption and

decryption phases are similar; in fact the same algorithm is used for both

operations, only subkeys are used in reverse order in the decryption operation.

DES has represented for many years the most secure and fastest encryption

algorithm. But with the increased computing power of machines, this algorithm

has become obsolete both because it uses a too small key (exposing it to brute-

force attacks) and because the encryption of two equal blocks with the same key

produces the same encrypted text. The latter point exposes he result to possible

encrypted text analyses.

For the previous reasons, evolutions of DES have been developed. One of the

most important is DES-CBC, which is based on the use of an encrypted block to

modify the following block to be encrypted. This method is known in general as

CBC, Cipher Block Chaining, and is widely used in many symmetric ciphers.

Another important and widely used DES evolution is Triple DES. The name

itself suggests the working of the algorithm that applies three times the encryption

using two or three different keys. This leads to key length of 112 and 168 bits.

At the same time DES improvements were proposed, some other algorithms

were developed in order to substitute it. Among them, we may cite IDEA that uses

128 but keys and block size 64 bits.

A very interesting symmetric encryption algorithm is Blowfish, developed by

B. Schneier [SCH94]. Its main features are its speed, its low memory

requirements (about 5 Kbytes), the simplicity of the system (that allows easy and

efficient implementations) and the possible use of different key lengths. In

particular, Blowfish works on 64 bit blocks, and may use keys of length from 32

bits to 448 bits, in steps of 32 bits. This allows for a high flexibility on the degree

of security one may need. Probably Blowfish is the most adaptable, efficient and

fast encryption algorithm. It is also strong against brute force attacks, when using

sufficiently log keys (more than 128 bits).

CHAPTER 2 – STATE OF THE ART

12

The last algorithm we will analyze is the one proposed by J. Daemen e V.

Rijmen in [DR00] and named Rijndael. This algorithm is important because it has

been chosen by NIST as the actual encryption standard [NIST01] with the name

of AES (Advanced Encryption Standard). The reasons for which it has been

chosen as a standard reside in its security due to the block size it uses (128 bits,

and a bigger block size means a bigger difficulty in making an analysis of the

encrypted text) and to the possibility of using keys of different lengths. AES

allows key of length 128, 192 or 256 bits. Moreover, even if it is not as fast as

Blowfish, it has good performance and efficiency.

2.4 Public key cryptography

The development of public key cryptographic systems represents one of the

bigger innovations in the field of computer security. In fact these systems do not

base their strength on substitution and permutation of bytes, as in symmetric

ciphers. Instead, they use mathematical properties of wisely chosen functions, and

require two different keys to be used, one for encrypting and one for decrypting

the data. It is this latter property that lead to their name of asymmetric ciphers.

The main characteristic of these systems is that even knowing one of the two

keys, it is impossible to determine the other one. This allows distinguishing the

two keys, having a public key known by everyone, and a private key that must be

kept secret by its owner.

This approach to cryptography gained a great success and has a widespread

use, but has never substituted the symmetric cryptography systems. This is mainly

due to the fact that the encryption and decryption operations with asymmetric

systems are slower than the corresponding symmetric ones.

The first public key encryption system has been proposed by W. Diffie and M.

Hellman, which in 1976 published in [DH76] the first mathematical formalization

of a cryptographic system using asymmetric keys. This system is useful for the

exchange of symmetric keys between two entities. The security of the system is

based on the difficulty of the prime number factorization of large numbers and in

the properties of modular arithmetic.

The first block cipher that uses asymmetric keys has been proposed in 1978 by

R. Rivest, A. Shamir and L. Andelman in [RSA78], with the name RSA. Until

today, this is the most widespread and used public key cryptosystem, given that it

guarantees a high level of security. Also in this case the strength of the method is

given by the difficulty of the factorization of a large number in primes. Moreover,

CHAPTER 2 – STATE OF THE ART

13

the use of keys of large length (1024 or 2048 bits) makes impossible attacks based

on exhaustive search.

The encryption of a message through RSA is made using the public key of the

recipient; in this way, only the recipient is able to decrypt the message with his

own private key.

Another interesting thing to note is the use of the RSA algorithm for digitally

signing messages. In this case the signer encrypts a message digest with his

private key. Anyone will then be able to verify the integrity of the message and

the signer of the message, using the sender's public key.

RSA is not the only one public key cryptosystem. There is at least another

approach, less known but more efficient from a computational viewpoint, named

elliptic curves. The algorithms of this family have the great advantage that even

using shorter keys (less than 300 bits), allowing for faster computations, they have

a great degree of security. The main disadvantages are a more complex

implementation and a more difficult mathematical analysis. Furthermore, the large

diffusion of RSA has increased the users' degree of confidence in this algorithm,

slowing the diffusion of other systems.

2.5 Secret sharing

It would be too limiting to study the techniques for making a log file

inaccessible only. In fact, it is important to study also the methods that allow the

auditing of the logged data.

In this case it is necessary to allow for diverse kind of accesses to different

auditors having different privileges in the visualization of the information.

Furthermore, it is also important to allow the access to some kind of data only to a

group of cooperating auditors. According to the requirements just presented, some

proposals on secret sharing will be discussed. Secret sharing means the possibility

to recreate a secret only with the collaboration of many people, each one owning a

part of this secret.

G. R. Blakley was the first to design in [BLA79] an abstract model useful for

the sharing of a secret. His target was to find a method for keeping a copy of

cryptographic keys avoiding to give many people the knowledge of the complete

secret. With this aim, Blakley identifies a method based on some geometry

elements. In the following a simple example will present this technique.

Let’s see an example of this method from [MOV96]: suppose we want to share

a secret among n parts, requiring at least 3 to reconstruct it. Suppose also that the

secret may be represented as a point into the three dimensional space. Now, build

CHAPTER 2 – STATE OF THE ART

14

n non-parallel planes such that the intersection of any two planes defines a straight

line, whilst the intersection of any three planes defines the point representing the

secret. Thus, having any three out of n parts (i.e. three persons of the group put

their secrets together) it is possible to discover the secret.

A generalization of this scheme is possible, thinking of m-dimensional spaces.

In this case, the cooperation of m users will allow the reconstruction of the secret.

Almost at the same time as Blakley, A. Shamir presents in [SHA79] the

possibility to share a secret among n individuals requiring m of them to recover

the secret. His idea seems straightforward, and also effective and efficient. He

presents in his short paper a still used solution to the problem, applying

polynomial interpolation and some mathematical principles. The solution

proposed assumes that the secret to be shared can be represented as a number.

Let's call this secret D, and let's build a polynomial Q having degree m-1 and

known term D.

Figure 2-1: The polynomial Q

Let's call Di the evaluation of Q in i, i.e. D1=Q(1), ..., Di=Q(i), ..., Dn=Q(n).

CHAPTER 2 – STATE OF THE ART

15

Figure 2-2: Evaluations of the polynomial Q

It may be shown that, knowing m different evaluations (not necessarily sorted

in ascending order), it is possible to interpolate the unique polynomial of degree

m-1 and constant term D. It may also be demonstrated that the use of less than m

evaluations makes it impossible to uniquely determine the shared secret. This is a

protection against small group members collusions. In the same paper, Shamir

develops improvements to show a computationally efficient solution, basing the

operations on modular arithmetic. The modulus to be used is a prime p greater

than D and n.

The solution proposed by Shamir is intrinsically flexible to changes in the

parameters n and m. Moreover, it allows to distinguish among group members,

giving more priority to some members assigning them more than one different

evaluation of the polynomial.

The ideas from Shamir and from Blakley have represented for many

researchers a motivation to start a deeper analysis of this problem. In fact, many

papers have been published on this topic, giving ideas on possible optimizations,

on effective variants or solutions having a lower computational cost. Furthermore,

investigations have been made on possible applications of this protocol.

2.6 Group signatures

The concept of group signatures was introduced in 1991 by Chaum and Van

Heyst [CHVH91]. In that paper the authors propose four different group signature

schemes. The first one provides unconditional anonymity, while the others

provide only anonymity under the computational constraint. One thing to note is

CHAPTER 2 – STATE OF THE ART

16

that it is not always possible to add new members to the group, and in some

schemes the group manager needs to contact the group members to open a

signature. Chaum and Van Heyst [CHVH91] introduced the notion of group

signature that allows the members of a group to sign data on behalf of the group,

in such a way that:

• only group members can sign messages;

• anyone is able to verify the validity of a group signature, but he is not able

to know the identity of the signer

• in case of dispute, it is possible to “open” (with or without the cooperation

of the group members) the signature to reveal the identity of the person that

signed on behalf of the group;

In their paper are presented four schemes that satisfy the previously cited

conditions; the proposed schemes are not all based on the same cryptographic

assumptions. The same may be found analyzed in detail in [KPW96]. In some

schemes it is necessary a centralized entity during the setup only; in other

schemes every member may create autonomously his group.

Another strong evolution is represented by the work of Camenish and Michels

[CS97] that presents one of the best known schemes whose strength may be

shown under a strong cryptographic assumption. More work has been made by

Ateniese et al. in [ACJT00] as a prosecution of [CS97] with improvements in the

security and efficiency.

A big part of the proposed schemes have a signature length and/or a group

public key size that depend on the group size: obviously these solutions are not

adapt for large groups. Camenish has proposed some alternatives having fixed

signature length and fixed group public key. These alternatives have been worked

on by Ateniese et al. as previously said. Many other solutions having fixed

signature size and fixed group size have been proposed, but most of them

[ACJT00] revealed not provably secure (or not secure at all) or extremely

inefficient.

In [ACJT00] the proposal in [CS97] was improved by making it more secure

and efficient, keeping the mathematical principle on which it is based similar.

With respect to [CS97], [ACJT00] uses a more efficient JOIN method for new

members, and uses a registration protocol statistically zero-knowledge regarding

the group member’s secrets. By contrast, in fact, Camenish required the new

CHAPTER 2 – STATE OF THE ART

17

member send to the group manager a product of his secret (a prime number with a

particular form) and a random prime number; this system may be attacked, as

shown by Coppersmith [CO96].

Ateniese emphasizes how the system in [ACJT00] (defined by him as

belonging to “Class II”) has fixed size public key and signatures. Nonetheless,

that system lacks a good support to the revocation of members, and the paper

discusses the issue only in the conclusions. Ateniese proposes an extension to the

scheme towards a separation of works between a membership manager and a

revocation manager. The revocation issue is deeply discussed in the paper

[AST02], in which a CRL for the revocation of members is added to the signature

scheme presented in [ACJT00]. The main disadvantages of that solution are that

the CRL has a size proportional to the number of revoked members and the

efficiency of the algorithm suffers for the double discrete logarithm operation

needed for every signature.

Going back to the solutions proposed by Chaum, it may be observed that those

schemes are inefficient due to the signature size that increases linearly with the

number of group members. Moreover, adding new members requires, as most of

the schemes proposed so far, a modification in the group public key. In 1997

Camenish and Stadler [CM98a] proposed a method that has a constant size for

both the signatures and the group public key, using a normal signature scheme, a

probabilistic encryption system semantically secure and a one-way function. With

respect to the revocation, it is only mentioned the possible extension of splitting

the different roles of the group manager, for example to a membership manager

and a revocation manager: the first one manages the insertion of new members,

the second ones deals with signature opening and revocation. In a similar way the

problem is dealt with by Ateniese, Camenisch, Joye and Tsudik in [ACJT00].

Identity revocation (or group member elimination) [BRS01] is therefore a

critical problem. Ateniese and Tsudik [AT99] have shown how CRLs (Certificate

Revocation Lists) are not a good method for groups. They gave the following

reasons: firstly, as group signatures are based on techniques for anonymity and

unlinkability of signatures, a signature made (illegally) by a revoked member may

be discovered only by the group manager, through signature opening, and this is

not practical. Secondly, if the central authority reveals some secret information on

a revoked member, to immediately notice more signature misuses, then the

anonymity and the unlinkability of his previous signatures cannot be maintained.

Thirdly, the decision to modify the group public key is not desirable in large

groups, or in groups with frequent member turnover. Bresson and Stern [BRS01]

CHAPTER 2 – STATE OF THE ART

18

have partially solved the problem inserting revocation information in the group

signatures. The disadvantage is that in every change in the group size, the

signatures increase in size (therefore not having a constant size).

As previously said, Ateniese has proposed [ACJT00] a solution to the

revocation that uses a CRL. When a member performs a group signature, then he

must prove not to belong to that CRL.

Another problem about revocation is that no information should be disclosed

on previous signatures of revoked members. If revoked members may still be able

to sign, it is necessary – to preserve anonymity and unlinkability – that no secret

information on revoked members is disclosed.

What is needed by a group signature scheme is the ability to immediately

revoke group members. This means that revoked members must not be able to

sign on behalf of the group since the very moment in which they have been

removed the group member list. In the solution proposed by Ding, Tsudik and Xu

in [DTX04] the revocation of a group member is immediate; thus, he is no more

able to sign after being removed from the group member list.

Another scheme based on accumulators has been proposed by Camenish and

Lysyanskaya [CL02]. Their solution uses dynamic accumulators (that allow

efficient authorization-proofs) together with the scheme by Ateniese et al.

[ACJT00] (the latter gives efficient ownership-proofs). The concept of dynamic

accumulator introduced in [CL02] is a variation of the accumulator proposed by

Baric and Pfizmann [BP97]. The scheme allows a group member to produce a

simplified authorization proof, that is, having the property that the complexity of

the signature verification and group membership verification are independent

from the number of currently revoked group members or total group members.

The solution presented by Baric and Pfizmann in [BP97] is a generalization of the

work by Benaloh and De Mare with their one-way accumulator presented in

[BM94].

CHAPTER 3 – SECURE LOGGING

19

Chapter 3

Secure logging for irrefutable administration

This chapter presents our results on the subject of secure logging, converging

in the newly born concept of irrefutable administration. Some possible

approaches are analyzed, in order to converge into a framework which allows the

logging of system administration with the constraints of privacy, authentication

and anonymity mixed to some warranties about the revelation of the identity of

the administrator. Let’s see in details, in the following, what those concepts mean.

3.1 Introduction

In many applications there are contexts in which it is necessary to check and

verify the operations performed by some entity (possibly an administrator) on

another entity (possibly a computer system). For example, in industrial

environments some jobs are left in outsourcing to external companies; the

operations performed by the external personnel should be controlled in some way,

and at the same time, the privacy of the workers must be guaranteed, with the

ability to verify and link, in case of necessity, the operations performed with the

person who made them.

The system proposed in the present chapter is related to the previously

discussed context, considering system and network administrators, administered

systems and networks, with the objective of giving a secure and reliable auditing

system. The main characteristics of this system are the ability of logging all the

operations that occur in a complex environment, linking these operations to the

entities involved (namely, the administrator of the system and the system itself),

with the guarantees that:

• the log does not immediately disclose its content (for privacy reasons), i.e.

it is encrypted;

CHAPTER 3 – SECURE LOGGING

20

• the log’s content may be examined only by the entities having the rights to

perform this operation (i.e. only the authorized people, administrators or

third parties, may decrypt the log entries content, with some defined

modes);

• log entries cannot be directly related to the entities that are involved in the

activity described in the log entry itself;

• the log cannot be modified without detection (i.e., if the log is modified this

can be discovered by the auditors that will eventually check the content).

The ideas presented in this chapter have many fields of application, where the

main problem to be solved is the logging of some activity for a subsequent

control. The discussion is organized as follows: section 3.2 presents the terms of

the problem and foresees some solutions, deeply discussed in section 3.3. Section

3.4 shows some characteristics of the solution we propose, whilst section 3.6 deals

with the specific problem to allow to a set of users the access to a log line.

3.2 Preliminary considerations

In our approach we consider a log file as a journal in which information

coming from various activities is stored in a set of lines; each line refers to a

particular event of interest in each activity. We do not consider the physical

implementation, and refer to the definition given in [RUF95].

The environment of our system is composed by administrators that perform

activities on objects: these activities are logged by an entity. The job of this entity

is to ensure that the content of parts of the log file is available only to the

authorized people (auditors) and that this content cannot be modified without

detection. We want to propose a method where there is no need for a centralized

element that authorizes any new people to access a previously produced log entry.

The set of people which is authorized to access stored data has to remain the same

as it was when a log entry was produced. In the following we discuss techniques

that can be used to obtain these objectives.

The first consideration relates to data encryption. The objective of data

encryption is to allow the access to particular data only to set of users. This set

may change for every logged line. Moreover, it must be possible to allow access

to groups of users in which the presence of at least n users over N is required to

reveal the content of a line. The chosen approach is to encrypt each line with a

different key. This key is generated automatically by the system, and access to

CHAPTER 3 – SECURE LOGGING

21

this key is given according to the kind of access we want for each user, in a

exclusion/elusion strategy for the log file auditing that will be presented later.

Another goal of the system we propose is to ensure that the file cannot be

altered without possible successive detection by a verifier. Thus, one objective is

to avoid data forging. A solution to this requirement is to use a hash chain. A hash

chain keeps the log lines linked, in the same order they were originally written,

and prevents the insertion of a line between two other lines. One of the first

proposals of the use of chains to connect a sequence of data is presented in

[LAM81]. [BCC01] use a hash chain to link a set of data transmitted in streaming;

in that paper the point that remains to be solved is how to make sure that the last

element of the chain is not modified.

3.3 Possible approaches

As previously seen, for privacy reasons the data section of the log line is

encrypted [BCD+04] with a randomly generated key. To record this random key

for later use in auditing, we consider two possible approaches:

a. Each auditor has his own symmetric secret key: the system encrypts the

random key for each auditor with his secret key;

b. Each auditor has his own pair of asymmetric public/private keys: the

system encrypts the random key for each auditor with his public key. The

auditor will use his private key to decrypt the random key and access the

log line data;

The approach of directly encrypting the log line data with the auditor’s public

keys was considered, but discarded due to the computational complexity of the

asymmetric encryption and the amount of data that were required to be encrypted

and stored.

Let’s see the structure of the log lines in the two cases a. and b. The index i

runs over the log lines; k is an index that runs over the identifiers of the entities

involved in the logged transaction, and j indexes the various auditors. (In this

example of line structure, auditors from 0 to j-1 have access to the line content,

auditors from j to n have not. This will become clearer throughout the rest of the

chapter.)

CHAPTER 3 – SECURE LOGGING

22

a.

=

ii

iKiKiK

iKiKiAiki

i

S , HC

,))H(A(E , ... ,))H(A(E ,)(AE

, ... ,)(AE ,)(AE ,)(DE , , U, TS

 L
nj1-j

10i
λ

b.

