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Abstract. Light and elementary linear logics have been introduced as
logical systems enjoying quite remarkable normalization properties. De-
signing a type assignment system for pure lambda calculus from these
logics, however, is problematic, as discussed in [1]. In this paper, we show
that shifting from usual call-by-name to call-by-value lambda calculus al-
lows to regain strong connections with the underlying logic. We will do
this in the context of Elementary Affine Logic (EAL), designing a type
system in natural deduction style assigning EAL formulae to lambda
terms.

1 Introduction

Light and elementary linear logics [2–4] were all introduced as logical counter-
parts of complexity classes, namely polynomial and elementary time functions.
After their introduction, they have been shown to be relevant for optimal reduc-
tion [5, 6], programming language design [4, 7] and set theory [8]. However, proof
languages for these logics, designed through the Curry-Howard Correspondence,
are syntactically quite complex and can hardly be proposed as programming
languages. An interesting research challenge is the design of type systems as-
signing light logics formulae to pure lambda-terms, forcing the class of typable
terms to enjoy the same remarkable normalization properties we can prove on
logical systems. The difference between β-reduction and the normalization step
in the logics, however, makes it difficult both getting the subject reduction prop-
erty and inheriting the complexity properties from the logic, as discussed in [1].
Indeed, β-reduction is more permissive than the restrictive copying discipline
governing calculi directly derived from light logics. Consider, for example, the
following expression in ΛLA (see [7]):

let P be !x in N

This rewrites to N{x/P} if N is !P , but is not a redex if N is, say, an application.
It is not possible to map this mechanism into pure lambda calculus. The solution
proposed by Baillot and Terui [1] in the context of light affine logic consists in
defining a type-system which is strictly more restrictive than the one induced by
the logic. In this way, they both achieve subject reduction and a strong notion



of polynomial time soundness. It is not clear, however, whether every light affine
logic proof can be mapped to a typable term. Now, notice that mapping the above
let expression to the application (λx.N)M is not meaningless if we shift from
the usual call-by-name lambda-calculus to the call-by-value λ-calculus, where
(λx.N)M is not necessarily a redex. In this paper, we make the best of this
idea, introducing a type assignment system assigning to λ-calculus formulas of
Elementary Affine Logic (EAL), that we call ETAS. ETAS enjoys the following
remarkable properties:
– Every proof of EAL can be mapped into a type derivation in ETAS;
– (Call-by-value) subject reduction holds;
– Type-inference is decidable;
– Elementary bounds can be given on the length of any reduction sequence

involving a typable term. A similar bound holds on the size of terms involved
in the reduction.

The basic idea underlying ETAS consists in partitioning premises into three
classes, depending on whether they are used once, or more than once, or they
are in an intermediate status. We believe this approach can work for other light
logics too, and some hints will be given.
The proposed system is the first one satisfying the given requirements for light
logics. A notion of typability for λ-calculus has been defined in [5, 6] for EAL,
and in [9] for Light Affine Logic. Type inference has been proved to be decidable.
In both cases, however, the notion of typability is not preserved by β-reduction.
The paper is organized as follows: Section 2 recalls some preliminary notions
about EAL and lambda-calculus, Section 3 introduces ETAS system, Section
4 and 5 explain ETAS main properties, namely complexity bounds and a type
inference algorithm. Section 6 presents two possible extensions, allowing to reach
completeness for elementary functions, and to apply our idea to other light logics.
The Appendix contains some technical proofs.

2 Preliminaries

In this section we recall the proof calculus for Elementary Affine Logic, ΛEA,
and we discuss its relation with the λ-calculus.

Definition 1. i) The set Λ of terms of the λ-calculus is defined by the grammar
M ::= x |MM | λx.M , where x ∈ Var, a countable set of variables.

ii) The grammar generating the set ΛEA of terms of the λEA-calculus (ΛEA) is
obtained from the previous one by adding rules: M ::=! (M)

[
M/x, . . . ,M/x

]
|

[M ]M=x,y and by constraining all variables occurrence to occur (free) at most
once.

iii) EA-types are formulas of Elementary Affine Logic (hereby EAL), and are
generated by the grammar A ::= α | A ( A |!A where α belongs to a
countable set of basic type constants. EA-types will be ranged over by A,B,C.

iv) EA-contexts are finite subsets of EA-type assignments to variables. Con-
texts are ranged over by Φ, Ψ . If Φ = {x1 : A1, . . . , xn : An}, then dom(Φ) =



{x1, . . . , xn}. Two contexts are disjoint if their domains have empty inter-
section.

iv) The type assignment system `NEAL assigns EA-types to EA-terms, start-
ing from a context. The system is given in Table 1. With a slight abuse of
notation, we will denote by NEAL the set of typable terms in ΛEA.

Both ΛEA and Λ are ranged over byM,N,P,Q. The context should help avoiding
ambiguities. ≡ denotes syntactic identity on terms, modulo names of bound vari-
ables and modulo permutation in the list M/x, · · · ,M/x inside ! (M)

[
M/x, . . . ,M/x

]

and in contracted variables x, y inside [M ]M=x,y.

Φ, x : A `NEAL x : A
ax

Φ `NEAL M :!A Ψ, x :!A, y :!A `NEAL N : B

Φ, Ψ `NEAL [N ]M=x,y : B
contr

Φ, x : A `NEAL M : B

Φ `NEAL λx.M : A ( B
(( I)

Φ `NEAL M : A ( B Ψ `NEAL N : A

Φ, Ψ `NEAL (M N) : B
(( E)

Ψ1 `NEAL M1 :!A1 · · · Ψn `NEAL Mn :!An x1 : A1, . . . , xn : An `NEAL N : B

Φ, Ψ1, . . . , Ψn `NEAL! (N)
ˆ

M1/x1, . . . ,
Mn/xn

˜

:!B
!

