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Abstract

In this paper we present a stepwise method for the analysis of musical
sequences. The starting point is either a MIDI file or the score of a piece
of music. The result is a set of likely themes and motifs. The method
relies on a pitch intervals representation of music and an event discovery
system that extracts significant and repeated patterns from sequences.
We report and discuss the results of a preliminary experimentation, and
outline future enhancements.

1 Introduction

In the last few years many efforts have been spent on music issues within the AI
community. Two main tasks have been addressed, requiring “intelligent” and
sophisticated strategies: music analysis and music performance. The first line of
research investigated topics such as performer recognition [1], harmonic analysis
[2], segmentation [3], whereas the second one aims at reproducing expressive
music performance by means of artificial systems [4, 5].

Music analysis is a relevant task, in that it deeply affects our comprehension
of music, as regards of composition, performance and listening. Music analysis
is a challenging task: consider, e.g., that a significant part of professional music
instruction is concerned with assisting the learner in “understanding” music for
the different purposes of composition and performance.

In this paper we point out the problem of discovering repeated patterns,
as a major issue for building systems for music analysis. It is commonly ac-
knowledged that in Western Tonal Music repetition plays a fundamental role,
and individuating themes and motifs is a fundamental step towards discover-
ing higher order blocks, and their dependency relationships as well [6]. For
example, looking at a fugue, one would individuate its main constituents (sub-
ject and countersubject), and then recognize their disperse episodes, generated
through imitation and transposition [7]. Discovering significant repetitions in
music has many applications, such as providing tools for indexing large music
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corpora and for content-based retrieval from music databases [8]. Moreover, in
the area of computer assisted music analysis, both didactic tools and softwares
for music performers and analysts would benefit from the discovery of the motifs
underlying whole pieces.

Three main complexity factors increase the difficulty of the task. Meaning-
ful motifs are interleaved with irrelevant gaps. Moreover, we are interested in
discovering modified occurrences of motifs, as well. Lastly, we are interested
in discriminating motifs from insignificant repetitions, whilst the greater part
of repetitions in music are not perceptually significant [9]. These issues make
the discovery of repeated patterns a challenging problem, and an interesting
test-bed for automatic systems.

In this work we propose a novel approach to individuate themes and motifs.
We show that the musical patterns discovery can be tackled via a Hierarchical
Hidden Markov Model (HHMM) approach: the present system takes as input
MIDI files and returns scores, where the patterns found are highlighted, and the
corresponding MIDI files of the discovered themes.

The paper is organized as follows. First, we define the problem being solved;
then we point out some similarities with other fields where one has to handle
episodes represented as strings of symbols. Next, we briefly review the literature,
and then introduce our system. We describe the music encoding adopted, and
illustrate the system’s basic features. Finally we report about a preliminary
experimentation, discussing the obtained results.

2 Patterns in Music

We address the problem of recognizing the most significant motifs, and the
problem of recognizing their disperse episodes as well. At all times composers
adopted various techniques for composing music from few ideas; but it is from
the Renaissance that these techniques were refined to such an extent that it
was possible to build entire pieces from a single musical idea. The simpler form
of repetition is literal repetition, but far more often the repetition is combined
with variation: changes may involve harmony and/or melody and/or rhythm.
Among the most widely used variation techniques, we mention augmentation
and diminution (where the length of the repeated notes is prolonged or short-
ened), inversion of intervals between note pairs and contrary motion [10] (Fig.
1). These techniques have been used by both historic and contemporary com-
posers (see, e.g., the works from J.S. Bach (1685–1750) and A. Schoenberg
(1874–1951)), in particular for polyphonic music. Polyphonic music can be de-
fined as a texture consisting of overlapped lines, where each of the individual
parts is called voice, even if it is played by instruments. Each voice is indepen-
dent from the other ones (we don’t have a melody together with the accompa-
niment, but rather equally important voices), thus retaining its identity (Fig.
2).