= +++

++

ii

nKjK1-jiK

1iK0iKiAiki

i

S , HC

),(R , ... ,)(R),R ,(A

, ...),R ,(A ,)R ,(A ,)(DE , , U, TS

 L
nj1-j

10i

ααα

ααλ

Notice, in the preceding lines, that some parts are underlined whose particular

functions will be discussed deeply. In the following the meaning of the various

parts is presented:

• iTS is the timestamp issued by a Time Stamping Authority
1
 or it is a

timestamp assigned by the system. If a Time Stamping Authority comes

into play, then TSi is calculated on the result of an hash function (e.g. like

SHA-1 [NIST95]) applied to Si-1
2

 concatenated with all of the data in Li

except TSi, HCi and Si. It may express the time of logging or the time of the

reception of the line. Both are possible approaches. Even if the data

contained in the log line already contains a timestamp, TSi may be useful

for some cross checks on the data.

• kU is a set of data related to the log entry; in our environment it represents

the identifier of the user (i.e. the administrator) that generated the data in

the log line, along with an identifier of the administered system. As for the

responses from the systems, this may be an identifier of the system and of

the user to whom this response is sent. In order to enforce the secrecy of

this field the method proposed in [WBD04] could be used.

• iλ represents the length of data in cryptographic blocks.

• iD are the data to be logged for the i-th line.

• iA is the symmetric key, randomly generated, used to encrypt the data of

the i-th log line.

1
 The decision about whether and how often a Time Stamping Authority has to be involved

must be made according to the effectiveness of the vulnerability and threats associated with the

system.
2
 This field prevents an attacker that obtains B

-
 at a certain point in time from being able to

successfully forge any previously stored log lines.

CHAPTER 3 – SECURE LOGGING

23

• nKK ...0 are the auditor’s secret keys, used in the approach a. that uses

symmetric encryption of Ai.

• ++

nKK ...0 are the auditor’s public keys, used in the approach b. that uses

asymmetric encryption of Ai.

• nRR ...0 are random values used to preserve the elusion property we will

discuss in a following section.

•)(yEx represents a symmetric encryption function that uses the key x to

encrypt data y; it returns the encrypted data. A good candidate function

could be AES [NIST01].

•)(y
x

+α represents an asymmetric encryption function that uses the key x
+

to encrypt data y; it returns the encrypted data. A function that may be used

is RSA [RSA78].

•)(xH is a one-way hash function (like SHA-1 [NIST95]).

• iHC is the element of the hash chain for the i-th log line (see below).

• iS is the signature of the element of the hash chain, that is, it corresponds to

)/(iHCBSign
− , that is the function of digital signing iHC with the

logging system private key B
-
; it returns the signature. Functions that may

be used are, for example, RSA [RSA78] or DSA [NIST94].

Let’s see how the element iHC of the hash chain is computed. It is the hash of

the previous log line hash (i.e. 1−iHC) concatenated with all the elements of the

current line, except iHC and iS (obviously, because the first one is what we are

computing, and the second one will depend on the first one). In formulas, we may

write that (for both proposals):

a)

=
))(H(AE , ... ,))(H(AE ,)(AE

 , ... ,)(AE ,)(DE , , U, TS , HC
H HC

iKiKiK

iKiAiki1-i

i

nj1-j

0i
λ

b)

=
+++

−

+

)(R , ...),(R),R , (A

 ..., ,)R , (A ,)(DE , , U, TS , HC
H HC

nj1-ji

1iiAiki1-i

i

1

0i

njj KKK

K

ααα

αλ

CHAPTER 3 – SECURE LOGGING

24

The first element of the hash chain, namely 1HC , is computed using as previous

element a fixed and known value for 0HC which may be recorded, without

encryption, in the beginning of the log file. When a line is verified, the hash of the

previous line should be trusted, thus a verification of the signature of the previous

line should be performed.

3.4 Encryption and exclusion/elusion

The objective of this section is to introduce the intrinsic security of the log file

when it is stored on any device. In fact, it has to be taken into account that the

security of the log file should not change even if it is saved and copied for backup

purposes. That is, the log file content should not be alterable (by anyone) and

should not be visible by non-authorized people.

To avoid the disclosure of the content to non-authorized people we already

introduced the idea of encrypting the data with a random key Ai (that changes for

every line): thus, this key is used to encipher the data; afterwards, the key Ai is

made available to the various auditors encrypting it with the personal key of every

auditor that should have access to that data. When the key has been encrypted,

then it is destroyed, and only the authorized auditors will be able to reconstruct

the original data. If there are auditors that should not have access to a particular

log line, then Ai is not encrypted for them; instead:

a.)H(Ai , a one-way hash of the key, is encrypted in case of approach a.

b. a random value Rr
3
 (different for every auditor) is encrypted with the

public key in case of approach b.

This is done for the following two reasons:

1. Exclusion: it is easy to exclude one or more auditors from accessing

the log line data, simply giving them a fake key: a random number in

approach b. or obtained from the right key, but through a non-invertible

function, in approach a.. In the literature are presented many one-way

hash functions easy to compute. The use of a different Ai for every line

allows for a fine granularity in giving access to every log line only to a

3
 In some embodiments, in place of Rr the concatenation of H(Ai) and a random number Rr

(different for every auditor) can be used.

CHAPTER 3 – SECURE LOGGING

25

subset of auditors. Thus the exclusion is local to every log line. We

used a one-way hash function in approach a. because we considered it

as an efficient source of randomness. Due to the elusion property

discussed below, we had to use a different random number for every

auditor in approach b.

2. Elusion: it is easy to see that simply looking at the log file it is not

possible to understand which auditors have access to which log lines.

This is due to the fact that we encrypt the key Ai for every auditor. At

this point we distinguish the two approaches a. and b. previously

introduced.

a. Access to a line depends on the possession of iA , useful to

decrypt the line, or)H(Ai , that does not allow access to the

line. But, for the properties of symmetric encryption, it is

impossible to deduce which case (if iA or)H(Ai) has been

encrypted for an auditor. Note that it is important to use)H(Ai

that changes for every line. In fact, suppose to use a constant

value for those auditors that should not have access to a line.

Then, encrypting a constant value using a fixed key (the secret

key of the auditor) will disclose the lines that are not accessible

to an auditor, simply by inspection of the log file looking for a

repeated value for an auditor. Note also that the use of)H(Ai

has the only objective to create a random number in an efficient

manner; that is, instead it could be used a random number iB

different from iA .

b. From the properties of asymmetric encryption it is impossible

to deduce which auditor is able to decrypt the key Ai. Note the

use of the random values Rr to ensure the elusion property. For

those auditors having rights to access to the log line, then the

key Ai is encrypted along with a random number (different for

every auditor) to ensure that an auditor decrypting the key Ai is

not able, through asymmetric encryption using the other’s

auditors public key, to deduce which of them has access to the

log line. At the same time, for auditors that do not have access

to a line, a random value (also in this case, different for every

auditor) is encrypted with the public key of each auditor, thus

CHAPTER 3 – SECURE LOGGING

26

the resulting value is undistinguishable from the encryption of

the correct key Ai and a random value.

3.5 Group auditing

One of the objectives of the system is to give different access modes to

different auditors. We have already presented a method for allowing or not the

access to a line. In this section we present how to give access to a single line to a

group of auditors. For example, some log lines should be decrypted only when a

set of at least three auditors out of five agree on looking at its content; in this way

it is possible to access the data even if not all of the auditors belonging the same

group are available.

3.6 Group access to a log line

In our application, we use the method from [SHA79], with the following

constraints:

• each auditor should be able to access the content of a log line both

alone (if he has the rights) or with the cooperation of other auditors (if

he belongs to a group of auditors that should have access to the line);

• when a group of auditors has used a secret to disclose the content of a

line, then this secret must be useless if used to disclose the content of

other lines; the reason lies in the fact that when a group of auditors

agree in looking at the content of a line, then some of them may not

agree in disclosing the content of other lines to the members of the

same group;

• each auditor may belong to any number of groups (also none).

We obtain the previous results by distributing to the auditors that need a group

access to a log line, a share to determine the secret Ai. That is, instead of

encrypting the secret Ai for an auditor, we encrypt a part that allows the

reconstruction of the complete secret Ai. This implies that to decrypt a line there

may be:

CHAPTER 3 – SECURE LOGGING

27

• users that have access to the line as alone entities, i.e. they have

)(AE iK
j

 or)R ,(A ji+
jK

α 4
;

• users that do not have access to the line as alone entities, i.e. they have

))(H(AE iK j
or)R ,(A ji+

jK
α 4

;

• users that have access to the line only with the collaboration of at least

k users, i.e. they have)(E
ij AK Σ or)(

iAΣ+
jK

α , where ΣAi is the share of a

secret that allows disclosing Ai with the collaboration of other k-1

users. Users may belong to many groups, thus having many shares of

the secret (obviously, the various shares will be related to different

polynomials);

Note that the three sets of users may be not disjoint (the first two are obviously

disjoint). Thus, our system allows for users that may access a log line by

themselves, or in collaboration with other users also, or only when other group

members agree in disclosing the content of a line.

Let’s see which data is saved for every auditor that potentially has access to a

line:

a. ()... , ,ID , ,ID ,)H(AE ''

Agroup

'

AgroupiK i
''

i
'

j
ΣΣ

b. ()... , ,ID , ,ID),(R ''

Agroup

'

AgroupjK i
''

i
'

j

ΣΣ+α 4

or, for some embodiments:

()r

''

Agroup

'

AgroupjiK
R|... , ,ID , ,ID ,R),H(A

i
''

i
'

j

ΣΣ+α 4

In this example the j-th auditor has not access as individual, but only as

belonging to some groups. If a user does not belong to a group (or a group does

not have access to the line) then Σ may be left as a set of zeroes of the right size

(using a proper encryption function, all this data will preserve the elusion

property).

To add an auditor to the group of auditors, it is sufficient to give him a new

share based on the polynomial, encrypting this share with the auditor’s key. To

exclude an auditor from a group it is sufficient not to give him his share anymore.

4
 If each auditor has his own pair of asymmetric public/private keys.

CHAPTER 3 – SECURE LOGGING

28

To modify the minimum number of auditors necessary to disclose a log line, a

different polynomial should be used, according to [SHA79].

To work properly and to be able to decrypt correctly a log line for a group, the

system requires at least the following information for each group:

• a group identifier;

• the minimum number of auditors that are required to disclose the secret;

• the identifiers of all the auditors belonging to the group.

3.7 Observations on multiple groups

A question that may arise on the security of the method applied on multiple

groups is: what happens if shares of different groups on the secret Ai are joined

together? Do these parts allow the determination of Ai? That is, let’s suppose the

worst case. Imagine m’-1 auditors of a group (requiring m’ auditors to compute

Ai) colluding with m”-1 auditors of another group (requiring m” auditors to

compute Ai). Moreover, note that the two groups may overlap.

Let’s write the two polynomials we want to determine:

i1

2m'

2'm

1m'

1m' A x α ... xα xα y ++++= −
−

−
−

i1

2'm'

2'm'

1'm'

1'm' A x β ... xβ xβ y ++++= −
−

−
−

The target is to determine the α values, the β values and Ai; that is, overall

m’+m”-1 values. The colluding auditors have m’+m”-2 points (possibly not

distinct), m’-1 from one polynomial, and m”-1 from the other polynomial. This

allows to write a system of m’+m”-2 equations in m’+m”-1 variables, with the

following structure:

CHAPTER 3 – SECURE LOGGING

29

++++=

++++=

++++=

++++=

++++=

−
−
−−

−
−−−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i1"'m'1

2m'

1"'m'2'm'

1'm'

1"'m'1'm'1"'m'

i1"1

2'm

1"2'm'

1'm'

1"1'm'1"

i'1m'-1

2'm

'1m'-2'm

1m'

'1m'-1m''1m'-

i2'1

2m'

2'2m'

1m'

2'1m'2'

i1'1

2m'

1'2m'

1m'

1'1m'1'

A xβ ... xβ xβ y

...

A xβ ... xβ xβ y

A xα ... xα xα y

...

A xα ... xα xα y

A xα ... xα xα y

 The target may not be reached because the system of equations is

undetermined if we make the assumption that a single polynomial of degree m is

undetermined if only m-1 points are available. But, to discover the shared key, it

is sufficient to determine Ai: we show that this is not possible. Call the set of

equations coming from the first polynomial Π and the set of equations coming

from the second polynomial Θ.

Given that Ai cannot be determined from Π ([SHA79]), then reducing this set

should bring to an equation of this kind:

1i2j1 b Ac αc =+

For the same reason, reducing Θ will lead to

2i4k3 b Ac βc =+

where the cm and bn are constant values.

The system of these two equations does not allow to determine Ai because jα

and kβ are different unknown (they are coefficients from different polynomials).

Thus, to answer the question we posed in the beginning of this section, even if

different auditors from different groups collude to determine the shared key, they

will not be able to get it unless the required number of auditors in one of the

groups is reached.

The same demonstration holds also in the case in which two auditors belonging

to different groups own the same share (i.e. the same point in the plane, where two

distinct polynomials intersect).

CHAPTER 3 – SECURE LOGGING

30

Figure 3-1: Common share of different polynomials

CHAPTER 4 – GROUP SIGNATURES

31

Chapter 4

Group signatures

This chapter illustrates the technology of “group signatures”, whose state of the

art has been already presented in chapter 2.6, and some innovative solutions

we’ve devised during the research we’ve carried on. Chapter 4.3 presents the first

solution, based on standard signatures, putting forward in the conclusion benefits

and drawbacks of the method. Chapter 4.3.8 contains a variation of the method for

building group signatures mentioned above. In chapter 4.4 we describe the second

solution, based on one-way accumulators, a newly born concept described

thoroughly in this dissertation and used to build complex group signatures

schemes.

4.1 Description of group signatures

Firstly, let’s precise that the term “Group Signature” (or also “Group–oriented

Signatures) is not used, in this context, to denote the kind of signature in which

there are groups of n participants and it’s necessary the presence of at least k out

of n members to issue a valid signature. In this case, the ability to issue signatures,

is granted only to a large coalition of members of a group, as introduced for the

first time by Boyd under the name of Multisignatures. According to Desmedt

[DES93], those type of signatures is nowadays usually called “Treshold

signatures”, that is signatures where a minimal threshold of users is needed in

order to issue a valid signature.

Group signature schemes are a relatively recent cryptographic concept

introduced by Chaum and van Heyst [CHVH91] in 1991. In contrast to ordinary

signatures they provide anonymity to the signer, i.e., a verifier can only tell that a

member of some group signed. However, in exceptional cases such as a legal

dispute, any group signature can be ``opened'' by a designated group manager to

reveal unambiguously the identity of the signature's originator. At the same time,

no one - including the group manager - can misattribute a valid group signature.

CHAPTER 4 – GROUP SIGNATURES

32

The salient features of group signatures make them attractive for many

specialized applications, such as voting and bidding. They can, for example, be

used in invitations to submit tenders. All companies submitting a tender form a

group and each company signs its tender anonymously using the group signature.

Once the preferred tender is selected, the winner can be traced while the other

bidders remain anonymous. More generally, group signatures can be used to

conceal organizational structures, e.g., when a company or a government agency

issues a signed statement. Group signatures can also be integrated with an

electronic cash system whereby several banks can securely distribute anonymous

and untraceable e-cash. This offers concealing of the cash-issuing banks'

identities.

A concept dual to group signature schemes is identity escrow. It can be

regarded as a group-member identification scheme with revocable anonymity. A

group signature scheme can be turned into an identity escrow scheme by signing a

random message and then proving the knowledge of a group signature on the

chosen message.

4.2 Definitions

A group signature scheme involves a group manager, a set of group members,

and a set of verifiers. The group manager (for short, GM) is responsible for

admitting/revoking group members, and for opening group signatures to reveal

the true signers. When a potential user registers with GM, he/she becomes a group

member and then can sign messages on behalf of the group. A verifier checks the

validity of a group signature by using the unique group public key. We now

review the definitions of group signature schemes and their security requirements

as follows.

A group signature scheme is comprised of the following procedures:

• SETUP: on input of a security parameter, this probabilistic algorithm

outputs the initial group public key and the secret key for the group

manager;

• JOIN: An interactive protocol between the group manager and a user

that results in the user becoming a new group member. The user’s

output is a group signing key;

CHAPTER 4 – GROUP SIGNATURES

33

• SIGN: A probabilistic algorithm that on input a group public key, a

group signing key, and a message m outputs a group signature on m;

• VERIFY: An algorithm for establishing the validity of an alleged

group signature of a message with respect to a group public key;

• OPEN: An algorithm that, given a message, a valid group signature on

it, a group public key and the corresponding group manger’s secret key,

determines the identity of the signer;

The following properties must be satisfied by any group signatures scheme:

• Correctness: Signatures produced by a group member using SIGN

procedure must be accepted by VERIFY procedure;

• Unforgeability: Only group members are able to sign messages on

behalf of the group.;

• Anonymity (or Untraceability): Given a valid group signature for

some message, identifying the actual signer is computationally hard for

everyone but the group manager;

• Unlinkability: Deciding whether two different valid signatures were

generated by the same group member is computationally hard for

everyone but the group manager;

• Exculpability: Even if the group manager and some of the group

members collude, they cannot sign on behalf of non-involved group

members;

• Traceability: The group manager can always open a valid group

signature using OPEN procedure and then identify the actual signer;

• Coalition-resistance: A colluding subset of group members cannot

generate a valid group signature that cannot be traced by the group

manager;

• Unforgeability of traceability: the secrets provided by the group

manager must unambiguously attest who is the real signer among two

or more members that affirm to have issued a signature, even if the

excluded member and the group manager are in league;

CHAPTER 4 – GROUP SIGNATURES

34

4.3 A new solution for group signatures based on standard
signatures

4.3.1 Introduction

In this section we will illustrate a method for building group signatures, created

in collaboration with the Network and Security Group of the Department of

Computer Science of Turin. This method fits into all the required titles in terms of

security, reliability and usability for the Irrefutable Administration System

developed as implementation part of this thesis.

4.3.2 Description

The approach is based on standard signatures (i.e. signatures issued by a single

entity, such as RSA signatures) and on a set of entities. Those entities interact in

order to fulfill the properties stated in chapter [chap. Ref.]: correctness,

unforgeability, anonymity, unlinkability, exculpability, traceability and coalition-

resistance. Besides, thanks to the presence of an intermediate entity between the

signer and the applicant, the solution here exposed owns the feature of immediate

revocation: the revocation of a member of the group is instantaneous, unlike the

traditional systems where the revoked members maintain the ability of signing

even after being excluded from the group – the revocation comes out only while

verifying or opening a signature.