Table 1. Type assignment system for EA-terms. Contexts with different names are
intended to be disjoint.

On Λ, both the call-by-name and the call-by-value β-reduction will be used,
according to the following definition.

Definition 2. i) The call-by-name β-reduction is the contextual closure of the
following rule: (λx.M)N →n M{N/x}, where M{N/x} denotes the capture
free substitution of N to the free occurrences of x in M ;

ii) Values V are generated by the grammar V ::= x | λx.M where x ranges over
Var and M ranges over Λ. Values are denoted by V,U,W . The call-by-value
β-reduction is the contextual closure of the following rule: (λx.M)V →v

M{V/x} where V ranges over values.

iii) Let t ∈ {n, v}: →+
t and →∗

t denote the transitive closure and the symmetric
and transitive closure of →t, respectively.

A term in ΛEA can be tranformed naturally in a term in Λ by performing the
substitutions which are explicit in it, and forgetting the modality !. Formally,
the translation function (·)∗ : ΛEA → Λ is defined by induction on the structure



of EA-terms as follows:

(x)∗ = x

(λx.M)∗ = λx.(M)∗

(MN)∗ = (M)∗(N)∗

([M ]N=x1,x2
)∗ = (M)∗{(N)∗/x1, (N)∗/x2}

(! (N)
[
M1/x1, . . . ,

Mn/xn

]
)∗ = (N)∗{(M1)

∗/x1, . . . , (Mn)∗/xn}

where M{M1/x1, · · · ,
Mn/xn} denotes the simultaneous substitution of all free

occurrences of xi by Mi (1 ≤ i ≤ n).
The map (·)∗ easily induces a type-assignment system for pure lambda-calculus:
take NEAL and replace every occurrence of a term M by M ∗ in every rule.
Normalization in EAL, however, is different from normalization in lambda-
calculus — the obtained system does not even satisfy subject-reduction. More-
over, lambda calculus does not provide any mechanism for sharing: the argument
is duplicated as soon as β-reduction fires. This, in turn, prevent from analyzing
normalization in the lambda-calculus using the same techniques used in logical
systems. This phenomenon has catastrophic consequences in the context of light
affine logic, where polynomial time bounds cannot be transferred from the logic
to pure lambda-calculus [1].
Consider now a different translation (·)# : ΛEA → Λ:

(x)# = x

(λx.M)# = λx.(M)#

(MN)# = M# (N)#

([N ]M=x,y)# =

{
(N)#{M/x,M/y} if M is a variable
(λz.(N)#{z/x, z/y})(M)# otherwise

(! (N)
[
M1/x1, . . . ,

Mn/xn

]
)# =







(N)# if n = 0
(! (N)

[
M2/x2, . . . ,

Mn/xn

]
)#{M1/x1}

if n ≥ 1 and M1 is a variable
(λx1.(! (N)

[
M2/x2, . . . ,

Mn/xn

]
)#)(M1)

#

if n ≥ 1 and M1 is not a variable

If lambda-calculus is endowed by ordinary β-reduction, then the two translation
are almost equivalent. Indeed:

Lemma 1. For every EA-term M , (M)# →∗
n (M)∗.

Proof. By induction on M .

However, it is not certainly true that (M)# →∗
v (M)∗.

The map (·)#, differently from (·)∗ does not cause an exponential blowup on
the lenght of terms. The length L(M) of an λ-term M is defined inductively as
follows:

L(x) = 1

L(λx.M) = 1 + L(M)

L(M N) = 1 + L(M) + L(N)



The same definition can be extended to EA-terms by way of the following equa-
tions:

L(! (M)) = L(M) + 1

L(! (M)
[
M1/x1, . . . ,

Mn/xn

]
) = L(! (M)

[
M1/x1, . . . ,

Mn−1/xn−1

]
) + L(Mn) + 1

L([M ]N=x,y) = L(M) + L(N) + 1

Proposition 1. For every N ∈ ΛEA, L(N#) ≤ 2L(N).

In the following section, we describe a type-system which types all the terms in
(NEAL)#, satysfing call-by-value subject-reduction and enjoying many remark-
able normalization properties.

3 The Elementary Type Assignment System

In this section we will define a type assignment system typing lambda-terms
with EAL formulae. We want the system to be almost syntax directed, the
difficulty being the handling of contraction and ! rules. This is solved by splitting
the context into three parts, the linear context, the intuitionistic context, and
the parking context. In particular the parking context is used to keep track of
premises which must become modal in the future.

Definition 3. i) An EAL formula A is modal if it is !B for some B, it is
linear otherwise.

ii) A context is linear if it assigns linear EA-types to variables, while it is intu-
itionistic if it assigns modal EA-types to variables. If Φ is a context, ΦL and
ΦI denote the linear and modal sub-contexts of Φ, respectively.

iii) The Elementary Type Assignment System (ETAS) proves statements like Γ |
∆ | Θ `M : A where Γ and Θ are linear contexts and ∆ is an intuitionistic
context. The rules of the system are showed in Table 2. In what follows, Γ , ∆
and Θ will range over linear, intuitionistic and parking contexts respectively.

iv) A term M ∈ Λ is EA-typable if there are Γ,∆,A such that Γ | ∆ | ∅ `M :
A.