The problem of finding repeated patterns in polyphonic music can be formu-
lated in the following terms. A motif can be thought of as a complex event (CE),
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Figure 1: Main theme from Contrapunctus 4 from J.S. Bach’s Die Kunst der
Fuge, and the variations obtained through the techniques of inversion, inversion
combined with contrary motion, augmentation and diminution.

occurring sparsely in a sequence of notes. Such a complex event is composed
by episodes of atomic events (AEs). In turn, episodes are composed by strings
of symbols: in our case, by pitch intervals (see below, Section 4.1). In this
setting, based on the properties of regular expressions, it is possible to infer a
model of the motif being searched via an abstraction mechanism. This approach
transports to the musical domain a well established modeling framework, which
has been successfully tested on various domains, such as user (typing) profiling
[11, 12].

3 State of the Art

Several algorithms that tackle the task of pattern recognition in music have
been developed. We briefly review the principal and closely related ones, whilst
a richer tour is provided in [9]. Dovey [13] proposes an algorithm for query-
ing musical databases, where music events are represented as strings of (sets
of) note pitches. Different kinds of relationships can be individuated between
events, such as about harmony, or according to whether the two events under
consideration fall into some pitch range. This approach also requires to spec-
ify the dimension of gaps between consecutive events. The pattern discovery
technique devised by Conklin & Anagnostopoulou [14] relies on a representa-
tion based on a set of parameters (viewpoints, in the authors terms [15]): here
each string represents an individual parameter, and meaningful repetitions are
individuated based on a Hidden Markov Model, looking for repetitions more fre-
quent than expected. These approaches only discover exactly repeated factors
in strings.

On the other side, the algorithm by Rolland [16], which allows retaining much
musical information such as duration, interval, degree in the overall tonality,
has been designed to discover approximately repeated patterns. The author
defines a similarity metrics between pairs of sequence segments: the Multi-
Description Valued Edit Model implements a function for computing the edit
distance between strings [17]. This algorithm allows discarding as not similar
all the patterns below some threshold k, thus allowing to define a notion of
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voice 1

voice 2 voice 3

voice 4

Figure 2: Bars 1–7 from Fugue in C major from Book 1 of J.S. Bach’s Das
Wohltemperierte Klavier : each voice states the subject.

k-similarity. Then, the distance between each pattern instantiation and the
pattern itself is computed. Based on this proximity score, Rolland obtains a list
of the most prominent repeated patterns. Cambouropoulos et al. [18] propose
an algorithm for approximate string matching, by transporting to the music
domain the well-known concept of edit distance.

Lartillot [19] devised an interesting mechanism for pattern induction, based
on a plain encoding of pitch intervals and metrical salience. The algorithm first
analyses note pairs within a temporal window of fixed size. At this step similar
intervals are retained as potential patterns. Then, Lartillot’s algorithm checks
the prosecution of repeated patterns by considering only melodic contour (se-
quences being considered can prosecute upward, downward, or constant). This
way, individuating approximate repetitions is no longer an issue. Also, this
system is provided with a sort of abstraction mechanism, defining pattern oc-
currences as instances of pattern classes. However, a limitation of the approach
resides in the fact that the algorithm cannot handle long sequences, due to the
high computational cost necessary for this kind of analysis.

One popular approach for discovering repeated patterns is the“geometric”
approach by Meredith et al. [9]: music is represented as a multidimensional
dataset. Each event in the score can be encoded via an arbitrary number of
dimensions, such as onset time, pitch, duration and voice. The authors define
perceptually relevant repetitions in terms of the maximum pattern that can be
translated into another pattern in the dataset. This is equivalent to finding out
all the transposition-invariant occurrences of a pattern, according to a given
dimension/set of dimensions. Unlike the above mentioned works, this approach
allows handling polyphonic music.
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Figure 3: Top: the subject of the fugue presented in Fig. 2 is extracted from
each voice. Bottom: all the voices exhibit the same shape, despite the notes
are actually different. Commonalities among the different occurrences of the
subject can be seen via a pitch interval representation.

4 The System

4.1 Encoding musical information

We take as input pieces encoded as standard MIDI files1, where each musical
“voice” is represented as a separate track: given n voices, we have as many
tracks. For example, the piece in Fig. 2 can be encoded with 4 tracks (Fig. 3).
We then extract from each track a sequence of music events: an event has a
pitch, onset and offset; each new onset determines a new event.