The aforementioned properties are fulfilled considering an approach oriented to

the system, more than using pure cryptography, where efficiency, security and

easiness of implementation are based on the state of the art of the single

components and make it easier to implement a prototype. To be more precise,

although we are using an approach oriented to the system, the cryptographic side

has not been left behind, as it takes a big part in the whole solution. It will be

explained in detail how, with this approach, the system may adopt any public or

private signature algorithm. This means that the underlying technology will, with

high probability, be based on solutions which have already been analyzed and

verified. The whole method will then take the correctness and principles of the

underlying algorithms.

The immediacy of revocation is a definitely positive feature in a group

signature context, as Ding, Tsudik and Xu illustrate in [DTX04]. In the same

article they expound a solution whose model shares some basic ideas with the

scheme proposed in this part of the thesis. That model, as a matter of fact, fulfills

CHAPTER 4 – GROUP SIGNATURES

35

the property of immediate revocation by means of an intermediate entity (they call

it “Mediation Server”) which filters the group signatures demands. With a single

intermediate entity, however, problems connected to security and reliability of the

system may arise. As a solution to this issue, also called “Single point of failure”

of the intermediate entity, they introduce a secondary entity – called Group

Manager – which shares with the first the role of group coordinator. A similar

principle of separation of duty has been followed in our solution as well, as will

be illustrated in the following, delegating the decision task to an entity of group

managing (GME), the task of signature production to the authentication and

anonymity entity (AAE) and the verification and control task to an entity of

process verification (PVE).

A further difference lays, in [DTX04], into the Mediation Server, which

contains also a dynamic database used for recording the signature transactions

issued by the system: once a record has been recorded, it cannot be deleted. The

drawback of this solution is, obviously, that the Mediation Server becomes a

critical step into the system chain, because it contains all of the issued signatures.

The solution I will expose in the following, on the other hand, doesn’t suffer from

the same problem because the signatures themselves contain all the information

necessary for their own verification and opening. Therefore, they don’t require

databases or signatures archives to be put into the single entities of the system.

4.3.3 Elements of the system

In order to obtain group signature complying to the aforementioned properties,

the following entities need to be introduced:

• A Group Management Entity (GME): it’s the entity who verifies the

correct membership of the entities to the group, giving them the

permission to issue signatures on behalf of the group; when a new

member wants to join the group, he must first subscribe at the GME.

Furthermore, when a group member wants to be removed (or must be

removed) from the group, the GME attends to the removal operations;

• An Authentication and Anonymity Entity (AAE): it’s the entity who

issues group signatures according to the group members requests;

basically, it’s task is that of issuing group signatures basing on

signature requests originating from a valid (i.e. an authorized member

whose membership can be verified through methods such as

public/private key authentication) group member; the peculiarity of

CHAPTER 4 – GROUP SIGNATURES

36

such a signature is that – as will be discussed in details in the following

– the information is signed with a group key (owned by AAE only) but

it’s always possible, for the AAE, to uncover the identity of the group

member who sent out the signature request. The AAE is the exclusive

owner of the group key;

• A Process Verification Entity (PVE): it’s the entity who is in charge of

randomly testing – by means of random samples – the group signatures

and verifying the correctness of it’s contents; this entity can be seen as

an AAE operations checker, it should therefore be managed by a stand-

alone and separate entity; nevertheless, the owner of the PVE should

shortly get rid of the pieces of information obtained during the

verification process, in order to avoid the disclosure of information and

hence violate the unlinkability property of the signatures (i.e. the

inability of linking together two different signatures issued by the same

entity);

• The group members (Mi): they must subscribe at the GME as group

members; if the GME accepts his membership, Mi will be able to issue

signature on behalf of the group, through the participation of AAE

which is the real issuer of the group signature;

The AAE and the group members must possess a pair of private/public keys for

this group signature scheme to be working, in a way that will be described in the

following. Each public key must be put into a public key certificate, in order that

the signature and therefore the real identity of the group member might be easily

verified.

The correlation and interplay between the previously described entities is

shown in Figure 4-1; the arrows denote the direction of the information flow, the

cylinder stands for a logging device – a disk drive, for instance – where group

signatures are stored in order to be retrieved in a subsequent moment.

Depending on the way in which group signatures will be used, this device

could be kept always on-line and backed up at fixed time intervals.

A component not shown in Figure 4-1 is the PKI (Public Key Infrastructure),

indispensable to publish the certificates containing the public keys used by the

entities to make their signatures.

CHAPTER 4 – GROUP SIGNATURES

37

Figure 4-1: Interaction between entities

When dealing with systems where high availability is required in addition to

reliability, we suggest adding some redundancy to the components required for

the good operation of the system, such as in the specific context the AAE and the

PVE. To make the whole process even more strong and fault tolerant it’s

recommended a redundancy of the GME as well. Such a redundancy becomes

necessary because, in order to issue signatures, group members depend on the

active real-time collaboration of the AAE, whilst the PVE should be up and

running to vouch for the correctness of the whole system and of the AAE itself.

4.3.4 Communication between components

In the following we give a more detailed description of the communication

taking place between the entities of the system and of the method used by the

group members to issue group signatures. Firstly, the communication between the

GME and the AAE must be encrypted and authenticated for those reasons:

• The encryption of the communication keeps the data exchange between

the GME and the AAE private, hiding at any time the secret

composition of each group (this is true for all the entities but the GME

and the AAE, of course) retaining the property of unlinkability of

signatures;

• The authentication of the communication guarantees the identity of the

entities taking place in the data exchange and the source of the

information received;

CHAPTER 4 – GROUP SIGNATURES

38

Using the channel which joins the GME to the AAE, the former gives the latter

information about the group membership of each member by means of – for

instance – an “ADD” message containing the public key certificate of the member

to be inserted into the group.

Furthermore, the GME is entitled to remove members from groups by sending

a “DELETE” message to the AAE containing the unique identification of the

group member who, for a period of time stated in the message itself, will not be

able to issue signatures on behalf of the group.

The communication between the different Mi and the AAE must be

consequently:

• Encrypted, in order to prevent the a-posteriori linking of the signature

requests arrived at the AAE to the group signatures it has produced;

• Authenticated, in order to ensure the identity of the entities involved

into the communication;

For analogous reasons, the communication between the AAE and the PVE

must be encrypted and authenticated.

Group signatures are written in plain text, without encryption, on the logging

device, consequently the communication with this entity may be unencrypted and

not authenticated because, as we will illustrate in the following, the source of the

signature and the signature itself cannot be modified without positive evidence;

furthermore, the group signature archived on the device doesn’t provide any clues

about the entity which issued it.

4.3.5 Operations of the system

In this paragraph we describe the operations the system takes charge of to issue

group signatures, starting from the signature request advanced by a group

member.

When a member Mi wants to sign a message m on behalf of the group, he sends

a signature request for the message m to the AAE through the

encrypted/authenticated channel, signing it with his private key.

The information sent to the AAE is therefore:

m, Sigi(m)

CHAPTER 4 – GROUP SIGNATURES

39

Sigi(m) is the signature of the message m issued by Mi with his private key. In

general, Sigi may be a signature made with RSA or DSA or whichever is the

preferred algorithm. The message m may be, as an improvement, composed line

this:

mo | t

In the previous suggestion, t is a timestamp or an increasing unique

identification number, necessary to avoid replay attacks and mo is the message

itself.

When the AAE receives such message, it carries out those operations:

• It verifies how recent and “fresh” the message m is by means of the t

component associated coupled with the message itself;

• In case of verification failure, the AAE sends a NACK (negative ACK)

to Mi and closes the transaction;

• It verifies the message signature against the public key Mi gave to the

PKI

• In case of verification failure, the AAE sends a NACK (negative ACK)

to Mi and closes the transaction;

• In case of verification success, the AAE checks whether Mi is entitled

to sign messages (i.e. it’s not been revoked) against the list build by

means of the ADD and DELETE messages received by GME;

• If Mi has turns out to have been revoked, the AAR sends back a

negative acknowledge (NACK) and concludes the transaction;

• If Mi is entitled to issue signatures, the AAE encrypts – with a

symmetrical key – the signature Sigi(m) concatenated with the group

member Mi identification number (producing a data block denoted in

the following as E[Sigi(m) | i]), and signs with the group key the

message concatenated with the encrypted block and a timestamp T (or

alternatively an increasing identification number) used to avoid

signatures replay attacks. This is the block:

m, E[Sigi(m) | i], T, SigG(m | E[Sigi(m) | i] | T)

The symbol | stands for concatenation of components, while the

symbol i represents a unique identification code (unique with respect to

the identification numbers connected to the certificates issued by the

CHAPTER 4 – GROUP SIGNATURES

40

CA). In a different embodiment, the identification code could as well be

filled with the certificate itself.

The three elements concatenated in such way embody the group

signature which the system issues on the message m. Everyone may

easily verify this signature by means of the public key of the group

(made publicly available by the PKI), and ignoring the encrypted part.

The signature may hereby be stored on permanent storage devices –

for instance on hard drives as we suggested before.

In order to avoid possible coincidental correlation between a

signature request advanced by a member Mi and a signature stored on

disk, the AAE could, for instance, keep the signature requests arrived in

the last n minutes in a memory location and, when a sufficient number

of requests has been received (at least one for each entity), only then

write down on disk the whole bunch of group signatures.

Particular attention must be paid to the waiting for a certain amount

of time or to the necessity of messing up the signature requests, because

those simple cares might be of use to avoid a correlation between the

time (or the order) of the requests and a corresponding group signature.

In some cases, the information like date, time, minute and second (all of

them contained in T) could be removed from the group signature for

safety, considering that the system might be liable to replay attacks,

unless a unique increasing identification number is used for each signed

object.

In case of dispute, the AAE may “open” the signature and thus give evidence

of the group member identity who issued the signature. The opening request

should come from an authorize entity, to prevent attacks and private information

disclosure. The opening of the signature is carried on by the AAE according to

those steps:

• He verifies the external signature issued by himself.

• He decrypts (with a secret symmetrical key) the encrypted part

contained in the signature

The second item allows the AAE to retrieve the identification code associated

to the signer of the message m and his original signature. This is necessary to

unfold the real identity of the signer.

CHAPTER 4 – GROUP SIGNATURES

41

Notice that any modification to the group signature subsequent to it’s creation

(while, for instance, it’s stored on a storage device) immediately invalidates the

signature, in a way similar to what happens to standard signatures.

This latter observation must be kept in mind when considering the

responsibility of the AAE entity, which is limited to the correct execution of the

task above mentioned of creating the group signature. It’s of course impossible for

anyone to produce valid group signatures without the intermediation of the AAE.

4.3.6 Validation/verification of system operations

The system here exposed contains a stand-alone entity with the sole duty of

verifying by means of random samples the signature and consequently the correct

efficiency of the AAE. The PVE (Process Verification Entity) checks the

consistency of the signatures asking the AAE to open a small and randomly

chosen number of group signatures issued in different times. Put in practice, the

PVE obtains with a random decision a signature issued by the AAE, verifies the

external signature (SigG) and, in case of correctness, asks the AAE (through the

encrypted communication channel) to open such signature. The opening of the

signature gives the PVE the unencrypted signature Sigi of the group member,

signature which is immediately verified. If the signature turns out to be correct,

the AAE is regarded as safe and reliable, otherwise it’s regarded as broken and the

whole system must be immediately stopped. If Sigi or SigG are revealed as corrupt,

in fact, that could mean that the group signature is not valid (and the AAE could

therefore be corrupted).

Just after the correctness verification of a signature, the PVE must destroy the

information concerning the open signature, so as to avoid any possibility of

linking between signatures.

Notice that, because of the criticality of the operations executed by the PVE, all

the data exchanged between the PVE and the AAE must be encrypted and

authenticated.

4.3.7 Benefits and drawbacks

In this section we will discuss the system described in the previous paragraphs,

taking into account benefits and drawbacks. In the following there is a list of the

benefits of the above described solution:

• It is possible to add or remove members to/from the group in real time:

the GME is in direct communication with the AAE and is entitled to

send to the latter the information about the group structure;

CHAPTER 4 – GROUP SIGNATURES

42

• It is possible to verify, by means of random samples, the issued

signatures, so as to detect eventual manumissions;

• The issued group signature requires a small amount of space where will

be stored the original, encrypted signature of the group member.

Consequently, the total size of the resulting group signature depends

only on the size of the standard signatures used for signing;

• Concerning the previous item, the signature of the above exposed

schema requires a small amount of space, mainly when compared to

some other group signatures schemes; furthermore, the system may

adopt any signature algorithm whose properties have already been – for

instance – analyzed and verified. There is no need, therefore, of a new

implementation of signature algorithm and the consequent robustness

test;

• By means of the group public key only and of the data stored on the

repository (which may be for instance a disk drive) it’s possible to

verify the group signature issued on a message, without taking into

account the encrypted part of the signature which will be indispensable

for the opening of the signature. Furthermore, the signature contains

also, encrypted, the information necessary to reveal the identity (also

referred to as “identity escrowing”) of the group member who has

signed the message (for the decryption process the collaboration with

the AAE is mandatory). Notice that the encrypted part contains the

original first signature of the group member, and hence his identity as

well.

The main drawback of this method is the necessity of an intermediate entity,

the AAE, entitled to sign on behalf of the group. As discussed before, this entity is

involved in the process for each and every signature. As a consequence, the AAE

is prone to become a kind of bottleneck during the operations of the system but,

on the other hand, it must be clear that there is the possibility of implementing

such entity on an independent device, where the whole computational strength can

be devoted to the signature process.

This trick makes up for the before mentioned drawback and helps keeping

secret the key used for the encryption and for the signatures in a secure and

protected environment (for instance in a tamper-evident device).

Further remark about the suggested method is that the computational power of

the group signature algorithm is directly proportional to the complexity of the

CHAPTER 4 – GROUP SIGNATURES

43

algorithm. More precisely, a group signature thus requires two standard signature,

one encryption and one signature verification process.

4.3.8 Variant of the first solution

As described in the previous paragraph, the solution is based on an

intermediate entity (the AAE) with the constraint of being always on-line and

reachable, because the signature process requires its direct intervention.

In the situation where it’s more desirable to release the constraint of the AAE

availability, in exchange of less guaranties about the unlinkability property above

described, a variant of the solution may be adopted. That variant has been

designed in order to decrease the necessity of a repeated contact with external

entities for each and every signature, the whole operation results therefore more

independent.

4.3.8.1 Pseudonym certificates

The modifications to the above described solution consist in joining together

the AAE and the GME encompassing them in a sort of “Pseudonym Certificates

Emitter” (from now on referred to as PCE) with the charge of giving the group

members entitled to sign on behalf of the group some certificates. There will be

no more AAE signing messages on behalf of a group member Ai, but the member

itself will sign by means of the pseudonym certificate (called for briefness PsC)

received from the PCE. In details, the group member will sign using the private

key connected to the public key certificated by the PsC.

For the initial request, the group member will testify his identity by means of a

personal certificate (here called CRT) released by a CA authorized and

acknowledged by the PCE. This latter will provide the group member with a

pseudonym certificate only in the case in which there is no revocation upon the

partnership and if the certificate turns out to be valid. This means that, in practice,

the group member has been recognized by the system and he is entitled to sign on

behalf of the group.

The relevant feature of this variant is that the PsC received from the PCE can

be used by the user Ai for the signature of more than one message. This becomes

a point of strength because it solves the problem of unreachability of the PCE and

makes more easy the signature process. The more self-evident drawback is that, in

case of re-use of the PsC received for more than just one signature, the property of

unlinkability of the issued signatures is not kept true. However, this is a parameter

which can be adjusted to the requirement, as it is always possible to ask for a new

CHAPTER 4 – GROUP SIGNATURES

44

PsC whenever the need arises. Of course, the duration of the PsC emitted by the

PCE must not be too extended in time or number of allowed signatures, in order to

permit an easy and immediate revocation of the group members as will be

described in the following.

Let’s summarize, in general, the steps which are necessary for the signature of

one or more messages by a member Ai:

1. The member Ai generates a pair of keys (N
+
, N

-
), which will be used to

sign the messages on behalf of the group;

2. The member Ai asks the PCE for a PsC, providing together with the

request)R) the public key created during step 1 (N
+
). The request is

signed by Ai with his private key K
-
 (not to be confused with the key

generated during step 1) and attaching the public key certificate

acknowledged by the CA (CRT). Attached is sent also the signature

made with the private key produced at step 1 of the signature made by

Ai with his own private key K
-
;

PsC-Request =)))((()),((),(, +++
−−− NRSigSigNRSigNRCRT

KNK

3. The PCE provides the member Ai

with a pseudonym certificate PsC

containing the public key generated during step 1 (N
+
), possibly a

timestamp (T), and some encrypted data. Those encrypted data must

contain the identity of Ai, the request and pertinent signatures and

certificate received by Ai during step 2 (PsC-Request). The symmetrical

key (PCES) used for the encryption of the above listed data must be

exclusive property of the PCE and generated on that purpose and

different for each PsC issued. That symmetrical key must then be

encrypted with a public key PCEK
+
 whose corresponding private key is

kept secret by the entity which is entitled to open the signatures.

Immediately after issuing the PsC, both the PCES and the PsC-Request

ought to be removed from the system PCE. The PsC may then be made

public or if needed also attached to the signature itself. That cerfificate

will in fact be necessary for the signature verification process. In the

following are listed the fields which make up the PsC certificate:

CHAPTER 4 – GROUP SIGNATURES

45

LengthExtensionLengthExtensionVersionExtension

PCESEExtension

questPsCEExtension

NPublicKey

PCEK

PCES

2_,1_,3_

][2_

]Re[1_

=

=

−=

=

+

+

4. The group member Ai will then be able to issue his signature on

messages using the private key generated during step 1;

5. The verification of validity of the signature is made using the PsC

certificate produced at step 3;

6. The opening of the signature involves the decryption of the

symmetrical key contained in the PsC with the private key of the

authority which is entitled to open signatures. The symmetrical key

hereby obtained will be used to decode the encrypted data contained in

the pseudonym certificate PsC coupled with the signed messages;

The schematic representation of the solution variant is sketched in Figure 4-2.

PCECA

Ai

CRT

CRT
++
--

++

PsC+PsC++

PsC

+P
sC

++

M1M1 M2M2 MkMk

...

-- -- --

Ai

Figure 4-2: Schema of the interaction between components

CHAPTER 4 – GROUP SIGNATURES

46

As pointed out by step 6, the pseudonym certificate is sufficient to reveal

the real identity of the signer, because it contains in encrypted form the original

request issued by the group member. One immediate benefit is that now the

AAE no longer exists, in favor of what is now called “PCE”, an entity with

lower responsibility because the signature is in this variant issued by the

member itself.