Rules AL and AP are two variations on the classical axiom rule. Notice that a
third axiom rule

Γ | x :!A,∆ | Θ ` x :!A
AI

is derivable. Abstractions cannot be performed on variables in the parking con-
text. The rule E( is the standard rule for application. Rule ! is derived from the
one traditionally found in sequent calculi and is weaker than the rule induced
by NEAL via (·)∗. Nevertheless, it is sufficient for our purposes and (almost)
syntax-directed. The definition of an EA-typable term takes into account the
auxiliary role of the parking context.
This system does not satisfy call-by-name subject-reduction. Consider, for ex-
ample, the lambda term M ≡ (λx.yxx)(wz). A typing for it is the following:

y :!A(!A( A,w : A(!A, z : A | ∅ | ∅ `M : A



Γ, x : A | ∆ | Θ ` x : A
AL

Γ | ∆ | x : A, Θ ` x : A
AP

Γ, x : A | ∆ | Θ ` M : B

Γ | ∆ | Θ ` λx.M : A ( B
IL

(

Γ | ∆, x : A | Θ ` M : B

Γ | ∆ | Θ ` λx.M : A ( B
II

(

Γ1 | ∆ | Θ ` M : A ( B Γ2 | ∆ | Θ ` N : A

Γ1, Γ2 | ∆ | Θ ` M N : B
E(

Γ1 | ∆1 | Θ1 ` M : A

Γ2 |!Γ1, !∆1, !Θ1, ∆2 | Θ2 ` M :!A
!

Table 2. The Elementary Type Assignment System (ETAS). Contexts with different
names are intended to be disjoint.

M →n N , where N ≡ y(wz)(wz) and y :!A(!A( A,w : A(!A, z : A | ∅ | ∅ 6`
M : A, because rule E( requires the two linear contexts to be disjoint. Note
that both ∅ | ∅ | y :!A(!A( A,w : A(!A, z : A ` M : A and ∅ | ∅ | y :!A(
!A( A,w : A(!A, z : A ` N : A, but this does not imply N to be EA-typable.
Moreover, λw.M →n λw.M , but while M can be given type (A(!A) ( A, N
cannot.
The subject reduction problem, however, disappears when switching from the
call-by-name to the call-by-value reduction.

Lemma 2 (Weakening Lemma). If Γ1 | ∆1 | Θ1 ` M : A, then Γ1, Γ2 |
∆1,∆2 | Θ1, Θ2 `M : A.

Proof. Easy induction. ¤

Lemma 3 (Shifting Lemma). If Γ, x : A | ∆ | Θ ` M : B, then Γ | ∆ | x :
A,Θ `M : B.

Proof. Easy induction. ¤

Lemma 4 (Substitution Lemma). Suppose Γ1 and Γ2 to be disjoint. Then:

– If Γ1, x : A | ∆ | Θ ` M : B, Γ2 | ∆ | Θ ` N : A and N ∈ V, then
Γ1, Γ2 | ∆ | Θ `M{N/x} : B.

– If Γ1 | ∆ | x : A,Θ ` M : B, Γ2 | ∆ | Θ ` N : A and N ∈ V, then
Γ1 | ∆ | Γ2, Θ `M{N/x} : B.

– If Γ1 | ∆,x : A | Θ ` M : B, Γ2 | ∆ | Θ ` N : A and N ∈ V, then
Γ1, Γ2 | ∆ | Θ `M{N/x} : B.

Proof. The first point can be easily proved by induction on the derivation for
Γ1, x : A | ∆ | Θ ` M : B using, in particular, the weakening lemma. Indeed,
the hypothesis on N is not needed.
Let us prove the second point (by the same induction). The case for AP , can
be proved by way of the previous lemmata. IL

(
and II

(
are trivial. E( comes



directly from the induction hypothesis. ! is very easy, because x cannot appear
free in M and so M{N/x} is just M .
The third point can be proved by induction, too, but it is a bit more difficult.
First of all, observe that A must be in the form !...!

︸︷︷︸

n

C, with n ≥ 1. Let us

focus on rules E( and ! (the other ones can be handled easily). Notice that the
derivation for Γ2 | ∆ | Θ ` N : A must end with AL, AP , IL

(
or II

(
(depending

on the shape of N), followed by exactly n instances of the ! rule, being this rule
the only one not syntax directed. This implies, in particular, that every variable
appearing free in N is in ∆. So the proof follows easily by induction. Using
Lemma 3 and Lemma 2, we can use the induction hypothesis and handle the
case !. ¤

Theorem 1 (Call-by-value Subject Reduction). Γ | ∆ | Θ ` M : A and
M →v N implies Γ | ∆ | Θ ` N : A.

Proof. By the Substitution Lemma. ¤

We are now going to prove that the set of typable λ-terms is exactly (NEAL)#.
To do this we need the following lemma.

Lemma 5 (Contraction Lemma).
– If Γ | ∆ | x : A, y : A,Θ `M : B, then Γ | ∆ | z : A,Θ `M{z/x, z/y} : B
– If Γ | x : A, y : A,∆ | Θ `M : B, then Γ | z : A,∆ | Θ `M{z/x, z/y} : B

Proof. By induction. ¤

Proposition 2. i) If Φ `NEAL M : A then ΦL | ΦI | ∅ ` (M)# : A.
i) If Γ | ∆ | ∅ ` M : A, there is N ∈ ΛEA such that (N)# = M and
Γ,∆ `NEAL N : A.

Proof. i) By induction on the structure of the derivation for Φ `NEAL M : A.
Let us focus on nontrivial cases.
If the last rule used is E(, the two premises are Φ `NEAL N : B ( C and
Φ2 `NEAL P : B. By induction hypothesis, ΦL

1 | ΦI
1 | ∅ ` (N)# : B ( C, and

ΦL
2 | ΦI

2 | ∅ ` (P )# : B and, by weakening lemma, ΦL
1 | ΦI

1, Φ
I
2 | ∅ ` (N)# : B (

C, ΦL
2 | ΦI

1, Φ
I
2 | ∅ ` (P )# : B Rule E( leads to the thesis.