Underpinned by music analysis [7] and music cognition [6] literatures, we are
primarily concerned with music intervallic content, in that it can reveal pitch
contour commonalities between motifs. For example, let us consider the excerpt
presented in Fig. 2. Here we have a “curve” shaped motif (properly, the subject
of the fugue), that accomplishes an ascending–jump–descending melodic move-
ment. The essence of this kind of motifs –see e.g., the top of Fig. 3– is best
grasped if one considers the pitch intervals between each pair of notes, as it is
shown in the bottom of Fig. 3. We can see that the four occurrences of the sub-
ject are invariant under transposition, so that the pattern can be individuated
considering the intervals rather than the actual notes. More sophisticated kinds
of representation have been designed, such as Conklin’s multiple viewpoints [15],
that in principle could better fit to pattern discovery. However, as it was pointed
out by Conklin [14], a systematic experimentation over 185 J.S. Bach chorales
provided evidence that patterns were mainly found via “melodic intervals”. As
a consequence, we chose a simple representation accounting for intervals only;
this has the advantage of permitting to translate music input into a string with
a smaller alphabet.

4.2 Extracting and modeling motifs

In order to accomplish this step, we used a recently proposed event discovery
system [11, 12]. The main idea is that of modeling each motif by means of a

1http://www.midi.org/.
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Profile Hidden Markov model (PHMM), and representing a sequence of motifs
interleaved with gaps by a Hierarchical Hidden Markov model (HHMM).

A Hidden Markov Model (HMM) is a stochastic finite state automaton [20]
defined by a tuple λ = 〈Q,O,A,B, π〉, where:

• Q is a set of states, and O is a set of atomic events (observations),

• A is a probability distribution governing the transitions from one state to
another. Specifically, any member ai,j of A defines the probability of the
transition from state qi to state qj , given qi.

• B is a probability distribution governing the emission of observable events
depending on the state. Specifically, an item bi,j belonging to B defines
the probability of producing event Oj when the automaton is in state qi.

• π is a distribution on Q defining, for every qi ∈ Q, the probability that qi

is the initial state of the automaton.

The difficulty, in this basic formulation, is that, when the set of states Q
grows large, the number of parameters to estimate (A and B) rapidly becomes
intractable. Nevertheless, the size of the parameters to estimate can be strongly
reduced if one defines a structure for the automaton, where a number of state
transitions and the possible emissions in a state are cut a priori. This corre-
sponds to setting to 0 the corresponding values in matrix A and B. Actually,
many work related to HMM applications consists in handcrafting the a priori
structure of the automaton, as, for instance, the Profile Hidden Markov Model
[21], widely used for DNA analysis.

A Profile Hidden Markov Model assumes that a motif has a canonical instan-
tiation form, that can be affected by insertion and deletion errors. A PHMM is
basically a forward graph with three categories of states:

• match states, where the emission corresponds to the unique symbol ex-
pected in the canonical instantiation;

• insertion states, where a number of symbols due to random noise can be
inserted;

• deletion states, where non emission occurs where it was supposed to.

In addition, other two non emitting states are required: the start state, and
the end state. Recursion is considered only in the form of self-loops associated to
insertion states. It has been experimentally shown that PHMM is more accurate
than string matching to detect motifs [21], and then we expect that it holds for
musical sequences as well. Moreover, the algorithmic complexity inherent to
PHMM is linear both for Viterbi and Forward-Backward algorithms.

The Hierarchical HMM (HHMM) proposed by Fine, Singer and Tishby [22]
is an extension of the basic HMM, that immediately follows from the regular lan-
guages property of being closed under substitution; this property allows a large
finite state automaton to be transformed into a hierarchy of simpler ones. More
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specifically, a HHMM is a hierarchy where, by numbering the hierarchy levels
with ordinals increasing from the lowest towards the highest level2, observations
generated in a state qi

k by a stochastic automaton at level k are sequences gen-
erated by an automaton at level k − 1. The emissions at the lowest levels are
again single tokens as in the basic HMM. Moreover, no direct transition may
occur between the states of different automata in the hierarchy. As in HMM,
in every automaton the transitions from state to state is governed by a distri-
bution A and the probability for a state being the initial state is governed by a
distribution π. The restriction is that there is only one state which can be the
terminal state.