The self-evident drawback is in this case the possibility, for a group

member, to keep on signing messages even after being revoked – because with

this variant the signatures do not require direct intermediation of any entity. Of

course, although they are practically doable, the signatures issued with revoked

certificates will not pass the verification process later on. The idea is, indeed,

that of emitting certificates with short validity duration, so as to let the

verification be made basing on the duration of the certificate, containing by

itself a time value issued by the PCE and verified by some central server.

Setting, for instance, a one day duration, it’s possible to revoke group members

with effect starting from the day following the revocation.

4.3.8.2 Properties

We’ll see now how the variation of the solution presented in the previous

chapters complies with the properties of the group signatures, failing only in some

cases when it comes to the property of unlinkability:

• Correctness: signatures generated by group members are valid and

verifiable by means of the PsC issued by the PCE. The PsC is obtained

in exchange following the request – signed with his own certificate

acknowledged by the CA – issued by the group member;

• Unforgeability: only the group members are entitled to produce valid

signatures for messages on behalf of the group. Revoked members can

still issue signatures, but they are not verifiable after the time slice of

validity of the PsC assigned;

• Anonymity (or Untraceability): given a group signature, it’s under

computational constraint infeasible for anyone but for the PCE

retrieving the real identity of the signer. Such information is, in fact,

stored in the PsC associated with the signature, encrypted with a

symmetrical key known only to the PCE;

• Exculpability: neither a coalition of members nor the group manager

itself may be able to sign on behalf of other members of the group. The

PCE, in fact, issues a PsC only after receiving a valid certificate request

CHAPTER 4 – GROUP SIGNATURES

47

authenticated through a Certification Authority known both to the

signer and to the PCE. Furthermore, the PsC contains the real request

sent (and signed with his own private key acknowledged by the CA) by

the group member to the PCE, encrypted symmetrically with a

password known to the PCE only. As a consequence, even if the PCE

happened to issue corrupted certificates, it would not be able to put into

those certificates the fake member requests – he doesn’t possess their

private keys as a matter of fact;

• Traceability: the group manager is in all cases able to open valid group

signatures and to reveal the real identity of the signer (identity

escrowing). The PsC contains, indeed, the identity of the signer paired

with the original request he issued to the PCE in order to obtain the PsC

(plus some data such as for instance the period of validity of the

certificate). Notice that those data are encrypted with a symmetrical key

– or the private asymmetrical key in case of different embodiment –

known only to the PCE;

• Unforgeability of traceability: the secrets involved in the signature

and in a part managed by the group manager is sufficient to prove

without ambiguity who is the real signer of a signature whose property

is asserted by two members. This must be true even if the excluded

member and the group manager were found to be allied;

• Coalition-resistance: no subset of group members is able, joining and

mixing together their secrets, to produce a valid group signature that the

group manager is not capable of opening. The signature has, to be

considered valid, to be associated to a valid PsC, issued by the PCE and

with timestamping coherent with the validity period. It’s not therefore

possible for any member to forge a PsC because he doesn’t possess the

private key of the PCE with which he should sign the certificate;

We conclude with the unlinkability property, which results in this case

dependent on the signature policy and PsC assignment adopted.

• Unlinkability: given two group signatures, it’s under computational

constraint infeasible for anyone but for the PCE telling whether the two

signatures have been issued by the same signer only if the signature

policy adopted is that of requiring a different PsC for each and every

signature. In case of re-use of the same PsC, the property is not kept,

CHAPTER 4 – GROUP SIGNATURES

48

because getting the PsC means being able to tell whether two signatures

have been issued by the same entity

4.3.8.3 Comparison of the variant to the original method

In this section the variant to the system is analyzed under the

benefits/drawbacks point of view showing how, roughly speaking, this variant

comes out to be quite similar to the original version but for the tradeoff between

unlinkability and high availability of the signing process.

• As in the original schema, it’s still possible adding or revoking member

to/from the group in real-time: the PCE assigns the pseudonym

certificates only to those who are entitled to sign on behalf of the group;

• Unlike the original schema, the group signature issued doesn’t require

additional slots to keep trace of the original, encrypted, group

member’s signature. It’s the group member itself who issues the real

signature on the document, not an intermediate entity on behalf of him;

• The signature issued in the latter variant takes considerably less space

(mainly when compared to other group signature schemes);

furthermore, the solution here exposed may adopt any signature

algorithm without complications, with the advantage that such

algorithms should be chosen among those which have been proved and

tested to be robust and efficient. As in the previous solution, there is no

need of implementing a brand new signature algorithm, and to perform

any kind of robustness test;

• By means of the group public key only and of the Pseudonym

Certificate (in addition to the CA certificate, of course) it’s possible to

verify the group signature issued on a message, without taking into

account the encrypted part of the signature which will be indispensable

for the opening of the signature. Furthermore, the PsC contains also,

encrypted, the information necessary to reveal the identity (also referred

to as “identity escrowing”) of the group member who has signed the

message (for the decryption process the collaboration with the PCE is

mandatory). Notice that the encrypted part contains the original first

signature of the group member, and hence his identity as well.

The main drawback of the original solution is the need of an intermediate

entity, the AAE, with the task of signing on behalf of the group (and of the

member who required the signature, of course). We showed how the presence of

CHAPTER 4 – GROUP SIGNATURES

49

this entity could turn out to be – if no additional care was taken – a sort of

bottleneck or single failure point for the whole system. The variant above

described can overcome the unreachability of the intermediate entity allowing the

member to sign more than one document with the same private key, and therefore

the same pseudonym certificate. It’s consequently possible to implement a policy

which forces the member to require a new PsC each n signatures, or for instance

once every beginning of day. What’s more, the policy could state that members

should ask for new PsC for each signature but when there are connectivity

problems with the PCE. This latter example is worthy of being chosen first,

because the re-use of the same key and of the same certificate invalidates the

property of unlinkability of signatures: the certificate in fact may allow an entity

to tell which signatures have been issued by the same member (with the same

certificate). In conclusion, it’s plain clear how the two solution are based on a

tradeoff between unlinkability and availability of the signature process.

Further consideration, similar to the original approach, is that also in this case

the computational complexity of the algorithm is directly proportional to that of

the standard signature algorithm chosen for the “low-level” signatures.

CHAPTER 4 – GROUP SIGNATURES

50

4.4 A new solution for group signatures based on one-way
accumulators

4.4.1 Introduction

In this section we will present a second method (third actually, as the variant of

the previous method can be considered as a second version) for building group

signatures, created in collaboration with the Network and Security Group of the

Department of Computer Science of Turin. This method is not based on standard

signatures but, as we will see in the following, evolves a concept quite new in the

field of computer research called one-way accumulators.

4.4.2 Description

The group signature scheme we propose [BCD+05] in this second solution is

based on the concept of one-way accumulators, as presented in [BM94]

(in the last

section, this paper briefly comments on an “effective method of forming

collective signatures”). A function g that is a one-way accumulator produces a

value w computed by the application of g which is independent from the order of

the yj values (note also the starting x).

)),),,...),,),,((((...((12321 ttt yyyyyyxggggggw −−=

As function g [BM94] suggests to use

nxyxg
y

n mod),(=

where n is a large rigid integer (n = (2p’+1)(2q’+1), with 2p’+1 and

2q’+1 primes, p’ and q’ odd primes, |2p’+1| = |2q’+1|).

In our application we propose to use a modified function for g, to avoid

possible attacks due to the use we do of this function (see observation I in

chapter 4.4.5.1). The modified function is:

fn(x, y) = x
b(y)

 mod n

CHAPTER 4 – GROUP SIGNATURES

51

where b is an appropriately chosen hash function (as we will see later,

the result of this hash function should be an odd number; thus, b(y) may be

equal to h(y) OR 1, where h(y) is a standard hash function):

b(y) = h(y) OR 1

4.4.3 Proposed Group Signature Scheme

The generic i-th member of m group members is Ai. GM is the group manager.

Let’s see in the following the description of the steps of the process.

4.4.3.1 System bootstrap

The system bootstrap basically consists of the following steps:

1. Ai generates a set of N asymmetric key pairs (e.g., for One Time Signatures,

RSA, or DSA).

2. Ai sends (through an encrypted channel) to GM the set of public keys Ki,1,

Ki,2, ..., Ki,N. These keys are to be used to issue the group signatures. Each

key is signed with the member’s secret key Si and with the corresponding

secret key
5
 S

jiK , (the secret key corresponding to the public key jiK ,):

NjforKKSigKSSigAE ji

S

jijiiji ≤≤= 1),(),,(,,,,

where Sig(x,y) is the signature of y using private key x.
6

3. GM collects all the public keys from all members, verifying all the

signatures using the members’ public keys Pi’s.

4. GM generates the One-Way Accumulator [BM94] of the public keys, using

a secret X (X is considered ‘mod n’). GK is the group public key, then it is

signed by GM and published along with the modulo n.

GK = fn(X, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N)

5
 The certificate of Ai’s public key Pi is made available through a PKI.

6
 This is a bit different from Observation II in chapter 4.4.5.3, where it was suggested to use

the private key associated with Ki,j to sign Ki,j.

CHAPTER 4 – GROUP SIGNATURES

52

5. GM sends (encrypted and authenticated) to every group member a partial

accumulator, using all of the other m-1 group member’s public keys. Ai

receives:

Ci = fn(X, K1,1, ..., K1,N, ... Ki-1,1, ..., Ki-1,N, Ki+1,1, ..., Ki+1,N, ..., Km,1, ..., Km,N)

6. Moreover, GM sends (encrypted and authenticated) to every member Ai:

EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j)) for 1 ≤ j ≤ N

where Enc(x) is the symmetric encryption of x.

4.4.3.2 Signing by Ai (SIGN)

Ai uses one of the private keys S

jiK , to sign a message M (to enforce the

unlinkability property, Ai uses a key that was never used before), producing

Sig(M). Ai computes the One-Way Accumulator of Ci along with its public keys,

except for the public key jiK , , associated with S

jiK , .

Ai publishes (without any contact with GM):

• M, Sig(Ki,j, M) [i.e. the message M and the signature of the message

with the public key Ki,j]

• Ki,j, PGKi,j = fn(Ci, Ki,1, ..., Ki,j-1, Ki,j+1, ..., Ki,N) [i.e. the public key Ki,j

and the one-way accumulator of Ci and all of the public keys but Ki,j,

the one used to issue the signature]

• EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j)) [i.e. the token related to Ki,j

received together with the others by the GM at step 6 of the previous

paragraph]

4.4.3.3 Verification by anyone (VERIFY)

It is possible to verify the signature produced by any group member by

checking:

• that Sig(Ki,j, M) is the signature of M using Ki,j

• that GK = fn(PGKi,j, Ki,j)

• that SigGM(Ki,j, EncGM(AEi,j)) is valid.

CHAPTER 4 – GROUP SIGNATURES

53

4.4.3.4 Identification of signer (OPEN)

GM verifies the signature (as would have done anyone, see previous section),

then decrypts EncGM(AEi,j), and using the identifier field of the signature identifies

the signer. Using AEi,j GM may prove to a third party that AEi,j contains the

signature of Ki,j made by Ai, and that Ai possesses the secret key associated with

Ki,j.

4.4.3.5 Member addition

When a new member A
z wants to be added to the group, it produces W

asymmetric key pairs (e.g., for One Time Signatures [REY02] [PER01], RSA, or

DSA), and sends the necessary data to GM, as has every other member did at

system bootstrap.

GM prepares the Cz for the new member A
z
:

Cz = fn(Y, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N)

Cz is computed with all the other member keys and a starting value Y obtained

as follows:

Y’ = rad(b(Kz,1), X) mod n

Y’’ = rad(b(Kz,2), Y’) mod n

Y’’’ = rad(b(Kz,3), Y’’) mod n

......

Y = Y
(W)

 = rad(b(Kz,W), Y
(W-1)

) mod n

Y is the root modulo n of X computed using all the (hashed) new keys Kz,1, Kz,2,

..., Kz,W, that is:

X = fn(Y, Kz,1, Kz,2, ..., Kz,W)

The meaning of the function rad() is the following:

u = rad(s, t) mod n implies that t ≡ u
s
 (mod n)

Computing rad() is feasible only if knowing the factorization of n. This is

known as the RSA problem, as we can find described, for example, in [MOV96] §

3.3: “Given a positive integer n product of two distinct odd primes p and q, an

CHAPTER 4 – GROUP SIGNATURES

54

integer c, and a positive integer e such that gcd(e, (p-1)(q-1)) = 1, find m integer

such that m
e
 ≡ c (mod n).

As shown in [MOV96] § 8.2.2, this problem can be easily solved if the

factoring of n is known. GM knows the factoring of n. In our case, to compute the

e-th root we need that gcd(e, (2p’+1-1)(2q’+1-1)) = gcd(e, 4p’q’) = 1, where e =

b(y). It is then possible to determine the inverse d of e modulo φ(n), and compute

m = c
d
 mod n, being m the e-th root of c. To reduce the probability of having a gcd

different from 1, then the result of the hash function is OR-ed with 1, giving an

odd number. If the gcd is different from 1 (and equal to p’ or q’), then the key

used to compute the hash should be discarded. This event should be very

improbable, if p’ and q’ are large primes, or impossible if, for example p’ and q’

are 512 bit long and the result of the hash function is 256 bit long.

Given that the group public key GK is now the one-way accumulator of Cz

together with all of A
z
’s public keys Kz,1, Kz,2, ..., Kz,W:

GK = fn(X, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ..., Km,1, Km,2, ..., Km,N) =

= fn(Y, Kz,1, Kz,2, ..., Kz,W, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ...,

Ki,N, ..., Km,1, Km,2, ..., Km,N) =

= fn(Y, K1,1, K1,2, ..., K1,N, ... Ki,1, Ki,2, ..., Ki,N, ...,

Km,1, Km,2, ..., Km,N, Kz,1, Kz,2, ..., Kz,W) =

= fn(Cz, Kz,1, Kz,2, ..., Kz,W)

then

Cz = rad(b(Kz,W),..., rad(b(Kz,2), rad(b(Kz,1),GK) mod n) mod n) ...) mod n

(*)

4.4.3.6 A possible improvement: incremental group creation

These considerations suggest a method for creating the group which might be

used instead of the bootstrap previously described in chapter 4.4.3.1. The group

manager chooses a public key GK (mod n), and publishes it as previously

detailed. Every time a member asks to be added to the group, then that member is

requested to send the keys to GM, that replies with the same information, but

computes the value Cz as in
(*)

. This mode of operation implies that GM does not
need to store the public keys of the group members.

CHAPTER 4 – GROUP SIGNATURES

55

The value of Ci for any other group member Ai obviously does not change, as

well as the group public key GK.

4.4.3.7 Adding more keys for a group member

The addition of more keys to a group member is dealt with as adding a new

group member, so for this subject please refer to paragraph 4.4.3.5.

4.4.3.8 Properties

The proposed group signature scheme owns the following properties:

a. Signing does not require any contact with GM.

b. The group public key GK has a fixed size.

c. The signature has a fixed size.

d. Private keys do not change when new members are added.

e. Private keys do not change when more keys are given to members.

f. The group public key GK does not change when new members are

added.

g. The group public key GK does not change when more keys are given to

members.

h. The group members need not change their private keys when new

members are added.

i. The group members need not change their private keys when more keys

are given to a member.

4.4.4 Adding revocation to the current solution

The revocation feature can be added to the current solution by slightly

modifying the functions and the principles used in it. In this paragraph, we will

discuss our suggestion on how the revocation can be realized and what differences

are introduced with respect to the current solution. Some properties must be listed

first:

Property 1

Given gcd(a, n) = 1, (i.e. a and n relatively prime),

if z = t mod φ(n), then a
z
 = a

t
 mod n.

CHAPTER 4 – GROUP SIGNATURES

56

Obviously property 1 can be applied iteratively, that is, having a
z
,

(a
z
)
w
 = a

zw
, gcd(a, n) = 1

implies that

if s = (zw) mod φ(n) then a
s
 = (a

z
)
w
 mod n

Property 2

(d mod n)(e mod n) = (de) mod n

Property 3

(a
b
 mod n)

c
 mod n =

((a mod n) (a mod n) ... (a mod n))
c
 mod n

= ((a mod n)
b
)
c
 mod n =

= (a mod n)
bc

 mod n =

(a
bc

 mod n) mod n =

a
bc

 mod n

Property 4

Computing roots modulo n is related to the RSA problem (see, for example,

[MOV96] § 3.3 or chapter 4.4.3.5). As mentioned before, it may be shown that

this problem is easily solved if the factors of n are known, and GM knows them.

We will now see how the functions previously described can be modified to

support revocation.

4.4.4.1 System bootstrap

GM computes the large rigid integer n (n = pq = (2p’+1)(2q’+1), with p =

2p’+1 and q = 2q’+1 primes, p’ and q’ odd primes, |2p’+1| = |2q’+1|). We may

choose |p| = |q| = 512 bit.

Let’s define the notation partially used in the previous paragraphs as well:

• h : hash function, h: {0,1}
k
 → {0,1}

256

• b : b(x) = h(x) OR 1 (see later)

• Sig : Sig(a, e) represents the signature of e made using the private key a.

• Enc : EncA(x) is the encryption of value x using a secret key known to A.

CHAPTER 4 – GROUP SIGNATURES

57

• R : R(a, e) mod n represents the a-th root of e computed modulo n, i.e. e =

R(a, b)
a
 mod n.

• fn(x, y) = x
b(y)

 mod n : one-way accumulator as defined in [BM94], with

slight modification, for the application at hand;

nnxyyxff
ybyb

nn mod)mod()),,((
)()(

21
21=

and sometimes we will write

),,()),,((2121 yyxfasyyxff nnn

From property 3:

nxyyxff
ybyb

nn mod)),,((
)()(

21
21=

Moreover, from property 1, if gcd(x, n) = 1 then it is possible to find

)(mod))()((21 nybyb φβ = such that

β

xnxyyxff
ybyb

nn == mod)),,((
)()(

21
21

To create the group, GM must choose a random GK (mod n) such that

1),gcd(=nGK (the reason for this restriction will be clear later) and publish it

signed, along with an empty CRL (Certificate Revocation List).

4.4.4.2 Adding a member to the group

When a participant Ai wants to join the group, Ai generates a set of N

asymmetric key pairs that will be used in the various signatures.

Ai encrypts and sends to GM the set of N public keys Ki,1, Ki,2, ..., Ki,N, each

one signed with Ai’s secret key Si (with certificate of Ai’s public key Pi) and also

signed with the corresponding secret key:

NjforKKSigKSSigAE ji

S

jijiiji ≤≤= 1),(),,(,,,,

where Sig(x,y) is the signature of y using private key x

At the reception of the N public keys, GM computes:

CHAPTER 4 – GROUP SIGNATURES

58

Y’ = R(b(Ki,1), GK) mod n

Y” = R(b(Ki,2), Y’) mod n

Y
(3)

 = R(b(Ki,3), Y”) mod n

......