If the last rule used is contr , the two premises are Φ1 `NEAL N :!A and Φ2, x :
!A, y :!A `NEAL P : B. By induction hypothesis, ΦL

1 | ΦI
1 | ∅ ` (N)# :!A,

ΦL
2 | ΦI

2, x :!A, y :!A | ∅ ` (P )# : B. By contraction lemma, ΦL
2 | ΦI

2, z :
!A | ∅ ` (P )#{z/x, z/y} : B and so ΦL

2 | ΦI
2 | ∅ ` λz.(P )#{z/x, z/y} :!A (

B By rule E( and weakening lemma, we finally get ΦL
1 , Φ

L
2 | ΦL

1 , Φ
I
2 | ∅ `

(λz.(P )#{z/x, z/y})(N)# : B.
ii) The following, stronger, statement can be proved by induction on π: if π :
Γ | ∆ | x1 : A1, . . . , xn : An ` M : A, then there is N ∈ ΛEA such that (N)# =
M{x1/y

1
1 , . . . , x1/y

m1
1 , . . . , xn/y

1
n, . . . , xn/y

mn
n } and Γ,∆, y1

1 : A1, . . . , y
m1
1 : A1, . . . , y

1
n :

An, . . . , y
mn
n : An `NEAL N : A. ¤



We have just established a deep static correspondence between NEAL and the
class of typable lambda terms. But what about dynamics? Unfortunately, the two
systems are not bisimilar. Nevertheless, every call-by-value β-step in the lambda
calculus corresponds to at least one normalization step in ΛEA. A normalization
step in ΛEA is denoted by → (reduction rules can be found in the Appendix);
→+ denotes the transitive closure of →:

Proposition 3. For every M ∈ ΛEA, if (M)# →v N , then there is L ∈ ΛEA

such that (L)# = N and M →+ L.

4 Bounds on Normalization Time

In order to prove elementary bounds on reduction sequences, we need to define
a refined measure on lambda terms. We can look at a type derivation π : Γ | ∆ |
Θ ` M : A as a labelled tree, where every node is labelled by a rule instance.
We can give the following definition:

Definition 4. Let π : Γ | ∆ | Θ `M : A.
i) A subderivation ρ of π has level i if there are i applications of the rule ! in
the path from the root of ρ to the root of π.

ii) An occurrence of a subterm N of M has level i in π if i is the maximum
level of a subderivation of π having N as subject.

iii) The level ∂(π) of a whole derivation π is the maximum level of subderiva-
tions of π.

Notice that the so defined level corresponds to the notion of box-nesting depth
in a proof-nets [3]. The size |M | of a typable lambda term M does not take into
account levels as we have just defined them. The following definitions reconcile
them, allowing |M | to be “splitted” on different levels.

Definition 5. Let π : Γ | ∆ | Θ `M : A.
i) S(π, i) is defined by induction on π as follows:
– If π consists of an axiom, then S(π, 0) = 1 and S(π, i) = 0 for every i ≥ 1;
– If the last rule in π is II

(
or IL

(
, then S(π, 0) = S(ρ, 0) + 1 and S(π, i) =

S(ρ, i) for every i ≥ 1, where ρ is the immediate subderivation of π;
– If the last rule in π is E( then S(π, 0) = S(ρ, 0) + S(σ, 0) + 1 and
S(π, i) = S(ρ, i)+S(σ, i) for every i ≥ 1, where ρ and σ are the immediate
subderivations of π;

– If the last rule in π is !, then S(π, 0) = 0 and S(π, i) = S(ρ, i−1) for every
i ≥ 1, where ρ is the immediate subderivation of π.

ii) Let n be the level of π. The size of π is S(π) =
∑

i≤n S(π, i). Observe that
S(π) is just |M |.

Substitution Lemma can be restated in the following way:

Lemma 6 (Substitution Lemma, revisited).



i) If π : Γ1, x : A | ∆ | Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A and N ∈ V, then
there is σ : Γ1, Γ2 | ∆ | Θ ` M{N/x} : B such that S(σ, i) ≤ S(ρ, i) + S(π, i)
for every i.

ii) If π : Γ1 | ∆ | x : A,Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A and N ∈ V, then
there is σ : Γ1 | ∆ | Γ2, Θ ` M{N/x} : B such that S(σ, i) ≤ S(π, i)S(ρ, 0) +
S(π, i) for every i.

iii) If π : Γ1 | ∆,x : A | Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A and N ∈ V, then
there is σ : Γ1, Γ2 | ∆ | Θ ` M{N/x} : B such that S(σ, 0) ≤ S(π, 0) and
S(σ, i) ≤ (

∑

j≤i S(π, j))S(ρ, i) + S(π, i) for every i ≥ 1.

The following can be thought of as a strenghtening of subject reduction and is
a corollary of Lemma 6.

Proposition 4. If π : Γ | ∆ | Θ ` M : A, and M →v N by reducing a redex at
level i in π, then there is ρ : Γ | ∆ | Θ ` N : A such that

∀j < i.S(ρ, j) = S(π, j)

S(ρ, i) < S(π, i)

∀j > i.S(ρ, j) ≤ S(π, j)(
∑

k≤j

S(π, k))

In this case, we will write π →i
v ρ.

Proof. Type derivation ρ is identical to π up to level i, so the equality S(ρ, j) =
S(π, j) holds for all levels j < i. At levels j ≥ i, the only differences between
ρ and π are due to the replacement of a type derivation φ for (λx.L)P with
another type derivation ψ for L{P/x}. ψ is obtained by Lemma 6. The needed
inequalitites follows from the ones in Lemma 6. ¤

Consider now a term M and a derivation π : Γ | ∆ | Θ ` M : A. By Propo-
sition 4, every reduction sequence M →v N →v L →v . . . can be put in corre-
spondence with a sequence π →i

v ρ →j
v σ →k

v . . . (where ρ types N , σ types L,
etc.). The following result give bounds on the lengths of such sequences and on
the possible growth during normalization.