The major advantage provided by the hierarchical structure is a strong re-
duction in the number of parameters to estimate. In fact, automata at the same
level in the hierarchy do not share interconnections: every interaction through
them is governed by transitions at the higher levels.

A second advantage is that, as it will be described in the following, the mod-
ularization enforced by the hierarchical structure allows the different automata
to be modified and trained individually, thus providing a natural subproblem
decomposition.

The basic learning algorithm, fully described in [11, 12] builds the HHMM
hierarchy bottom-up starting from the lowest level (actually, only two levels are
built). The first step consists in searching for possible motifs, i.e., short chains
of consecutive symbols that appear frequently in the learning traces, by means
of classical methods used in DNA analysis [21]. A PHMM is then built from
the found motifs. As models of the motifs are constructed independently from
one another, it may happen that models for spurious motifs are constructed. At
the same time, it may happen that relevant motifs are disregarded just because
their frequency is not high enough. Both kinds of problems will be fixed at a
later time. Starting from the models found at this step, a HHMM can be built
in the following way: the input sequences are abstracted (i.e., rewritten in terms
of the models found) by substituting each occorrence of a PHMM with a symbol
in a new alphabet and subsequences between two motifs not attributed to any
PHMM, by means of a special symbol called gap.

After this basic cycle has been completed, an analogous learning procedure is
repetead on the abstracted sequences, where models are now built for sequences
of episodes, searching for co-occorrent motifs. In this process, spurious motifs
not showing significant regularities can be discarded. The major difference with
respect to the first step, is that models built from the abstracted sequences are
observable Markov models. This makes the learning task easier and decreases
its computational complexity. After building the HHMM structure in this way,
it can be refined by using standard training algorithms [23, 22].

2We use a reverse numeration for hierarchy levels, with respect to the original formulation
in [22].
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4.3 Producing the results

Once the HHMM has been built, we are ready to produce the final results of the
system. In this last step, the acquired model is instatiated on every voice and
two outputs are generated: a score of the piece tagged with the motifs found
in that voice. In order to provide also audible results, we generate as many
MIDI files as the found motifs (i.e., for every motif we produce a MIDI file that
contains the notes in the motif). Both scores and MIDI files are available on
the Web3.

5 Experimental validation

In order to assess the results provided by the system, we have collected a
dataset composed by the fugues from Book 1 of J.S. Bach’s Das Wohltem-
perierte Klavier. We used MIDI recordings retrieved from BachCentral.com4.
Due to problems encountered while processing the MIDI files5, we could actually
use only 15 of the 24 fugues from the original corpus.

We have run the system to discover the main motif (i.e., the subject) of
each fugue. Also, we have been looking for all the occurrences of such subject
throughout the fugue: specifically, we have been looking for the occurrences
of the whole (if varied) subject, thus disregarding episodes such as the stretti,
where only the head or the tail of the subject occurs. While testing the system on
fugues motifs only, we considered motifs longer than a fixed amount (presently,
this was set to 6 notes), thereby retaining motifs that have a score higher than
the average of the scores left. The experimentation should answer the following
questions: i) How much do such filtered data fit to the actual subjects; ii)
How many of the subject repetitions do we find; iii) How many notes in the
(repeated) subjects are actually individuated.

i) The system correctly recognized the subject in 72.55% of cases. Overall
ii), 74.73% of the total number of subject occurrences were identified; also, on
average, iii) we have individuated 80.86% of the notes in the subjects.

5.1 Discussion

The present results hardly compare with literature, because, to the best of
our knowledge, no researchers addressing the pattern discovery in the musical
domain have tested their systems in a systematic way. Rather, examples of
individual patterns have been provided, or the most discriminative musical fea-
tures have been pointed out –e.g., pitch intervals, contour– (see, respectively,
the state of art systems presented in [9] and [14]). Reasonably, providing crude
numbers would result improper in some cases, but perhaps the lack of system-

3http://www.di.unito.it/~botta/bach-fugues
4http://www.bachcentral.com/wtcMidi1.html.
5For reading the files and extracting the tracks, we used the parsing routines provided by

the standard javax.sound.midi package.

8



 

! ! ! !
"
! ! ! ! ! ! !# $ !% !