Ci = Y
(N)

 = R(b(Ki,N), Y
(N-1)

) mod n

It is easy to see that:

GK = fn(Ci, Ki,1, ..., Ki,N)

The construction of b() ensures that gcd(b(), n) = 1, hence the existence of the

roots. GM sends to Ai the value Ci through an encrypted and authenticated channel

along with

EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j)) for 1 ≤ j ≤ N

GM stores the value Ci.

4.4.4.3 Signing of message M by Ai (SIGN)

Ai publishes (without any contact with GM):

• M, Sig(Ki,j, M)

• Ki,j, PGKi,j = fn(Ci, Ki,1, ..., Ki,j-1, Ki,j+1, ..., Ki,N)

• EncGM(AEi,j), SigGM(Ki,j, EncGM(AEi,j))

4.4.4.4 Adding more keys for a group member

Dealt with as the addition of a new group member.

4.4.4.5 Revoking keys

Suppose the GM wants to revoke the keys Ki,1, Ki,2, Ki,3 of member Ai. GM

computes and publishes the new group key:

Y’ = R(b(Ki,1), GK) mod n

Y” = R(b(Ki,2), Y’) mod n

GK’ = R(b(Ki,3), Y”) mod n

and sends to each other participant Az

CHAPTER 4 – GROUP SIGNATURES

59

Z’ = R(b(Ki,1), Cz) mod n

Z” = R(b(Ki,2), Z’) mod n

Cz’ = R(b(Ki,3), Z”) mod n

This calculation produces a different Cz’ for each participant Az. The new

value Cz’ is to be used by the participants who received it in the production of the

signatures, while Ai should not use the keys Ki,1, Ki,2, Ki,3 in the production of the

signatures (note the use of the value Cz belonging to each participant in the

computation of Cz’).

The computation of the roots modulo n resolves in the determination of the

inverses modulo φ(n) of the b()’s. Let’s call these inverses c()’s. Then the value

Cz’ may be computed as (from property 3):

nCC iii kckckc

zz mod'
)()()(3,2,1,=

From property 1, if gcd(Cz, n) = 1, then it is possible to compute once

s = c(Ki,1)c(Ki,2)c(Ki,3) mod φ(n)

and then

nCC s

zz mod'=

for every participant Az using the proper Cz.

From the latter consideration in property 1 it is possible to have gcd(Cz, n) = 1

if gcd(GK, n) = 1, as previously requested in the generation of GK (note that Cz is

obtained from GK with exponentiations with the inverses modulo φ(n) of the b()’s

on the member public keys).

It is easy to see that for every z ≠ i (therefore for every participant but the one

whose keys were revoked), from

GK = fn(Cz, Kz,1, ..., Kz,N)

then

GK’ = fn(Cz’, Kz,1, ..., Kz,N)

but it is not possible to obtain GK’ with any combination of Ai’s revoked keys,

thus those keys cannot be used to compute any signature.

CHAPTER 4 – GROUP SIGNATURES

60

In case the GM is not able to contact a group member to send him the new

value Cz’, then that group member will use the old Cz. To verify that signature, it

is needed the value s previously computed, that may be signed and published by

GM in the CRL associated with GK’.

4.4.4.6 Verification by anyone (VERIFY)

To verify the signature produced by any group member the following steps

have to be followed:

• verify that Sig(Kz,j, M) is the signature of message M using Kz,j

• verify that SigGM(AEz,j, EncGM(AEz,j)) is valid.

• verify that GK’ = fn(PGKz,j, Kz,j) if the signer already used the latest Cz’.

Otherwise verify that)),mod(' ,, jz

s

jzn KnPGKfGK = if the signer used Cz.

In fact:

nC

nsKKKKCfnPGK

skbkbkbkb

z

Nzjzjzzzn

s

jz

Nzjzjzz mod

mod),...,,...,,(mod

)()()...()(

,1,1,1,,

,1,1,1, +−=

== +−

and

'),...,,'(

mod'mod

mod)),mod(

,1,

)()...()()...(

)()...(

,,

,1,,1,

,1,

GKKKCf

nCnC

nCKnPGKf

Nzzzn

kbkb

z

kbkbs

z

skbkb

zjz

s

jzn

NzzNzz

Nzz

==

===

==

4.4.4.7 Identification of signer (OPEN)

GM verifies the signature to be opened. Then, using its secret key decrypts

EncGM(AEi,j) and using the fields in the decrypted signatures GM may identify the

signer and prove to a third party that Ai signed the public key Ki,j and knows the

secret key s

jiK , .

4.4.5 Observations and possible improvements

In this paragraph we will discuss some suggestions and possible improvements

to our solution. Some of them have been integrated, some are considered as a

good subject for future work. Firstly, let’s consider the hashing algorithm

described in chapter 4.4.2. When describing it, we went through the question of

which is the one with the feature of optimality and security for calculating a one-

way accumulator. In this chapter we describe how the original simple function

CHAPTER 4 – GROUP SIGNATURES

61

may lead to security issues and how it has been easily improved, as suggested in

[ML05]. Some observations are also described for what concerns the OPEN

process and also the JOIN process.

4.4.5.1 Observation I

The first observation concerns the hashing function used to produce the one-

way accumulator, as described in [BM94] for security reasons.

Specifically, the one-way accumulator function cited is this:

nxyxe
y

n mod),(=

The suggestion is to modify that function in such way:

nxyxe
yh

n mod),()(=

where h() is a hash function with fixed-length output and opportunely chosen

dimension, taking into account that the “exponential” arithmetic is executed in

modulo Ф(n).

This variant is aimed at reducing the possibilities of attack due to the

representation of the members public keys used for the calculation of the one-way

accumulators in the group signature scheme. Indeed, the possibility of

implementing such attacks is connected to the kind of representation chosen for

those keys. In the following chapter we will provide an example of attack, but

they there can easily be found different kind of attacks. It seems wise, therefore,

opting for a solution which cuts out the vulnerability since the beginning, instead

of being forced to run security analysis for each implementation.

4.4.5.2 Example of attack

Let’s suppose, for simplicity, that N = m = 3. Let’s suppose also that as public

key cryptosystem be used the discrete logarithm on Zp, with p of type strong

prime. The member’s keys become then:

pgk
S

jik

ji mod,

, =

CHAPTER 4 – GROUP SIGNATURES

62

Let’s suppose that members A1 and A3 are conspiring, therefore they generate

their keys in this way:

SS

SS

kkx

kkxx

gkgkgk

gkgkgk

3,32,31

3,12,121

3,32,31,3

3,12,11,1

,,

,,

===

=== +

Where pg ix < and the various exponentiations are meant mod p. Let’s

suppose now that member A3 is revoked. He aims now at being able to issue valid

signatures in spite of the revocation. The GM (Group Manager), after the

revocation of member A3, updates the parameters and sends them to A1:

),,,(3,22,21,21 KKKXfC =

A2 receives, differently, this parameter:

),,,(3,12,11,12 KKKXfC =

while the new group public key is updated by signing the value:

),,,,,,(3,22,21,23,12,11,1 KKKKKKXfGK =

Now, let’s suppose that A3, in spite of the revocation, wants to sign with the

key K3,1 the message M. To do so, A3 calculates (with C1 provided by member

A1):

))3,(,(),3,(

),,,(),(,

11,31

3,12,111,31,3
2

1,3

REncKSigREnc

KKgCfPGKKMSigM

GM

x

K S =

Notice, in fact, that:

),,,,,,(

),,,(

3,12,13,22,21,2

3,12,111,3

2

2

KKgKKKXf

KKgCfPGK

x

x

=

==

from hence:

CHAPTER 4 – GROUP SIGNATURES

63

GKKKKKKKXf

KKgKKKXf

gKKgKKKXf

KPGKf

xx

xx

==

==

==

=

+

),,,,,,(

),,,,,,(

),,,,,,,(

),(

3,12,11,13,22,21,2

3,12,13,22,21,2

3,12,13,22,21,2

1,31,3

12

12

Conclusion: here is demonstrated the necessity of preventing such attacks by

representing the public keys in a different way. That’s why it’s suggested the use

of a hash function in the en function. The above illustrated attack is feasible when

it’s possible to generate two private keys whose corresponding public keys may

factorize. The example with the discrete logarithm shows how the overall security

of the whole system is lower than expected (it’s sufficient finding some x such

that ppg
x <mod to be able to generate any factorization of public key,

selecting, for instance, couples of keys x1 = x – a, x2 = x + a). It’s possible that

there exist other circumstances on p and n by which the attack can be carried on,

in addition to further representations as well. This is one more reason why we

decided to modify the function en, in order to break the possibility of factorization

of public keys.

4.4.5.3 Observation II

In order to render the function OPEN more effective, it’s suggested the

insertion in the signature of each group member some kind of information which

connects the signature itself to the member who issued the signature. This

information should be shown to a third party in case of dispute, and the third party

should be convinced by the correctness of such data. In this direction, the set of

information:

)),(,(),,(, iREncKSigiREnc jjiGMj

ought to make use of Rj different from random data. For instance, it could be

the signature of the member i who asks for the insertion into the one-way

accumulator, and then into the public key of the group, of his own key Ki,j. Such

request must, in fact, prove also the real possession of the corresponding private

key S

jiK , .

CHAPTER 4 – GROUP SIGNATURES

64

The non-traceability may be preserved by means of a symmetrical algorithm,

for instance in CBC mode with random IV.

Conclusion: the opening of the signature may reveal the real identity of the

member who signed by means of some data which can be used to persuade a third

party.

4.4.5.4 Observation III

The Group Manager (GM) should provide each member with the list of signed

keys, in a way similar to what is already known as certificate. The hash

accumulator should provide the system with a more effective bandwidth and

speed benefit, besides the unpleasant event of keys exhaustion, event which could

possibly lead to DoS attacks.

The best scenario is that in which the members need not be reached by the GM,

or get in touch with him, for each group adjustment operation. For instance, there

could be some benefits trying to limit the connection with the GM for every JOIN,

as described in a rough and intuitive way in the following. Notice that it’s just an

idea and not a well defined schema, but it could lead to some notable

improvements.

4.4.5.5 New JOIN

Let’s assume that when the system is up and running there are only 3 group

members. The GM calculates:

)',',',',',',',',',(3,32,31,33,22,21,23,12,11,1 KKKKKKKKKXfGK =

Join member A1. The member generates 3 public keys K1,1, K1,2, K1,3 and sends

the signed requests to the GM, receiving back from him:

))1,(,(

)',',',',',',/',/',/',(

,1

3,32,31,33,22,21,23,13,12,12,11,11,11

jjGM REncKSig

KKKKKKKKKKKKXfC =

with j = 1, 2, 3.

Join member A2. The member generates 3 public keys K2,1, K2,2, K2,3 and sends

the signed requests to the GM, receiving back from him:

CHAPTER 4 – GROUP SIGNATURES

65

))1,(,(

)',',',/',/',/',',',',(

,1

3,32,31,33,23,22,22,21,21,23,12,11,12

jjGM REncKSig

KKKKKKKKKKKKXfC =

In this formula, j = 1, 2, 3. In this approach there’s no need to provide a new C1

to the member A1. Actually, this method requires that the GM be able to

calculate)(mod1

, nK ji φ− . The GM only knows the factorization of n, then it’s the

only entity who is able to compute Φ(n). However, in order to do so, it’s

necessary that 1))(,gcd(, =nK ji φ . For instance, the member who is joining the

group could send his keys to the GM, and the latter could select and sign only

those prime with Φ(n). Notice that if n is a rigid integer (as suggested in paper

[BM94] together with the definition of one-way accumulator) then n = pq, where

p = 2p’+1 and q = 2q’+1 with p’ and q’ safe primes, in addiction to distinct. In

this situation, in order to apply the protocol New JOIN, it’s sufficient that the

public keys generated by the members (or their hashes if the variant described

above is applied) are not divisible by 2, p’ and q’, an easily verified condition.

Conclusion: some features of the discussed method can be improved, such as

the necessity of being reached by a PUSH at every group adjustment, and the

possibility of being victim of DoS attacks based on keys exhaustion. The

observation above proposed may therefore be evaluated (in terms of correctness,

security and feasibility) in order to try to reduce the necessity of communication

with the GM for each group modification.

CHAPTER 4 – GROUP SIGNATURES

66

CHAPTER 5 – IMPLEMENTATION

67

Chapter 5

Implementation

5.1 Introduction

The method used by Assolo to store the network traffic towards the

administered systems has been presented. The stored data are non-repudiable by

the system administrator. It arises the necessity to store these data (which are

essentially a log file) in a secure format. That is, the logged data should be stored

in such a way that maintains the privacy of the administrators and, at the same

time, cannot be modified/erased without notice.

Since January 2004, we have worked in collaboration with Telecom Italia Labs

in order to find an effective solution to the issue of irrefutable administration, and

consequently non repudiation of data, described in the previous sections. We used

part of the research contained in this volume in order to develop such system,

where commands issued by system administrators are securely archived and only

some auditors are, in certain conditions, able to verify what the log contain. The

developed system contains the following features:

• Non-repudiation: the administrators must not be able to refuse to

acknowledge the contents, the order and the time in which data and

commands have been issued to the administered system; this must be true

for he who sends but also for he who receives data;

• Anonymity: the administrators must be able to hide their identity so as to

protect their right to privacy; at the same time, on the other hand, it must be

possible, in case of dispute and only by means of authorized personnel, to

reveal the identity of the administrator and the log of his work;

CHAPTER 5 – IMPLEMENTATION

68

These two features are obtained by means of cryptographic system, which

include among the others one-time signatures, group signature, pseudonyms and

receipts.

5.1.1 Assolo

Assolo [MI04] is the name of the system developed in collaboration with

Telecom Italia Labs to grant the non-repudiation of sent/received data. It. While

most of the network forensics tools nowadays (e.g. Infinistream Forensics

Security or NetIntercept) act as sniffers on the network, Assolo acts as a gateway

on the network. When a user wants to connect to an administered system, his

connection is redirecter through Assolo, which takes care, in turn, to connect to

the final endpoint. The first benefit of this approach is that Assolo is able to store

all the data traveling on the network, no packet is lost. At the same time, on the

other hand, gateways introduce some issues on some well-known protocols, such

as FTP, which have to be used in different ways.

Figure 5-1: Sniffer-based architecture

Figure 5-2: Gateway-based architecture

In order to grant the non-repudiation of data, the system makes use of one-time

signatures and receipt, building on that a protocol which is inserted into the

TCP/IP stack, between the TCP and the application level. More precisely, the

GATE

WAY

CLIE

NT 1

SYSTE

M 1

Telnet/FT

P/…

SYSTE

M n

CLIEN

T m

SNIF

FER

CLIE

NT 1

SYSTE

M 1

Telnet/FTP

/…

SYSTE

M n

CLIEN

T m

CHAPTER 5 – IMPLEMENTATION

69

whole protocol is encapsulated inside a SSH tunnel, in order to benefit from the

encrypted data channel SSH builds as part of the protocol.

IP

TCP

SSH Tunnel

Assolo protocol

Application

Figure 5-3: Protocols stack

As mentioned before, Assolo stores all packets traveling on the network

through its gateway. More precisely, it stores on memory devices the SSH tunnel

payload, that is the Assolo protocol and the application protocol. The archived

data can be therefore analyzed or kept for a-posteriori inquiries, for that reason the

application protocols must not be encrypted (for instance telnet or ftp).

In case of encrypted application protocols, there is the need of some key

escrow or key recovery methods, or yet encryptions made by third trusted parties,

in order to be able to decrypt the archived data a-posteriori. Those approaches

have been discarded because of the difficult infrastructure they require and of the

risks they can lead to; in [AAB98] the limits connected with this infrastructure are

discussed in details.

The communication between the client (i.e. the administrator) and Assolo is

kept encrypted by the aforementioned SSH tunnel. In order to encrypt also the

communication between Assolo and the administered server we need a further

step. The user who wants to get connected to a server through the SSH protocol

will, therefore, have to connect to a known port on the Assolo server via telnet,

hence he will access a shell where he will specify the endpoint he wants to

securely connect to.

CHAPTER 5 – IMPLEMENTATION

70

5.2 Software architecture of the system

In the previous chapters some methods and principles have been shown that

together can take part in a secure data storage with group access privileges and

high privacy enforcement. In this section we will describe the implementation of

such system, developed in collaboration with the Computer Science Department

of Turin and Telecom Italia Labs in 2004. Some decisions have been taken in

order to make the system as much efficient and effective as possible, keeping into

consideration the constraints of a real implementation.

In particular, we will describe the system architecture, the modules which

concur to give strength to the whole solution, the single features and how stored

data are archived into a database.

This project has been called “Assolo”, and this name denotes also the module

which contains the Log Manager Interface and which is in charge of capturing

data from administrators/systems transactions, as we will see in the following.

The secure archiving system we are designing, which will be called Log

Manager, is in charge of communicating with the Assolo module and to store all

the data the latter captured during his job.

As described in chapter 5.1.1 Assolo becomes a sort of gateway between the

remote administered computer and the administrator, and its operation is that of

capturing all the packets traveling between those two entities in order to keep

trace of what it’s being going on. In a second place or time, therefore, it will be

possible to check the correctness of the operations which the administrator has

issued on the remote computer. This means that in case of dispute – in which the

administrator could be the prosecutor or the prosecuted – there will be a secure

and certified data stream to be opened and used as probation for the cause.

The whole of the captured data is placed into temporary files sent by Assolo to

the Log Manager, in order for the latter to take the charge of encrypting and

securely storing the data. This transmission is made using the TCP/IP protocol,

and we can put forward that it will be required to attach some context information

useful to the Log Manager for a correct storing process.

The Log Manager, after the encryption of data, takes the charge of sending

those data to a DBMS; in the following we will discuss the reasons why a

database becomes necessary to the storing process and what is the relational

scheme of the tables which will be used.

Notice that the DBMS must be reachable also from other remote systems, in

particular from the auditors’ workstations. The auditors will, in fact, be able to

CHAPTER 5 – IMPLEMENTATION

71

issue queries and retrieve archived transactions data. For this reason it’s necessary

to introduce some techniques to distinguish the privileges of the single users,

considering also the Log Manager and the DBMS administrator, who must be able

to manage the configuration by means of some tools designed for the purpose.

Assolo, Log Manager and DMBS must not necessarily be installed on the same

physical computer, but it’s desirable that between those entities there exist some

secure and single-purpose connections. In particular, the data traveling between

Assolo and Log Manger are not encrypted, therefore it’s necessary to prevent

possible attacks based on packet sniffing.