Proposition 5. For every d ∈ N, there are elementary functions fd, gd : N → N

such that, for every sequence

π0 →i0
v π1 →i1

v π2 →i2
v . . .

it holds that
– For every i ∈ N,

∑

e≤d S(πi, e) ≤ fd(S(π0));
– There are at most gd(S(π0)) reduction steps with indices e ≤ d.

Theorem 2. For every d ∈ N there are elementary functions pd, qd : N → N

such that whenever π : Γ | ∆ | Θ ` M : A, the length of reduction sequences
starting from M is at most p∂(π)(|M |) and the length of any reduct of M is at
most q∂(π)(|M |).

Proof. This is immediate from proposition 5. ¤



5 Type Inference

We prove, in a constructive way, that the type inference problem for the system
` is decidable. Namely a type inference algorithm is designed, giving, for every
λ-term M , a finite set of principal typings, from which all and only its typings
can be obtained. If this set is empty, then M is not typable. The design of the
algorithm is based on the following Generation Lemma.

Lemma 7 (Generation Lemma). Let Γ | ∆ | Θ `M : A.
i) Let M ≡ x. If A is linear, then either {x : A} ∈ Γ or {x : A} ∈ Θ.
Otherwise, {x : A} ∈ ∆.

ii) Let M ≡ λx.N . Then A is of the shape !...!
︸︷︷︸

n

(B( C) (n ≥ 0).

ii.1) Let n = 0. If B is linear then Γ, x : B | ∆ | Θ ` N : C, else Γ | ∆,x : B |
Θ ` N : C.

ii.2) Let n > 0. Then ∅ | ∆ | ∅ ` M : A and Γ ′ | ∆′ | Θ′ ` N : C, where
∆ = !...!

︸︷︷︸

n

((Γ ′ ∪∆′ ∪Θ′) − {x : B}).

iii) Let M ≡ PQ. Then A is of the shape !...!
︸︷︷︸

n

B; (n ≥ 0) and Γ1 | ∆′ | Θ′ `

P : C ( !...!
︸︷︷︸

m

B and Γ2 | ∆′ | Θ′ ` Q : C.

iii.1) If n−m = 0, then Γ = Γ1 ∪ Γ2, ∆ = ∆′ and Θ = Θ′.
iii.2) If n−m > 0, then ∅ | ∆ | ∅ `M : A, where ∆ = !...!

︸︷︷︸

n−m

(Γ1 ∪ Γ2 ∪∆
′ ∪Θ′)

The principal typings are described through the notion of a type scheme, which
is a variation on the one used in [6] in the context of ΛEA and NEAL. Roughly
speaking, a type scheme describes a class of types, i.e. it can be transformed into
a type through a suitable notion of a substitution.

Definition 6. i) Functional type schemes and type schemes are respectively
defined by the following grammars:

µ ::= α | σ( σ

σ ::= β | µ |!pσ

where the exponential p is defined by the following grammar:

p ::= n | p+ p

α and β belong respectively to NV ar and MV ar, two disjoint countable sets
of scheme variables, and n belongs to a countable set of literals. A generic
scheme variable is ranged over by φ, functional type schemes are ranged over
by µ, ν, type schemes are ranged over by σ, τ, ρ, and exponentials are ranged
over by p, q, r. Let T denote the set of type schemes. A type scheme of the
shape !pσ is called modal.



ii) A scheme substitution S is a function from type schemes to types, replacing
scheme variables in NV ar by linear types, scheme variables in MV ar by
types and literals by natural numbers greater than 0. The application of S to
a type scheme is defined inductively as follows:

S(φ) = A if [φ 7→ A] ∈ S;

S(σ( τ) = S(σ)( S(τ);

S(!n1+...+niσ) = !...!
︸︷︷︸

q

S(σ),

where q = S(n1) + ...+ S(ni).
iii) A scheme basis is a finite subset of type scheme associations to variables.

With an abuse of notation, we will let Ξ,Γ,∆,Θ range over scheme basis,
with the constraint that Γ and Θ denote scheme basis associating non-modal
schemes to variables, while ∆ denotes a scheme basis associating modal type
schemes to variables.

≡ is extended to denote the syntactical identity between both types and type
schemes.
In order to define the principal typing, we will use a unification algorithm for
type schemes, which is a variant of that defined in [6]. Let =e be the relation
between type schemes defined as follows: φ =e φ; σ =e σ

′ and τ =e τ
′ imply

σ ( τ =e σ′
( τ ′; σ =e τ implies !pσ =e!

qτ . Roughly speaking, two type
schemes are in =e if and only if they are identical modulo the exponentials.
The unification algorithm, which we will present in SOS style in Table 3, is
a function U from T × T to pairs of the shape 〈C, s〉, where C (the modality
set) is a set of natural linear constraints, in the form p = q, where p and q are
exponentials, and s is a substitution, replacing scheme variables by type schemes.
A set C of linear constraints is solvable if there is a scheme substitution S such
that, for every constraint n1 + ...+ni = m1 + ...+mj in C, S(n1)+ ...+S(ni) =
S(m1) + ... + S(mj). Clearly the solvability of a set of linear constraints is a
decidable problem.
The following two technical lemmas prove that, if U(σ, τ) = 〈C, s〉, then this re-
sult supplies a more general unifiers for type schemes (modulo =e ) and moreover
this can be extended to types.

Lemma 8. i) (correctness) U(σ, τ) = 〈C, s〉 implies s(σ) =e s(τ).
ii) (completeness) s(σ) =e s(τ) implies U(σ, τ) = 〈C, s′〉 and s = s′ ◦ s′′, for

some s′′.

The extension to types must take into consideration the set of linear constraints
generated by U , which imposes some relations between the number of modalities
in different subtypes of the same type.

Lemma 9. i) (correctness) Let U(σ, τ) = 〈C, s〉. Then, for every scheme sub-
stitution S, such that S is a solution of C, S(s(σ)) ≡ S(s(τ)).