"
! ! ! ! ! !$

"
! !! !!# !! !! !!

"
! ! !# ! ! ! !

&'

!!# !# !! !! !!%!!
! !!!! !! ! !!!! ! !!! !!! % !!(!! !! !! !!# ( !# !

$
!) !! !# !! !! !! ! ! ! !! ! !! ! !!(

$
! !# !! !# !!!! !# !! !! ! !!!! !#'5

! ! $! !!% !!# !# !! ! !!!! ! !!!# $!! !!! *!!! !!! ! $!!! !!! %# !! ! !! ! ! +!
$
# !) ! !!% ! +!

!# ! ! ! ! ! !
$

# $!
)
*! !'12

!! !! !# !! $! *! ! ! ! ,! !
! !# $ !) ! ! ! ! ! ! ! ! !) !)'16

Music engraving by LilyPond 2.6.5 — www.lilypond.org

 

! ! ! !!
"
! ! ! ! ! !# $ !% !

"
! ! ! ! ! !$

"
! !! !!# !! !! !!

"
! ! !# ! ! ! !

&'

!!# !# !! !! !!!! %
! !!!! !! ! !!!! ! !!! !!! % !!( !!! !! !!! !!#!! !!#!!# !!(!( !!

$
# $!!) !!!! !# !! %!! !! ! ! ! !! ! !! ! !!(

$
! !# !! !# !!!! !# !! !! ! !!!! !#'5

!! !!!# $! !!!!
%#

!! ! !! !! !# !! ! !! !! !! !! ! !!# ! !! !!! !# !!! *!
$
#! !)!! !! !!!!( % !

!# *!!#! !! !!! !!# !!! !
$

#! $!!! ! )
+!!! ! !!!'10

!#! ! !! ! !! ! $! ! +!
! ! $! !!% !

! !! !# !! $! +! ! ! ! ,! !
! !# $ !) ! ! ! ! ! ! ! ! !) !)'15

Music engraving by LilyPond 2.6.5 — www.lilypond.org

Figure 4: Top: the subject of Fugue 20; bottom: the subject is stated by the
soprano voice with the inversion of intervals.

atic experiments witnesses about the difficulty of the task, as well. Hence our
results can furnish a baseline against which other systems can be compared.

Provided that this preliminary experimentation considered only a small
dataset, and that we have performed only a reduced form of automatic analysis,
aiming at discovering vividly individuated motifs, the results are satisfying.

A closer look to the data may be helpful in completing the assessment of
the results, and in suggesting some criteria for future improvements. In the test
i) we identify the subject in 72.55% of cases, but if we retain all the results
without filtering, then the success ratio raises to 100% of cases. Therefore,
taken for granted that models for subjects can be acquired, refinements to the
filtering function are at hand. For what concerns test ii), some improvements
would be possible by considering additional music information, such as, e.g.,
the absolute intervals. Most likely this would be useful to discover occurrences
of the subject with inverted (Fig. 1) intervals. Grasping these cases (Fig. 4)
would further improve the system’s accuracy. The test iii) would benefit from
a slightly different splitting of the string in input.

However, the results also show that much work has still to be done. Many
errors were committed when encountering “too short” subjects (e.g., Fugue 4),
where it is harder to acquire a significant pattern. Moreover, we were penalized
from cases where “real answer” significantly transforms the expositions of the
subject (e.g., Fugue 21), thus increasing the difficulty to individuate the common
underlying model.

6 Conclusions

This paper has presented a methodology for addressing a captivating problem:
analyzing the horizontal textures of music. Namely, we have applied it for
discovering the subjects in some fugues from J.S. Bach’s Das Wohltemperierte
Klavier. A working system implements the methodology: based on a plain
though effective encoding of music, it acquires a model of the most significant
repeated patterns. Then it outputs the results both as analyzed scores and
as MIDI files, containing the patterns discovered. The experimental validation
demonstrated the adequacy of the approach, while also pointing out some open
issues, that will steer our future work.
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Furthermore, the hierarchical hidden Markov model learned by the system
could provide useful insights about the overall structure of musical pieces, al-
lowing to describe them in terms of basic building blocks (motifs and gaps) and
their relationships.
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