Assolo Log Manager

DBMS

Log Manager

Interface

Log Daemon

Ses. Encrypt
DB

Secure
TCP

connection

Secure
TCP

connection

DBcomm

Tool

Figure 5-4: System architecture

As shown in the figure, the Log Manager is made up of several logical

modules, more in details:

• Log Daemon, which waits for the data from Assolo;

• Session Encrypt, which attends to encrypt those data and to prepare the

secrets for the auditors (i.e. group members);

• DBcomm, which is in charge of the communication with the DBMS, of

the signature of the inserted data and of the authenticity check of the

received data;

• Other tools, which represent the interfaces provided to the Log

Manager administrator to configure the auditor’s personal data,

archived in the database as well;

5.3 Communication between Assolo and Log Manager

In this section we will analyze the data Assolo sends to the Log Manager and

the size and format they must obey to.

CHAPTER 5 – IMPLEMENTATION

72

Assolo takes the role of an intermediate entity between the administered

element and the administrator, and deals with capturing all the IP packets

(belonging to a whole work session) traveling between them. In particular, it has

to reassemble in a single bit stream the packets payload relative to a whole

session, and then send this stream via TCP/IP to the Log Manager.

Attached to the stream are the data characterizing the work session, denoted in

Chapter 3 simply with hU . We can now list with more details the data which

concur to identify a whole session:

• type of session (correctly concluded session, not correctly concluded

session)

• IP address of the administered server

• applicative protocol used for the administration (it can be deduced by

the port the connection to the administered server has been addressed

to)

• administrator pseudonym

• work session beginning and ending time

Furthermore, Assolo is also engaged in the task of preparing the list of the

auditors and of the groups which are entitled to access a given record of

information. That list is created by means of three pieces of information: the

administered server, the real identity of the operator/administrator and the type of

protocol used in the administration process. Once this list has been assembled,

Assolo sends it to the Log Manager.

The format of the packet Assolo uses to send data to the Log Manager is the

following:

0 8 16 24 31

type auditor_num port_ae
ip_ae

nym_id

start_time

end_time

session_num

Auditor

CHAPTER 5 – IMPLEMENTATION

73

Figure 5.4: Format of the packets Assolo uses to send data to the Log Manger

The fields involved in this packet are the following:

- type (8): type of session (normal, bad);

- auditor_num (8): number of auditors and groups entitled to acces the data

(this value multiplied for 16 gives the length in bit of the auditor field);

- port_ae (16): TCP port used for the administration of the remote system;

this port gives a hint on the protocol used for the administration;

- ip_ae (32): IP address of the administered system;

- nym_id (32): administrator pseudonym;

- start_time (32): exact time identifying the beginning of the session;

- end_time (32): exact time identifying the ending of the session;

- session_num (32): session number; it’s a numerical unique identification

Assolo assigns to each work session of the administrators:

- auditor (variable length): list of the auditors and of the groups who are

entitled to access the recorded data; both auditors and groups are

unambiguously identified by 16 bits codes, where the first bit gives the

discrimination between auditors and groups;

Notice that the data which must be actually recorded is not present in the

payload of the packet Assolo sends to the Log Manager. The explanation is that

the temporary files Assolo employs to save captured packets in are stored in an

area where the Log Manager has read access rights. The Log Manager is,

therefore, able to retrieve autonomously the file whose name is identified by the

hexadecimal codification of the session number and whose location is fixed.

The file Assolo assembles does not contain the whole IP or TPC captured

packets, but only the data payload encapsulated in the SSH tunnel, as shown in

figure:

CHAPTER 5 – IMPLEMENTATION

74

IP

TCP

SSH Tunnel

Assolo protocol

Application

Figure 5-5: Protocols stack pointing out what is stored

More precisely, the payloads of all the packets are chained in a whole data

flow. It’s not necessary to introduce, when saving the data, specific headers to the

file or to the single packets, since all the information which is necessary to the

auditing process is already included in the packets header of the Assolo protocol.

5.4 Selected algorithms

In Chapter 2 we introduced several algorithms concerning symmetrical and

asymmetrical encryption, secret sharing and hashing functions, and in Chapter 3

we described how to use them to develop a secure storage facility.

We did not specify, however, which among all those possible alternatives we

would choose for the implementation. Some observations must be made on the

reasons which have led to the choice of particular methods among the ones we

had at disposal.

Notice furthermore that, among the two alternatives described in paragraphs

2.3 and 2.4 (symmetrical or asymmetrical keys for each auditor) we preferred the

asymmetrical solution. That’s because by means of public key encryption systems

there is no need of keeping a shared secret (i.e. the symmetrical key) in the Log

Manager area, providing more security mainly in case of system attacks.

The various features of the designed system require the use of symmetrical and

asymmetrical algorithms, hash functions, secret sharing methods, random

numbers generators, text-binary conversion functions and data compression

solutions.

In paragraph 3.3 and following, we stated the necessity of using – to encrypt

the file to be stored – a symmetrical key with length equal to the hash output.

CHAPTER 5 – IMPLEMENTATION

75

Consequently, we need to find an symmetrical encryption algorithm with a key

dimension equal to the length of the digest issued by a hashing function. The

reason of this choice is the uniformity of structure: it’s advisable to keep a well

defined structure for the secrets belonging to each auditor, because the data to be

encoded is simply made of bit strings, without headers or formatting information.

We want to provide a high security level for the designed system, therefore

much more consideration has been laid on the security features of the chosen

algorithm than on their performance values.

For this reason we evaluated the symmetrical keys as long as the digest

produced by MD5 or SHA-1 (respectively 128 and 160 bits) not sufficient. On the

other hand, the algorithm chosen for the symmetrical encryption is AES because it

works on blocks of 128 bit (although Blowfish would have had higher

performance). In conclusion, the chosen algorithms are SHA-256 and AES – the

latter may adopt 256 bits keys.

Those features allow for a good level of security also for the non-immediate

future. This is particularly relevant if we consider that a dangerous attack to

cryptosystems is the possibility of decrypting, in a future when computational

power will be much higher than now, data encrypted at present.

For analogous reasons, we chose asymmetrical 2048 bits keys instead of the

more common 1024 bits keys; some researchers (e.g. H. H. Orman e P. Hoffman

in http://www.ietf.org/internet-drafts/draft-orman-public-key-lengths-08.txt),

assert that RSA-1024 is less safe than a symmetrical cryptosystem with 80 bits

keys.

As for the random number generation, we evaluated the method described in

ANSI X9.17 appendix C as quite good: this algorithm, in fact, states optimal

distribution properties and independence between the generated values, and it’s

widely used in many common cryptographic applications.

As before discussed, Shamir’s solution has been adopted when it comes to

secret sharing: it combines simplicity, efficiency and reliability. From what we

illustrated in the previous sections it should be clear how this solution may be

optimal in terms of features for the designed system.

In conclusion, for data compression the Gzip algorithm has been chosen, while

for the binary-text-binary conversion the Base64 method seemed to be well

suitable for the designed system.

CHAPTER 5 – IMPLEMENTATION

76

5.5 Cryptographic libraries: Crypto++

The implementation of the designed system required a library which contained

all of the functions involved in the process: symmetrical and asymmetrical

encryption, hash functions, random numbers generator, etc… In particular, those

libraries had to implement the algorithms listed in the previous sections.

Several cryptographic [CE04] libraries are available in the public domain – the

open source community has released a lot of code concerning cryptography – but

the most known are the OpenSSL (http://www.openssl.org/) libraries. They are

largely used in a wide number of applications concerning signatures and data

encryption: they include hash and MAC functions, symmetrical and asymmetrical

encryption algorithms, data compression and conversion code.

As for the implementation of the system, however, those libraries are limited in

that they include neither secret sharing functions nor an implementation of SHA-

256; as stated in the previous section, those two methods are necessary for the

implementation of the designed system.

For that reason, we decided to use a different implementation of cryptographic

libraries, open source as well, offering high levels of security standards. We found

the Crypto++ (http://www.cryptopp.com/) to be a good candidate. They are less

known than OpenSSL, but efficient and complete to the same extent. The

programming language used for those libraries is the C++, and they include most

of the algorithms we need for the development: symmetrical and asymmetrical

encryption, signatures, hash and random numbers generator functions. In those

libraries we find also an implementation of Shamir’s secret sharing method

described [SHA79], method more than indispensable for the correct operation of

the system.

The completeness of those libraries is such that they include also data

compression functions – such as Gzip and Deflate – and data conversion methods

– for instance Base64; those implementations are very useful during the

development process, as described in the previous section.

Another reason why we chose the Crypto++ libraries is that a version of those

libraries has been certified by NIST: Crypto++ were compliant to the

specifications stated in FIPS 140-2. Since NIST does not certificate source code,

but only binary code or howsoever pre-compiled modules, the only version to be

certified is the 5.0.4. More precisely, NIST has certified a DLL library, available

only for Microsoft OS, which does not include all those algorithm that NIST

retains unnecessary for a cryptographic library. Crypto++ include, indeed, a lot of

functions and variations of well known methods widely used. It’s possible, during

CHAPTER 5 – IMPLEMENTATION

77

the compilation process, to include all of those functionalities (thus compiling the

standard version, the one with all the libraries available) or to exclude them,

obtaining a library with the functions certified by NIST and nothing more.

Notice, however, that when the library is compiled in the autonomous way it

cannot be considered as certified. In the official homepage there is, on the other

hand, the DLL version that NIST considered compliant to FIPS 140-2.

In order to get the code to run both in Windows and in Unix-like (e.g. Linux)

OSs we had to compile the libraries, thus losing the official NIST certification.

Nevertheless, the code may be regarded as safe, at least the part of the code which

implements the functions NIST certified.

5.6 Log Manager functionalities

In this chapter we will describe the functionalities implemented by the Log

Manager, focusing our attention on its tasks and their sequence. In particular, we

will concentrate on the three more relevant functionalities of the Log Manager,

that is:

• Session storage

• System initialization

• System halt

5.6.1 Session storage

The Log Manager is made up by three main modules: Log Daemon, Session

Encrypt and DBcomm. They have different specific tasks and, more precisely, all

of them output the results of their task to the following module in the chain.

As for the new session storing process, the first module involved is the Log

Daemon: it waits on a TCP port for the data to be stored and behaves like a

common daemon process. In details, the Log Manager itself is a multi-thread

program, therefore the Log Daemon, upon receiving a TCP connection, starts a

new ‘child’ thread for the management of that connection. In the meantime, the

‘parent’ thread stays on waiting for new connections on the same port.

One of the tasks of the ‘parent’ thread is that of keeping in a shared memory

area with semaphores access, the last ring of the hash chain which has been used.

In the following we will discuss the reason which justifies such a behavior.

CHAPTER 5 – IMPLEMENTATION

78

The ‘child’ thread receives the data from Assolo and stores them on a

temporary file, which will be deleted upon their correct archiving on the DBMS.

Therefore it invokes the Session Encrypt module, which takes in input those data.

The Session Encrypt module is then in charge of checking whether there exists

a file whose name is the hexadecimal codification of the session number: this file

must contain the data received from Assolo and exist in the shared memory area.

If that file exists, the module will proceed with the generation of the secrets for

each auditor. If the file is not present, it will send back to Assolo an error message

stating that the file could not be found.

The Session Encrypt must now retrieve from the DB the information about the

active auditors; this is done through the collaboration of the DBcomm which,

upon executing the queries and retrieving the required information, frames those

data in an agreed upon structure.

At this point the Session Encrypt can generate with a pseudo-random algorithm

the session key Ai and calculate its hash)H(Ai . Using the data received from

Assolo, in particular the list of auditors and groups entitled to access data, the

module can calculate the secrets relative to each auditor and then encrypt them

with the corresponding public key.

More precisely, the module will calculate the sub-secrets belonging to each

auditor of a group, then he will concatenate them with the key – real or fake –

assigned to each one of them, obtaining the structure described in paragraph 3.6.

If an auditor does not belong to any group, or he belongs only to groups not

entitled to access that particular record, the information relative to those groups is

omitted, because it’s not necessary (to assure the elusion property) to assign fake

data to these auditors.

In order to allow an auditor to be part of more than one group (potentially

infinite groups), during the implementation process we chose to let each auditor

have more than just one encrypted block in the record. More precisely, a

configuration file is used to set the number of blocks RSA-2048 destined to each

auditor: each auditor can belong to a number of groups equal to 5 multiplied for

the number of blocks he’s been assigned to. This value is computed considering

the decryption key length its hash length (256 bits) and considering the length of

each sub-secret (336 bit). Notice that all the auditors must take the same number

of blocks, also those who wouldn’t need such amount of space, in order to enforce

the elusion property. Without this ‘trick’ it would be, in fact, easy to tell how

many groups an auditor is in simply by analyzing the encrypted data.

Let’s recap: the module computes the sub-secret s, it concatenates them to the

real or fake key, and it encrypts them with the public keys of all the active

CHAPTER 5 – IMPLEMENTATION

79

auditors. Optionally, data can now be packed to reduce their size. This step is

optional because it could, in some cases, affect the overall system performance

and should then be avoided. The algorithm by default for data compression is

Gzip, but it’s easy modifying it by editing the Log Manager configuration file.

Such data is now ready to be symmetrically encrypted with the key Ai. The

encryption step should always be subsequent to the compression, because the

encryption process removes all the structures and regularities present in a file thus

preventing the compression from reducing the effective size of the file. The

reason is that compression is often based on regularities and repetitions in the file;

encryption, on the other hand, makes the file much similar to random data stream.

The file is now archived in a storage area both Log Manager and DBMS have

access to, while in the DBMS tables are stored the path and hash of the file itself.

Notice that the implementations is slightly different from the process described

in Chapter 3. For efficiency reasons, in fact, it was chosen not to insert the

encrypted data straight into a BLOB field (Binary Large Object) of the table

containing the logs. It was decided, on the other hand, to store only the file path

and its hash. Consequently, the method used to calculate each ring of the hash

chain has to be modified as well: in this computation the system will not make use

of the whole file but only of its path and hash. This slight modification does not

affects the security of the whole process, its only aim is that of avoiding to store

big sized data straight into a DBMS table.

At this point the Session Encrypt can compute the new ring of the hash chain.

More precisely, the hash will be computed on the concatenation of the following

data:

• Session identification data (elements which can be used to identify

correctly the session);

• Secrets assigned to each auditor;

• File session path and hash;

• Previous ring of the hash chain;

The last ring of the hash chain correctly archived in the DBMS is stored in the

shared memory area (whose access is governed by semaphores) previously

described.

The lapse of time occurring between the Session Encrypt access to this area

and the confirmation of the DBcomm about the correctness of the session data

storing process is contained in a critical section. The other executing thread will

therefore be suspended when trying to get access to the last ring of the hash chain.

CHAPTER 5 – IMPLEMENTATION

80

The Session Encrypt, upon receiving the DBcomm confirmation about the

correct data insertion, will update the value of the last ring of the hash chain so as

to make it available for the waiting threads.

As discussed before, the Session Encrypt sends the DBcomm the data to be

inserted into the DBMS, which in turn will take care of the insertion and of the

signature of the data received (this signature will be issued with the private key of

the system itself).

Notice that the DBcomm, upon receiving data from the database, takes care of

checking the authenticity of the signature as well.

After the correct insertion of the received data into the database, the Session

Encrypt proceeds deleting the temporary file created the Log Daemon, containing

the data necessary for the encryption and for the identification of the archived

data, and the temporary file created by Assolo, containing the unencrypted data to

be archived.

5.6.2 System initialization

During the system initialization some operations must be carried on: firstly, the

system must check the DBMS activity (it must be active and reachable in order to

receive the data), then it must check that the tables where data will be archived

exist and are built according to the expected structure. The system must

subsequently check whether the table containing log files is filled with data, and

in case getting the last ring of the hash chain correctly stored. This hash value will

be stored in the shared memory area previously described, and will be used as

starting value for the following rings computed on data to be archived.

It’s also possible that, for unpredictable reasons, the Log Manager crashes and

stops working. That’s why, after an unpredicted stop, the Log Manager must

check that all the files Assolo sent are correctly stored into the DBMS. In order to

do that the Log Manager must check whether the temporary files, containing the

data sent by Assolo and concerning a whole session, have already been used to

store data. This check can be carried on by searching into the DBMS for the

sessions concerning those files. If they can be found the temporary files are

deleted, otherwise the files will be passed as input to the Session Encrypt module

which will then take care of retrieving the session file from the memory area

shared with Assolo and proceed with encrypting and inserting data into the DBMS

as described in the previous sections.

After those operations have been carried on, the system will open again the

TCP port where it will listen for connections coming from Assolo.

CHAPTER 5 – IMPLEMENTATION

81

5.6.3 System stop

It’s important being able to plan a correct stop to the archiving system, because

it may turn out to be necessary sometimes: for instance in case of maintenance.

In order to terminate correctly, the Log Manger must firstly not accept

connections coming from Assolo. In this way he will not receive further data to be

archived, encoded and sent to the DBMS.

Next, the system will have to wait for the correct termination of all the

encryption processes occurring at the time the stop command was issued; by

doing so no computed data will be lost.

Only after having completed correctly such procedures, the Log Manager

execution can be safely interrupted.

5.7 DBMS data storage

In this section we will describe the reasons and the benefits of the employment

of a DBMS for data storage. We will include in the description also the relational

scheme of the tables used for the storage of logs and of the data concerning

groups and auditors.

5.7.1 Description of choices

The system we are describing, as afore illustrated, stores data into a DBMS.

The main reason for this is the need for an easy to use and to access archiving

system, crash resistant and with features such as stability and transactional support

(for instance correct termination of writing operations).

The possibility of using a simple file managed directly by the Log Manager has

been considered but eventually discarded, firstly because the file structure would

have been too complex. A database, on the contrary, allows for quick and easy

queries on archived data (i.e. the queries issued by auditors), mostly when indexes

and data caching techniques are used to improve system performances.

Furthermore, the DBMS supports privilege, therefore it’s quite easy assigning

users different privileges according to their role and managing automatically the

concurrent access of several users.

Quite a few DBMS systems are available on the market, each one with its

several features and its different costs. Oracle is, by far, one of the most reliable

and complete, mainly when it comes to security; unluckily, the cost for each

license is too high. Therefore, when the target is the first implementation of a new

system, most organizations adopt products with good features but lower costs.

CHAPTER 5 – IMPLEMENTATION

82

For the implementation of this system, which may at this stage be easily

regarded as a prototype, we chose to adopt an open source DBMS, which

obviously has no costs but can offer lots of necessary functionalities all the same.