U(φ, φ) = 〈∅, []〉
(U1)

α does not occur in µ

U(α, µ) = 〈∅, [α 7→ µ]〉
(U2)

α does not occur in µ

U(µ, α) = 〈∅, [α 7→ µ]〉
(U3)

β does not occur in σ

U(β, σ) = 〈∅, [β 7→ σ]〉
(U4)

β does not occur in σ

U(σ, β) = 〈∅, [β 7→ σ]〉
(U5)

U(µ, ν) = 〈C, s〉

U(!p1 ...!pnµ, !q1 ...!qmν) = 〈C ∪ {p1 + ... + pn = q1 + ... + qm}, s〉
(U6)

U(σ1, τ1) = 〈C1, s1〉 U(s1(σ2), s1(τ2)) = 〈C2, s2〉

U(σ1 ( σ2, τ1 ( τ2) = 〈C1 ∪ C2, s1 ◦ s2〉
(U7)

In all other cases, U is undefined: for example both U(α, α ( β) and
U(!pα, σ ( τ) are undefined. s1 ◦ s2 is the substitution such that s1 ◦ s2(σ) =
s2(s1(σ)).

Table 3. The unification algorithm U

ii) (completeness) S(σ) ≡ S(τ) implies U(σ, τ) = 〈C, s〉, and S(σ) ≡ S ′(s(σ)),
S(τ) ≡ S′(s(τ)) , for some S′ satisfying C.

The set of principal type schemes of a term is a set of 5-tuples < Γ ;∆;Θ;σ;C >,
where Γ ;∆;Θ are scheme basis, σ is a type scheme and C is a set of constraints.
It is defined in Table 4.

Theorem 3 (Type Inference).

i) (correctness) < Γ ;∆;Θ;σ;C >∈ PT (M) implies that, for all scheme substi-
tution S, for all substitution s, S(s(Γ )) | S(s(∆)) | S(s(Θ)) `M : S(s(σ)).

ii) (completeness) Γ | ∆ | Θ ` M : A implies there is < Γ ′;∆′;Θ′;σ;C >∈
PT (M) such that A = S(σ) and S(Ξ ′) ⊆ Ξ (Ξ ∈ {Γ,∆,Θ} ).

Proof. i) By induction on M .
ii) By induction on the derivation proving Γ | ∆ | Θ ` M : A, using the
Generation Lemma.

¤

6 Extensions

6.1 Achieving Completeness

The type-system we introduced in this paper is not complete for the class of
elementary time functions, at least if we restrict to uniform encodings. One



PT (x) = {< x : α; ∅; ∅; α; ε >, < ∅; ∅; x : α; α; ε >, < ∅; x :!nα; ∅; !nα; ε >}

PT (λx.M) = {< Γ ; ∆; Θ; σ ( τ ; C >, < ∅; !m(Γ ∪ ∆ ∪ Θ); ∅; !mσ ( τ ; C >|
< Γ, x : σ; ∆; Θ; τ ; C >∈ PT (M) or

(< Γ ; ∆, x : σ; Θ; τ ; C >∈ PT (M)) or

(< Γ ; ∆; Θ; τ ; C >∈ PT (M) and

σ ≡ α and x 6∈ dom(Γ ) ∪ dom(∆) ∪ dom(Θ)) }

PT (MN) = {< Γ ; ∆; Θ; σ; C >, < ∅; !m(Γ ∪ ∆ ∪ Θ); ∅; !mσ; C >|
< Γ1; ∆1; Θ1; σ1; C1 >∈ PT (M) and

< Γ2; ∆2; Θ2; σ2; C2 >∈ PT (N) (disjoint) and

dom(Γ1) ∩ dom(Γ2) = ∅ and

i 6= j implies dom(Ξi) ∩ dom(Ξj) = ∅ and

U(σ1, σ2 ( β) =< s, C ′ > (β fresh) and

σ = s ◦ s1 ◦ ... ◦ sk(β)
where

U(s(τ1
1 ), s(τ1

2 )) =< s1, C
′
1> and

U(si(τ
i
1), si(τ

i
2)) =< si+1, C

′
i+1 > and

xi ∈ dom(Ξ1) ∪ dom(Ξ2), xi : τ i
j ∈ Ξj and

Ξ = {x : s ◦ s1 ◦ ... ◦ sk(τ) | x : τ ∈ Ξj} and

C = C ′ S

1≤i≤k C′
i

(1 ≤ i ≤ k, 1 ≤ j ≤ 2, Ξ ∈ {Γ, ∆, Θ} )}

Table 4. The Type Inference Algorithm. (two 5-tuples are disjoint if and only if they
are built from different scheme variables)



possible solution could consist in extending the type system with second order
quantification. This, however, would make type inference much harder (if not
undecidable). Another approach, consists in extending the language with basic
types and constants. In this section, we will sketch one possible extension going
exactly in this direction.
Suppose we fix a finite set of free algebras A = {A1, . . . ,An}. The constructors

of Ai will be denoted as c1
A1
, . . . , c

k(Ai)
A1

. The arity of constructor cj
Ai

will be

denoted as Rj
Ai

. The algebra U of unary integers has two constructors c1
U
, c2

U
,

where R1
U

= 1 and R1
U

= 0.
The language of types will be extended by the production A ::= A, while the
space of terms will be extended by:

M ::= iterA | condA | ciA

where A ranges over A and cA ranges over constructors for free algebra A. The
set of values is extended as follows:

V ::= iterA | condA | ciA | t

where t ranges over free algebra terms. The new constants receive the following
types in any context:

iterA : A (!(A( . . .( A
︸ ︷︷ ︸

R1
A
) times

( A) ( . . .(!(A( . . .( A
︸ ︷︷ ︸

R
k(A)
A

times

( A) (!A

condA : A ( (A ( . . .( A
︸ ︷︷ ︸

R1
A
) times

( A) ( . . .( (A ( . . .( A
︸ ︷︷ ︸

R
k(A)
A

) times

( A) ( A

ci
A : A ( . . .( A
︸ ︷︷ ︸

Ri
A
) times

( A

New (call by value) reduction rules are the following ones:

iterAtV1 . . . Vk(A) →v t{V1 . . . Vk(A)}

condAc
i
A(t1 . . . tRi

A

)V1 . . . Vk(A) →v Vit1 . . . tRi
A

It is easy to check that proposition 6 continue to be true in the presence of the
new constants. Moreover, we can prove the following theorem

Theorem 4. There is a finite set of free algebra A including the algebra U of
unary integers such that for every elementary function f : N → N, there is a
term Mf : U →!kU such that Mfdue →∗

v df(u)e (where dne is the term in U

corresponding to the natural number n).

6.2 Adapting the System to other Logics

We believe the approach described in this paper to be applicable to other logics
besides elementary affine logic. Two examples are Light Affine Logic [3] and Soft



Affine Logic [10]. Light affine logic needs two modalities. So, there will be two
rules:

Γ1 | ∆1 | Θ1 `M : A |Γ1| + |∆1| + |Θ1| ≤ 1

Γ2 |!Γ1, !∆1, !Θ1,∆2 | Θ2 `M :!A
!

Γ1, Γ2 | ∆1,∆2 | Θ1 `M : A

§Γ1, §∆1, §Θ1, Γ3 |!Γ2, !∆2, !Θ2,∆3 | Θ2 `M : §A
§

Soft affine logic is even simpler that elementary affine logic: there is just one
modality and the context is splitted in just two sub-context. The ! rule becomes:

Γ | ∆ `M : A

!Γ |!∆ `M :!A
!

Multiplexing (the equivalent of contraction) can only be made contextually to
arrow-introduction:

Γ | x : A,∆ `M : B

Γ | ∆ ` λx.M :!A( B
AI
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Appendix

(λx.M N) →β M{N/x}

[N ]!(M)[M1/x1,...,Mn /xn]=x,y →dup

[. . . [N{
!(M)

»

x′

1/x1,...,x
′

n /xn

–

/x}{
!(M′)

»

y′

1/y1,...,y
′

n /yn

–

/y}]M1=x′

1,y′

1
· · · ]Mn=x′

n,y′

n

!(M)[M1/x1, · · · ,!(N)[P1/y1,...,Pm /ym] /xi, · · · ,Mn /xn] →!−!

!(M{N/xi})[
M1/x1, · · · ,P1 /y1, · · · ,Pm /ym, · · ·Mn /xn]

([M ]M1=x1,x2 N) →@−c [(M{x′
1/x1, x

′
2/x2} N)]M1=x′

1,x′

2

(M [N ]N1=x1,x2) →@−c [(M N{x′
1/x1, x

′
2/x2})]N1=x′

1,x′

2

!(M)[M1/x1, · · · ,[Mi]N=y,z /xi, · · · ,Mn /xn] →!−c

[!(M)[M1/x1, · · · ,Mi{y′/y,z′/z} /xi, · · · ,Mn /xn]]N=y′,z′

[M ][N ]P=y1,y2
=x1,x2

→c−c [[M ]N{y′

1/y1,y′

2/y2}=x1,x2
]P=y′

1,y′

2

λx.[M ]N=y,z →λ−c [λx.M ]N=y,z where x /∈ FV(N)

where M ′ in the →dup-rule is obtained from M replacing all its free variables with
fresh ones (xi is replaced with yi); x′

1 and x′
2 in the →@−c-rule, y′ and z′ in the

→!−c-rule and y′
1, y

′
2 in the →c−c-rule are fresh variables.

Table 5. Normalization rules in ΛEA.

Proposition 1 For every N ∈ ΛEA, L(N#) ≤ 2L(N).

Proof. By induction on N . The cases for variables, abstractions and applications
are trivial. Let us now consider the other two inductive cases. Suppose N =
[P ]Q=x,y. If Q is a variable, then L(N#) = L(P#) ≤ 2L(P ) ≤ 2L(N). If Q is not
a variable, then L(N#) = L(P#)+L(Q#)+2 ≤ 2L(P )+2L(Q)+2 = 2(L(P )+
L(Q) + 1) = 2L(N). If, on the other hand, N =! (M)

[
M1/x1, . . . ,

Mn/xn

]
, then

we can proceed by induction on n. If n = 0, then the inequality is trivially
verified. If, on the other hand, n > 0, then we must distinguish two different
cases: if Mn is a variable, then the inequality is trivially satified; if Mn is not
a variable, then N# is (λxn.(! (M)

[
M1/x1, . . . ,

Mn−1/xn−1

]
)#))M#

n and, by the
induction hypothesis on n and Mn, we get

L(N#) = 2 + L((! (M)
[
M1/x1, . . . ,

Mn−1/xn−1

]
)#) + L(M#

n )

≤ 2 + 2L(! (M)
[
M1/x1, . . . ,

Mn−1/xn−1

]
) + 2L(M#

n )

= 2L(N)



¤

An expansion is a term in ΛEA that can be written either as ! (M) [x1/y1, . . . ,
xn/yn]

or as [N ]z=x,y, where N is itself an expansion.

Lemma 10. If M is an expansion, then
– [L]M=x,y →∗ P , where P# ≡ L{M#/x,M#/y};
– If M ≡ Pi, then ! (L) [x1/P1, . . . ,

xn/Pn] →∗ Q where

Q# ≡ (! (L) [x1/P1, . . . ,
xi−1/Pi−1,

xi+1/Pi+1, . . . ,
xn/Pn])#{M#/xi}.

Proposition 3 For every M ∈ ΛEA, if (M)# →∗
v N , then there is L ∈ ΛEA

such that (L)# = N and M →∗ L.