Among the different open source DBMS available on the public domain,

MySQL was the one we decided to adopt for the prototype of the system. MySQL

is widely used, stable, reliable and well tested with the help of years of practice

and thousands of users all around the world. As for performance, MySQL is one

of the best choices, both because it’s been around for some years and therefore it’s

been refined and because it doesn’t offer, in its standard distribution version, some

of the typical advanced DBMS features. In particular, the default installation does

not allow for referential integrity rules (foreign keys) and cannot make use of the

protocol of commit/rollback for the queries.

However, those functionalities can be activated by editing the system

configuration file, but in this case system performances are negatively affected.

During the implementation, we decided to make use of foreign keys for tables

relationships all the same, while we didn’t evaluate as necessary the

commit/rollback feature.

5.7.2 Relational schema

In the following are described the tables which will be stored in the DBMS,

starting from the tables and relationships scheme.

CHAPTER 5 – IMPLEMENTATION

83

Groups

group_id

group_info

total_auditors

minimum_auditors

activation_date
deactivation_date

signature

pubkey_certificate

Auditors

auditor_id
personal_data

activation_date

deactivation_date

public_key

signature
pubkey_certificate

Groups_aud

group_id

auditor_id
activation_date

deactivation_date

signature

pubkey_certificate

Groups_history

group_id

modification_date

total_auditors

minimum_auditors
signature

pubkey_certificate

Logs

session_id

user_pseudonym
administered_server

session_start

session_end

session_termination

timestamp
path

encrypted_data_hash

hash_chain

signature

pubkey_certificate

Logs_aud

session_id

auditor_id

session_start
encrypted_key

1 8

1

1

8

8

8

8

8

1

Figure 5-6: Relational schema of the DBMS tables

In the figure, the underlined attributes represent the primary keys of the tables,

while the lines which link together the tables stand for the referential integrity

rules with the corresponding cardinalities.

In the following we will detail the tables showed in the figure.

5.7.3 Table details

The first table described here is the one containing the data concerning the

auditors: the “Auditors” table. Its attributes have the following format and

meaning:

- auditor_id: it’s a 16 bit code, whose first bit vale is equal to 0; it

unambiguously identifies each auditor and is the primary key of the table;

- personal_data: this attribute contains the auditors’ personal information:

name, surname, address, tax code; the format doesn’t affect the behavior

of the Log Manager, to the extent that this field could also be empty or

contain lots of data;

CHAPTER 5 – IMPLEMENTATION

84

- activation_date: it contains the date in which the auditor has received the

access grant to the logs;

- deactivation_date: it contains the date in which the auditor has been

revoked the access to the logs; when the auditor has not been revoked, this

field contains a NULL value, which means a not valid date;

- public_key: this attribute contains the auditor’s certificate; the certificate

contains, in turn, the public key of the auditor:

- signature: this field contains the digital signature which DBcomm issues

to data when they are inserted of modified;

- pubkey_certificate: it contains the certificate of the public key used to

create the signature of the previous field;

The attributes of the table “Groups” have the following format and meaning:

- group_id: this is a 16 bit value, whose first bit is equal to 1; it

unambiguously identifies a group and is the primary key of the table;

- group_info: this attribute contains all of the data characterizing a group;

as it was for the “personal_data” attribute, its format or size does not affect

the behavior of the Log Manager;

- total_auditors: this field contains the number of auditors belonging to a

specific group in that moment; if the value of this field is modified, a new

record must be added containing the old value in the table

“Groups_history”; the reasons of this addition are detailed in the

following.

- minimum_auditors: it contains the minimum number of auditors

belonging to a group whose collaboration is necessary to decrypt the

record (the data contained in the record); if a modification to this field

occurs, the same behavior as the preceding field is applied;

- activation_date: it’s the date when the group was built;

CHAPTER 5 – IMPLEMENTATION

85

- deactivation_date: it contains the date since when the group is not

allowed anymore to have access to the log; if the group is still entitled to

access the data, this field contains a NULL value;

- signature: it contains the digital signature DBcomm issues on data when

they are inserted or modified;

- pubkey_certificate: it contains the certificate of the public key which has

been used to create the signature contained in the preceding field;

In the table “Groups_aud” there is the list of the auditors who are members of

each group; the key of this table is composed by the couple group_id and

auditor_id which, on top of that, must obey to the foreign key rule with the

homonymic fields of the tables “Groups” and “Auditors”. The attributes of this

table have the following structure and meaning:

- group_id: as this field is the foreign key for the table, it submits to the

same rules of the homonymic field in the “Groups” table;

- auditor_id: as in the previous item, this attribute is a foreign key,

therefore it has got the same structure as its homonymic field in the

“Auditors” table;

- activation_date: it contains the date in which the auditor, identified by the

“auditor_id” value, entered the group identified by “group_id”;

- deactivation_date: it contains the date in which the auditor, identified by

the “auditor_id” value, was revoked from the group identified by

“group_id”;

- signature: this field contains the digital signature the DBcomm issues on

data when they are inserted or modified;

- pubkey_certificate: it contains the certificate of the public key used in the

signature contained in the previous field.

The table “Groups_history” contains the historical list of changes which

occurred to the table “Groups”. More precisely, are kept in this table the changes

occurred to the attributes “total_auditors” and “minimum_auditors”. Those data

must be kept because, as discussed in Chapter 3 the changes of these values can’t

CHAPTER 5 – IMPLEMENTATION

86

have retroactive validity. Consequently, when during the auditing process an

auditor wants to access data as member of a group, the system must know

whether the user was member of that group when the record was inserted in the

database.

The key of this table is made up by the two attributes “group_id” and

“modification_date”. The format and meaning of the attributes of this table are the

following:

- group_id: this field represents the foreign key of the table, therefore it’s

similar to the homonym field in the “Groups” table;

- modification_date: it contains the date in which the parameters

concerning a group have been modified;

- total_auditors: it contains the number of the auditors belonging to the

group when the modification (see previous field) took place;

- minimum_auditors: it contains the minimum number of auditors –

belonging to the group when the modification took place – whose

collaboration is necessary to access to the archived data;

- signature: this field contains the digital signature the DBcomm issues on

data when they are inserted or modified;

- pubkey_certificate: it contains the certificate of the public key used in the

signature contained in the previous field.

The table “Logs” maintains the data concerning each archived session; its

primary key is composed by the attributes “session_id” and “session_start”.

Session identifiers are randomly generated and it’s highly improbable, though still

possible, that two session identifiers assume the same value. The attributes of the

value have the following format and meaning:

- session_id: it’s a 32 bit code which, together with the field

“session_start”, identifies unambiguously the work session;

- user_pseudonym: it’s the administrator’s pseudonym relative to the

session;

CHAPTER 5 – IMPLEMENTATION

87

- administered_server: this field contains unambiguously the administered

server and the administration protocol used; in general it coincides with

the IP address of the administered calculator and the TCP port used;

- session_start: it contains the time in which the work session started and,

together with the field “session_id”, identifies unambiguously the work

session;

- session_end: it contains the time in which the session was closed;

- session_termination: this field signals whether the session has been

correctly closed or there have been anomalies;

- timestamp: this attribute, typically administrated automatically by the

DBMS, contains the time in which the data concerning a defined session

have been inserted into the table;

- path: it represents the logical path where the encrypted file containing the

packets concerning a session is stored;

- encrypted_data_hash: in this field there is the hash of the encrypted file

containing the packets concerning a session;

- hash_chain: this attribute contains the hash chain computed as shown in

paragraph 5.6.1;

- signature: this field contains the digital signature the DBcomm issus on

data when they are inserted or modified;

- pubkey_certificate: it contains the certificate of the public key used in the

signature contained in the previous field.

In conclusion, the table “Logs_aud” is that which contains the secrets

pertaining to each auditor, useful during the session decryption process. More

precisely, whenever a session is stored in the table “Logs” previously discussed,

in this table for each active auditor a record is inserted. This record contains the

data (actually the ‘keys’) pertaining to each auditor who is entitled to decrypt the

session – fake data is used for non-entitled auditors. The attributes of the table

have the following format and meaning:

CHAPTER 5 – IMPLEMENTATION

88

- session_id: this attribute is the foreign key of the table, therefore it’s

similar in format to its homonymic field in the table “Logs”;

- auditor_id: this field represents a foreign key for the table, therefore it’s

similar in format to its homonymic field in the table “Auditors”;

- session_start: as for the previous two fields, this attribute is a foreign key

for the table, consequently it’s similar in format to the field “session_start”

(to whom it refers) in the table “Logs”;

- encrypted_key: this field contains the data used by the Auditor to decrypt

– when entitled to – a specific file relative to a session. Auditors who are

not entitled to access the record are assigned fake data, as discussed in

paragraph 3.3. Notice that the secrets pertaining to each auditor are

encrypted with his public key before being archived in the DBMS;

Notice, lastly, that this is the only table where records are not signed with the

private key assigned by the Log Manager. The reason of that difference is that the

information inserted in this table is used to compute the hash chain whose rings,

and whose related signatures, are inserted in the table “Logs” previously

described. Consequently, a slight modification to this table would be detected

simply by checking the integrity and authenticity of the chain itself.

5.8 System administration tools

Always focusing on the implementation, this section presents some system

administration and configuration tools and their features. The system management

requires, in fact, some tools which can be used by the Log Manager administrator

to insert or edit – through the use of the DBcomm module – data concerning

auditors and groups.

Notice that these tools must necessarily reside on the same computer where the

Log Manager is installed. Furthermore, it’s essential that the administrator may

not be able to work on data concerning auditors and group without these tools.

The reason is that by editing the auditors and groups tables an administrator could

grant access to auditors who are not entitled to. What’s worst, all of this could be

done without being logged or controlled.

By forcing the administrators to use the provided tools, we are able to detect (a

posteriori) and consequently eventually prevent unfair behaviors through the use

of the system Assolo itself.

CHAPTER 5 – IMPLEMENTATION

89

The tools designed to administer the Log Manger can be subdivided into 4

main areas, which are now described in details:

5.8.1 Auditors anonymous access management

It’s necessary to implement some tools the administrators will be entitled to

use to grant or deny access to the single auditors or groups.

To grant the access to an auditor the administrator must fill the table

“Auditors” in the database with his personal data. More precisely, the tool will

have to require as input all the data pertaining to the auditor (personal data, public

key certificate, etc…), to assign him a 16 bit unambiguous identification number

whose first bit must be 0, and finally to send all the data received to the DBcomm.

The latter will, in turn, take care of signing the data with its private key and then

sending them to the DBMS.

Notice that when access is granted to an auditor, the field “activation_date” of

the table “Auditors” contains the time in which the auditor has been added, while

the field “deactivation_date” will be set to NULL.

Data pertaining to users in the table “Auditors” must never be deleted, because

it’s necessary to maintain an historical list of auditors which have been entitled to

access data, even if only for a short period of time. Consequently, when the

administrator must revoke the access to an auditor, the revocation data must be

inserted in the field “deactivation_date” related to that auditor. From this date on,

the Log Manager will not generate secrets pertaining to the revoked auditor.

Notice that when an auditor is revoke, it must be removed also from the groups

he belongs to, taking care not to break – with the removal – the minimum number

of group elements necessary to build the secret information. This process is

described in details in the following paragraphs, where group access management

tools will be presented.

Notice, furthermore, that when an auditor is revoked access privileges, he will

not be able to be reinserted with the same unambiguous identification number.

The reason is that there is no record removal in the historical list of auditors which

have been entitled (and of periods in which they were entitled). In case of auditor

reinsertion, a new record in the table “Auditors” must be inserted, it would be

wrong modifying the record previously belonging to him, editing the attributes

values “activation_date” and “deactivation_date”.

Also, when a new record pertaining to an auditor is added, the DBcomm must

sign it. Further observation: only the personal data and the attribute

“activation_date” are editable.

CHAPTER 5 – IMPLEMENTATION

90

5.9 Group access management

As already stated in chapter 5.8 it’s necessary to implement tools userful to

add/remove groups from the system. In this chapter we will describe those tools.

In order to insert a new group into the system, it’s necessary that all the

auditors belonging to that group are already part of the system database. This is

motivated by the fact that even if an auditor of the group is not entitled to access

data by himself, he will be treated exactly as the others, hence preserving the

property of elusion described in paragraph 3.4.

The tool used to insert the new group into the system will, firstly, have to take

as input the number of elements belonging to the group and the minimum number

of elements who have to collaborate to obtain the shared secret. By means of

those two values, the Log Manger can create the exact number of sub-secrets

pertaining to each auditor. Those sub-secrets must be generate in such a way that

a sub-set of those secrets may lead to the key with whom the data were encrypted.

Subsequently, the tool will have to require as input all the identification

numbers of the auditors belonging to the group. He will then check that they are

all active and put them into the table “Groups_aud” accordingly.

As already stated for the auditors, when new records are inserted in the table

“Groups” and “Groups_aud”, it’s necessary to sign them with the Log Manager’s

private key and to set the fields “activation_date” of the two tables respectively to

the date in which the group was inserted and to the date in which the user has

been inserted into the group. Again, the field “activation_date” will be set to

NULL.

Also in this case, data pertaining to a group cannot be delete from the DBMS,

therefore to revoke a group it’s necessary to set the field “deactivation_date” to

the date starting from which the group has no access privileges to data. At the

same time, it’s necessary to set the homonymic field contained in the table

“Groups_aud” and pertaining to auditors belonging to that group, to the same

value.

Notice that also in this case, when a record is modified must be anew signed; to

be precise, the only attributes which can be modified are “group_info” (which

contains generic information concerning a group) and “minimum_auditors” (the

minimum number of auditors necessary to unfold/build a secret).

It must be observed that, when the field “minimum_auditors” is modified, it’s

necessary to check that the new value is lower or equal to the value of

“total_auditors”. Furthermore it’s necessary to maintain an historical list of the

characteristics of each group during its life (i.e. its activation period). For that

CHAPTER 5 – IMPLEMENTATION

91

reason, when the field “minimum_auditors” is modified, the preceding values are

stored in the table “Groups_history”, setting the field “modification_date”

accordingly.

The value of the field “total_auditors” is not immediately editable; we will

show in the following chapter the way how it’s changed when an auditor is added

or removed from a group.

5.10 Group members management

The system must include a tool to modify the composition of the single groups:

it must be possible to add an auditor to a group or remove him from one of the

groups he belongs to.

When an auditor has to be added to an existing group, his data must be already

present in the table “Auditors” and the auditor itself must be active. The tool

developed to make such modifications takes as input the identification of the

group the auditor is joining to and the identification of the auditor itself.

Data concerning this association will be inserted into the table “Groups_aud”,

and the value in the field “total_auditors” of the table “Groups” will be increased

by one. Notice that, as stated before, it’s necessary to maintain an historical list of

each group composition, consequently the previous data concerning the group

members are inserted in the table “Groups_history”, setting accordingly the field

“modification_date”.

When and auditor must be removed from a group, it’s necessary to fill the field

“deactivation_date” of the table “Groups_aud” accordingly, in order to maintain

an historical list of the composition of the groups. Similarly to the addition of a

new auditor in the group, it’s now necessary to modify the field “total_auditors”

pertaining to the group the auditor belong to in the table “Groups”: in this case,

this field must be decreased by one.

Notice that, before allowing the removal operation of an auditor from a group,

the tool must make sure that the new value of the field “total_auditors” is greater

or equal than the value of “minimum_auditors”; on the contrary, the tool will have

to prevent the auditor from being revoked. If this should happen, the administrator

must simply decrease the value of the field “minimum_auditors” by one and then

launch the modification of the group composition.

Similarly to the insertion of a new auditor, when deleting an auditor from a

group (and therefore modifying the field “total_auditors” of the table) it’s

necessary to store in the table “Groups_history” the previous value pertaining to

the group.

CHAPTER 5 – IMPLEMENTATION

92

5.11 Data integrity and authenticity

The tool described in this chapter is the one used to check the integrity and

authenticity of data contained in the database tables.

The administrator must be able to check whether the contents of the tables

“Auditors”, “Groups”, “Groups_aud” and “Groups_history” is genuine. In order

to do se, the system must check whether all the records contained in those tables

are correctly signed. The signature must be verified against the Log Manger’s

public key, checking that the signatures are authentic. Of course, the administrator

must be able to carry on those tests both on all the tables and or one single table.

In order to check the authenticity and integrity of data contained in the tables

“Logs” and “Logs_aud”, on the other hand, the hash chain (stored in the field

“hash_chain” of the table “Logs”) must be verified. In particular, two kind of

checks must be carried on: the first, less detailed, is the check on data contained in

the tables of the DBMS; the second, more detailed, is the check on the single files.

The less detailed check is carried on by re-computing the hash chain and

verifying that each ring is authentic. More precisely, starting from the first ring of

the chain, it’s necessary to compute the next rings in the same way as it’s done

during the storing phase, and then, each time a new ring is computed, the system

must check whether the related signature – stored in the field “signature” of the

table “Logs”, is authentic.

The more detailed check, on the other hand, affects also the files containing

data related to each session. More precisely, this check can be carried on by

executing the hash chain verification afore described, and then by verifying

whether the hashes contained in the field “encrypted_data_hash” of the table

“Logs” are the same as the hashes of the files stored in the path stated in the field

“path” of the same table. This kind of check is of course much more exhaustive,

but it’s also more expensive in terms of time an resources occupied.

Notice that only the auditors must be entitled to check data integrity and

authenticity. As auditors may access the data contained in the DBMS also from

remote workstations, the verification procedure must be invoked and executed

locally to the Log Manager. The reason is that the movement of all the data

contained in the database on the auditor’s workstation might require too much

time, considering that the integrity and authenticity verification involves all the

data and not only a small part.

CHAPTER 5 – IMPLEMENTATION

93

5.12 DBMS access management

As introduced before it’s necessary, in order to raise the security level of the

whole system, to create restrictive access policy to the DBMS.

In particular, it turned out to be necessary to introduce different DBMS users,

each one with different privileges concerning his specific task. Three distinct

users have hence been created:

• u_logmanager: it’s the user the Log Manager makes use of to access the

DBMS;

• u_tool: it’s the user the several tools described in the previous sections

make use of in order to manage the data contained in the database;

• u_auditor: it’s the user the auditors make use of in order to retrieve data

from the database;

The first limitation enforced to these users is based on their location. We

thought it was more safe to allow the users u_logmanager and u_tool to have

access to the DBMS only if their IP address is the same as the computer the Log

Manager is running on (notice that the access to the DBMS is carried out through

a TCP/IP connection). The user u_auditor, on the other hand, can be used to

access the DBMS from any workstation, because auditors are allowed to access

the system from remote locations.

For security reasons, these three users are granted with the sole and only

privileges they may need to engage correctly the archiving and visualization

operations.

In particular, the user utilized by the auditors during the verification phase

must have only the capability of reading the database tables. Auditors must, in

fact, only be able to retrieve, by means of appropriate queries, the data pertaining

to the groups composition, the auditors and data archived in the tables “Logs” and

“Logs_aud”. At the same time, auditors must not be able to edit, delete and add

records to the DBMS.

The user u_logmanager, on the other hand, must be able to insert data in the

tables “Logs” and “Logs_aud”, other than reading the data pertaining to groups

and auditors. In this way, the Log Manager can generate accordingly the secrets

pertaining to each auditor. Notice that this user must not, nevertheless, be able to

edit or delete records from the table “Logs” and “Logs_aud”, because this could

lead to the compromising of the hash chain.

CHAPTER 5 – IMPLEMENTATION

94

Finally, the user who can be utilized for system management must be able to

add to the DBMS data concerning auditors and groups, conversely he must not be

entitled to access (read or write) data archived by the Log Manager. Notice that

the management tools can be used also to modify some fields of the tables

“Auditors”, “Groups” and “Groups_aud”; for that reason, we decided to provide

the user u_tool with the edit privileges only on those fields. Further observation:

this user must not be entitled to delete data from any of the DBMS tables, not

even those containing the data concerning groups and auditors. The removal of a

user or a group, as described in the previous sections, does not cause the removal

of data from the database, but the modification of the field “deactivation_date” of

the record pertaining to the auditor or the group at issue.

MySQL – the DBMS adopted for this implementation – consents data

management with granularity as subtle as the single table attribute. For each

attribute we can specify, in relation with each user, any combination of the four

available types of performable operations, that are:

• SELECT: used to read data from the database;

• INSERT: used to insert new data into the database;

• UPDATE: used to edit data already present in the database;

• DELETE: used to delete data from the database;

In the following figures there is a summarization of the privileges of the three

users described above on the single tables of the DBMS:

Table “Auditors”

Attribute u_auditor u_logmanager u_tool

auditor_id select select select, insert

personal_data select select select, insert, update

activation_date select select select, insert

deactivation_date select select select, insert, update

public_key select select select, insert

signature select select select, insert, update

pubkey_certificate select select select, insert, update

Table “Groups”

Attribute u_auditor u_logmanager u_tool

group_id select select select, insert

CHAPTER 5 – IMPLEMENTATION

95

group_info select select select, insert, update

total_auditors select select select, insert, update

minimum_auditors select select select, insert, update

activation_date select select select, insert

deactivation_date select select select, insert, update

signature select select select, insert, update

pubkey_certificate select select select, insert, update

Table “Groups_aud”

Attribute u_auditor u_logmanager u_tool

group_id select select select, insert

auditor_id select select select, insert

activation_date select select select, insert

deactivation_date select select select, insert, update

signature select select select, insert, update

pubkey_certificate select select select, insert, update

Table “Groups_history”

Attribute u_auditor u_logmanager u_tool

group_id select / select, insert

modification_date select / select, insert

total_auditors select / select, insert

minimum_auditors select / select, insert

signature select / select, insert

pubkey_certificate select / select, insert

CHAPTER 5 – IMPLEMENTATION

96

Table “Logs”

Attribute u_auditor u_logmanager u_tool

session_id select select, insert /

user_pseudonym select select, insert /

administered_server select select, insert /

session_start select select, insert /

session_end select select, insert /

session_termination select select, insert /

timestamp select select, insert /

path select select, insert /

encrypted_data_hash select select, insert /

hash_chain select select, insert /

signature select select, insert /

pubkey_certificate select select, insert /

Table “Logs_aud”

Attribute u_auditor u_logmanager u_tool

session_id select select, insert /

auditor_id select select, insert /

session_start select select, insert /

encrypted_key select select, insert /

Figure 5-7: Privileges of the users on the single tables

CHAPTER 6 – CONCLUSION AND FUTURE WORK

97

Chapter 6

Conclusion and future work

In this chapter we present a short discussion about what has been done so far

and what can still be done starting from the present work. Furthermore, some

reasoning on the ethical issues related to the field of irrefutable administration is

put forward.

6.1 Summing up the results

In this thesis we’ve presented the newly-born concept of irrefutable

administration and it’s links to the background technologies involved in the

process. The state of the art found in the first part introduces us into the world of

cryptology and related concepts: hash functions, symmetrical/asymmetrical

encryption, public key cryptography, secret sharing and group signatures.

Starting from general concepts, going up to group signatures, we’ve faced the

subject of restricted data access with anonymity, privacy and authentication

moving our steps through concepts like encryption/exclusion/elusion/group-

access.

We’ve devised two new methods for group signatures and a complete

framework concerning secure logging for irrefutable administration. The two

group signatures schemes are based on different technologies and theoretical

principles: the first (paragraph 4.3) is based on standard signatures arranged in a

framework which allows signatures to be made by singles on behalf of a group

and allows also the group manager to revoke group members. The same goes for

the second scheme (paragraph 4.4) which is, on the other hand, based on

completely different theoretical basis, i.e. a concept known as one-way

accumulators. The irrefutable administration scheme is, indeed, a complete

framework for building a system which archives logs in a secure and anonymous

manner, allowing set of users to have access to those logs under some precise

constraints. The system here conceptually described has been implemented, in

CHAPTER 6 – CONCLUSION AND FUTURE WORK

98

collaboration with the Department of Computer Science, University of Turin, into

a working environment called Assolo, described in details in Chapter 5.

6.2 Irrefutable administration and its ethical issues

We are conscious that the field we’ve so far called irrefutable administration

offers a lot of hints not only on what can and what can’t be done or improved, but

also on what is ethically correct and what is not. A lot of fuss is coming out

nowadays on the problem of employees monitoring, mainly about email messages

and network activities. According to [RJ05] last year ZDNet reported on a

Proofpoint-sponsored Forrester survey stating that 44 percent of companies read

outgoing email. Currently, most of those companies employ human beings to read

that email, but automated processes to scan content aren't far behind. To show

how fast the trend is spreading, a newer survey from Forrester Consulting recently

states that 63 percent plan to monitor outgoing mail. The survey also states that as

Instant Messaging becomes more prevalent, those companies plan to monitor IM

traffic as well. Employers are spying on their employees because they don't trust

them. And worse, they're not spying only on employees that they suspect of

breaking trust and leaking information — they're spying on everyone, because

technology lets them do so.

Irrefutable administration goes a step further, because it’s more specific but

also more ethical, in our opinion and in the framework we devised. What we mean

is, there are contexts in which an appropriate monitoring and archiving – under

the constraints of encryption and group access which guarantee non disclosure of

critical information – is advisable both for the company and for the employees.

Resuming the example cited in Chapter 1, in industrial environments some jobs

are left in outsourcing to external companies; the operations performed by the

external personnel should be controlled in some way, and at the same time, the

privacy of the workers must be guaranteed, with the ability to verify and link, in

case of necessity, the operations performed to the person who made them. The

“case of necessity” might be a court action against the employee but also – and

here lays the counterpart of the whole idea – a defense of the employee or even a

court action against the company. Companies have their right to be protected, but

the same right is owned by the employees. Irrefutable administration must be

conceived in that spirit, of ambivalent protection of both sides.

CHAPTER 6 – CONCLUSION AND FUTURE WORK

99

6.3 Future work

The solutions devised in this thesis are complete but, in some cases, some

improvements can be conceived in order to fix some drawbacks keeping, at the

same time, the benefits of the methods. This paragraph contains a simple and

short summary of the point which have been deeply analyzed in the dissertation.

The solutions presented for group signatures still suffers from some minor

drawbacks, such as the need of an intermediate entity in the first method and the

need of a sort of CLR (Certificate Revocation List) of the second method. Some

investigation can be made on those subjects, in order to provide a better group

signatures scheme, keeping in mind the tradeoffs between performance,

availability, key distribution, key dimension, etc… The irrefutable administration

subject can be improved working on the intermediate entity as well, or analyzing

more in details the archiving/logging function other than the auditing and data-

retrieving side.

CHAPTER 6 – CONCLUSION AND FUTURE WORK

100

CHAPTER 7 – BIBLIOGRAPHY

101

Chapter 7

Bibliography

[AAB98] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze,

W. Diffie, J. Gilmore, P. G. Neumann, R. L. Rivest, J. I. Schiller,

B. Schneier. The Risks Of Key Recovery, Key Escrow, And

Trusted Third-Party Encryption. http://www.cdt.org/crypto/risks98

[ACJT00] G. Ateniese, J. Camenisch, M. Joye, G. Tsudik. A Practical and

Provably Secure Coalition-Resistant Group Signature Scheme. In

L. Bellare, editor, Advances in Cryptology-Crypto '2000, volume

1880 of LNCS, pages 255-270. Springer-Verlag, 2000

[AST02] G. Ateniese, D. Song and G. Tsudik. Quasi-Efficient Revocation

of Group Signatures. In Financial Cryptography 2002,

Southampton, Bermuda, March 11-14, 2002

[AT99] G. Ateniese and G. Tsudik. Some Open Issues and New Directions

in Group Signature. In Financial Cryptography ’99, 1999

[BCC01] F. Bergadano, D. Cavagnino, B. Crispo. Chained Stream

Authentication. Proc. of Selected Areas in Cryptography 2000, D.

R. Stinson and S. Tavares, eds., LNCS, no. 2012, Springer-Verlag,

pp. 144-157

[BCD+04] F. Bergadano, D. Cavagnino, P. Dal Checco, A. Nesta, M.

Miraglia, P. L. Zaccone. Secure Logging for Irrefutable

Administration. Paper submitted.

[BCD+05] F. Bergadano, D. Cavagnino, P. Dal Checco, P. L. Zaccone, M.

Leone, E. Caprella. Off-line Group Signatures. Paper waiting for

submission (due to NDA constraints)

CHAPTER 7 – BIBLIOGRAPHY

102

[BCE02] F. Bergadano, D. Cavagnino, L. Egidi. Partially sighted signatures

on large documents. Proc. of Int.l Network Conference 2002,

Sherwell Conference Centre, University of Plymouth, UK, pp.

373-380

[BCN01] F. Bergadano, D. Cavagnino, P. A. Nesta. Certification of Web

Access Statistics. Proc. of e-2001, E-work and E-commerce, Vol.

1, IOS Press, October 2001, pp. 326-332

[BDP97] A. Bosselaers, H. Dobbertin, B. Preneel. The RIPEMD-160

cryptographic hash function. Dr. Dobb’s Journal, January 1997

[BLA79] G. R. Blakley. Safeguarding cryptographic keys. Proc. of AFIPS,

1979 NCC, Vol. 48, Arlington, Va., June 1979, pp. 313-317

[BM94] J. Benaloh, M. de Mare. One-Way Accumulators: A Decentralized

Alternative to Digital Signatures. In: Advances in Cryptography –

Eurocrypt '93, LNCS 765, pages 274-285. Springer-Verlag, Berlin,

1994

[BP97] N. Baric and B. Pfitzmann. Collision-Free Accumulators and Fail-

Stop Signature Schemes Without Trees. Eurocrypt '97, LNCS

1233, Springer-Verlag, Berlin 1997

[BRS01] E. Bresson, J. Stern. Efficient Revocation in Group Signatures. In

K. Kim, editor, Public Key Cryptography-PKC2001, volume 1992

of LNCS, pages 190-206. Springer-Verlag, 2001

[BY97] M. Bellare, B. S. Yee. Forward integrity for secure audit logs.

Tech. report, UC at San Diego, Dept. of Computer Science and

Engineering, November 1997

[CA98] J. Camenish. Group signature schemes and payment systems based

on the discrete logarithm problem. PhD thesis, vol. 2 of ETH

Series in Information Security and Cryptography, Hartung-Gorre

Verlag, Konstanz, 1998

[CDG+03] Joris Claessens, Claudia Díaz, Caroline Goemans, Bart Preneel,

Joos Vandewalle, Jos Dumortier. Revocable anonymous access to

the Internet?. Internet Research: Electronic Networking

Applications and Policy. August 2003

CHAPTER 7 – BIBLIOGRAPHY

103

[CE04] Federica Cesano. Visualizzazione ed auditing dei dati derivanti

dall’amministrazione di un sistema informatico. Degree Thesis,

2004

[CHVH91] D. Chaum and E. van Heyst. Group Signatures. In D.W. Davies,

editor, Eurocrypt ’91, volume 547 of LNCS, pages 257–265.

Springer-Verlag, 1992

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and

application to efficient revocation of anonymous credentials. In:

Crypto 2002, LNCS 2442, pp. 61-76. Springer-Verlag, 2002

[CM98a] J. Camenisch and M. Michels. A group signature scheme with

improved efficiency. In Advances in Cryptology | ASIACRYPT'98,

vol. 1514 of LNCS, pp. 160{174, Springer-Verlag, 1998

[CM98b] J. Camenisch and M. Michels. A group signature scheme based on

an RSA-variant. Technical Report RS-98-27. BRICS, University

of Aarhus, November 1998. Primary version of this paper appeared

at ASIACRYPT'98

[CO96]

D. Coppersmith. Finding a small root of a bivariatre interger

equation; factoring with high bits known. In Advances in

Cryptology | EUROCRYPT '96, volume 1070 of LNCS, pages

178{189. Springer Verlag, 1996

[CPH02] C. N. Chong, Z. Peng, P. H. Hartel. Secure Audit Logging with

Tamper-Resistant Hardware. 18th IFIP TC11 International

Conference on Information Security (IFIPSEC), Security and

Privacy in the Age of Uncertainty, 2003, pp. 73-84

[CS97] J. Camenisch and M.Stadler. Efficient Group Signatures Schemes

for Large Groups. In B. Kaliski, editor, Crypto ’97, volume 1294

of LNCS, pages 410–424. Springer-Verlag, 1997

[DES93] Yvo Desmedt. Threshold cryptography. Auscrypt ’92, LNCS 718,

Springer-Verlag, Berlin 1993, 3–14

[DH76] W. Diffie, M. E. Hellman. New direction in cryptography. IEEE

Trans. On Inform. Theory, Vol. 22, pp 644-654, 1976

CHAPTER 7 – BIBLIOGRAPHY

104

[DR00] J. Daemen, V. Rijmen. The Block Cipher Rijndael. Smart Card

Research and Applications, J.-J. Quisquater and B. Schneier, eds.,

Lecture Notes in Computer Science, no. 1820, Springer-Verlag,

2000, pp. 288-296

[DTX04] X. Ding, G. Tsudik and S. Xu. Leak-Free Mediated Group

Signatures. IEEE ICDCS'04, March 2004

[KPW96] Seungjoo Kim, Sungjun Park and Dongho Won. Convertible group

signatures. Advanced in Cryptology - AsiaCrypt'96, Springer-

Verlag, LNCS 1163, Kyongju, Korea, November 3-7 1996,

pp.311-321

[LAM81] L. Lamport. Password Authentication with Insecure

Communication. Communications of the ACM, 24 (1981), pp. 770-

772

[MI04] Michele Miraglia. Registrazione sicura, anonima e non

disconoscibile dei dati derivanti dall’amministrazione di un

sistema informatico. Degree thesis, 2004

[ML05] Manuel Leone, Comments to the group signatures scheme ‘Group

signatures with immediate verification, TILab internal document,

2005

[MOV96] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, “Handbook

of Applied Cryptography”, CRC Press, 1996

[NIST94] National Institute of Standards and Technologies, NIST FIPS PUB

186, “Digital Signature Standard”, U.S. Department of Commerce,

May 1994

[NIST95] National Institute of Standards and Technology, NIST FIPS PUB

180-1, “Secure Hash Standard”, U.S. Department of Commerce,

Apr. 1995

[NIST99] National Institute of Standards and Technologies, NIST FIPS PUB

46-3, “Data Encryption Standard (DES)”, U.S. Department of

Commerce, October 1999

[NIST01] National Institute of Standards and Technologies, NIST FIPS PUB

197, “Advanced Encryption Standard (AES)”, U.S. Department of

Commerce, Nov. 2001

CHAPTER 7 – BIBLIOGRAPHY

105

[NIST02] National Institute of Standards and Technologies, NIST FIPS PUB

180-2 “Secure Hash Standard”, U.S. Department of Commerce,

Aug. 2002

[PER01] A. Perrig. The BiBa one-time signature and broadcast

authentication protocol. In Eighth ACM Conference on Computer

and Communication Security, pages 28-27. ACM, November 5-8

2001

[PGP05] PGP Corporation – Home Page. http://www.pgp.com/

[REY02] L. Reyzin, N. Reyzin. Better than BiBa: Short One-time Signatures

with Fast Signing and Verifying. ACSIP 2002

[RJ05] Russell Jones. Monitoring Technologies Put Developers in an

Ethical Hotseat. http://www.devx.com/opinion/Article/28657

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems”,

Communications of the ACM, 21 (1978), pp. 120-126

[RUF95] M. Ruffin, “A survey of logging uses”, Tech. Rep., Dept. of

Computer Science, University of Glasgow, Glasgow, Scotland,

February 1995

[SCH94] B. Schneier, “Description of a new variable-length key, 64-bit

block cipher (Blowfish)”, Fast Software Encryption, Cambridge

Security Workshop Proceedings, Lecture Notes in Computer

Science, no. 809, Springer-Verlag, 1994, pp. 191-204

[SHA79] A. Shamir, “How to share a secret”, Communications of the ACM,

22 (1979), pp. 612-613

[SK98] B. Schneier, J. Kelsey, “Cryptographic support for secure logs on

untrusted machines”, in The 7th USENIX Security Symposium

Proceedings, pp. 53-62, USENIX Press, January 1998

[SK99a] B. Schneier, J. Kelsey, “Secure Audit Logs to Support Computer

Forensics”, ACM Transaction on Information and System

Security, Vol. 2, Issue 2 (May 1999)

[SK99b] J. Kelsey, B. Schneier, “Minimizing bandwidth for remote access

to cryptographically protected audit logs”, in Web proceedings of

the 2nd International Workshop on Recent Advances in Intrusion

Detection (RAID'99), 1999

CHAPTER 7 – BIBLIOGRAPHY

106

[SK99c] B. Schneier, J. Kelsey, “Event Auditing System”, US Patent

#5,978,475, Nov. 2, 1999

[TX03] Gene Tsudik and Shouhuai Xu. Accumulating Composites and

Improved Group Signing. In: ASIACRYPT 2003, LNCS 2894, pp.

269–286. Springer-Verlag, 2003. Primary version available at

http://eprint.iacr.org/2003/112/

[WBD04] B. R. Waters, D. Balfanz, G. Durfee and D. K. Smetters, “Building

an Encrypted and Searchable Audit Log”, The 11th Annual

Network and Distributed System Security Symposium (NDSS

2004), February 2004