Proof. We can proceed by induction on the structure of M . If M is a variable,
then M# is a variable, too, and so the premise is false. If M is an abstraction,
then the thesis follows from the inductive hypothesis. If M is an application P Q,
then we can assume P to be an abstraction λx.R and N to be R#{Q#/x} (in
all the other cases the thesis easily follows). It is easy to see that R#{Q#/x} ≡
(R{Q/x})# and so we can take R{Q/x} as our L. If M is [P ]Q=x,y and Q is not a
variable (otherwise the thesis easily follows), then M# = (λz.P#{z/x, z/y})Q#

and we can restrict to the case where N is P#{Q#/x,Q#/y}. First of all, we can
observe that Q# must be an abstraction. This means that Q is an abstraction
itself enclosed in one or more ! (·) [x1/y1, . . . ,

xn/yn] contexts and zero or more
[·]z=x,y. This means Q is an expansion and so, by lemma 10, we know there
must be a term R such that R# ≡ P#{Q#/x,Q#/y}, and M →∗ R, that is the
thesis. ! (P ) [x1/Q1, . . . ,

xn/Qn] can be managed in a similar way. ¤

Lemma 11 (Weakening Lemma, revisited). If π : Γ1 | ∆1 | Θ1 ` M : A,
then there is ρ : Γ1, Γ2 | ∆1,∆2 | Θ1, Θ2 `M : A. such that S(π, i) = S(ρ, i) for
every i.

Lemma 12 (Shifting Lemma,revisited). If π : Γ, x : A | ∆ | Θ ` M : B,
then there is ρ : Γ | ∆ | x : A,Θ `M : B such that S(π, i) = S(ρ, i) for every i.

Lemma 6 i) If π : Γ1, x : A | ∆ | Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A
and N ∈ V, then there is σ : Γ1, Γ2 | ∆ | Θ ` M{N/x} : B such that
S(σ, i) ≤ S(ρ, i) + S(π, i) for every i.

ii) If π : Γ1 | ∆ | x : A,Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A and N ∈ V, then
there is σ : Γ1 | ∆ | Γ2, Θ `M{N/x} : B such that S(σ, i)S(ρ, 0) +S(π, i) for
every i.

iii) If π : Γ1 | ∆,x : A | Θ ` M : B, ρ : Γ2 | ∆ | Θ ` N : A and N ∈ V, then
there is σ : Γ1, Γ2 | ∆ | Θ ` M{N/x} : B such that S(σ, 0) ≤ S(π, 0) and
S(π, i) ≤ (

∑

j≤i S(π, j))S(ρ, i) + S(π, i) for every i ≥ 1.

Proof. For each of the three claims, we can go by induction on the structure
of π. Here, we do not concentrate on proving the existence of σ (it follows
from lemma 4) but on proving that σ satisfy the given bounds. In particular,



we implicitly used lemmas 11 and 12 without explicitly citing them. Let us first
analyze the claim i). We will prove that S(σ, i) ≤ S(ρ, i)min{1, S(π, 0)}+S(π, i)}
for every i by induction on π. If π is just an axiom, then σ is obtained by π or ρ
by the weakening lemma and the bound holds. If the last rule in π is IL

(
(II

(
),

then ρ is obtained by using the inductive hypothesis on the immediate premise
φ of π obtaining ψ and applying IL

(
(II

(
) to ψ. In both cases

S(σ, 0) = S(ψ, 0) + 1 ≤ S(ρ, 0)min{1, S(φ, 0)} + S(φ, 0) + 1

≤ S(ρ, 0)min{1, S(π, 0} + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)min{1, S(φ, i)} + S(φ, i)

≤ S(ρ, 0)min{1, S(π, i)} + S(π, i)

If the last rule in π is E(, then σ is obtained by using the inductive hypothesis
on one of the immediate premises φ of π obtaining ψ, applying E( to ψ and
the other premise ξ of π. We have:

S(σ, 0) = S(ψ, 0) + S(ξ, 0) + 1

≤ S(ρ, 0)min{1, S(φ, 0)} + S(φ, 0) + S(ξ, 0) + 1

≤ S(ρ, 0)min{1, S(π, 0)} + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) + S(ξ, i) + 1

≤ S(ρ, i)min{1, S(φ, i)} + S(φ, i) + S(ξ, i)

≤ S(ρ, i)min{1, S(π, i)} + S(π, i)

If the last rule in π is !, then σ is just obtained from π by weakening lemma,
cause x cannot appear free in M . The inequality easily follows.

Let us now prove point ii). If π is just an axiom, we can proceed as previously.
If the last rule in π is IL

(
(II

(
), then ρ is obtained as in point i) and, in both

cases:

S(σ, 0) = S(ψ, 0) + 1 ≤ S(ρ, 0)S(φ, 0) + S(φ, 0) + 1

≤ S(ρ, 0)S(π, 0) + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)S(φ, i) + S(φ, i)

≤ S(ρ, 0)S(π, i) + S(π, i)

If the last rule in π is E(, then σ is obtained by using the inductive hypothesis
on both the immediate premises φ and ψ of π obtaining ξ and χ and applying



E( to them. We obtain:

S(σ, 0) = S(ξ, 0) + S(χ, 0) + 1

≤ (S(ρ, 0)S(φ, 0) + S(φ, 0)) + (S(ρ, 0)S(ψ, 0) + S(ψ, 0)) + 1

≤ S(ρ, 0)(S(φ, 0) + S(ψ, 0) + 1) + (S(φ, 0) + S(ψ, 0) + 1)

= S(ρ, 0)S(π, 0) + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ξ, i) + S(χ, i)

≤ (S(ρ, i)S(φ, i) + S(φ, i)) + (S(ρ, i)S(ψ, i) + S(ψ, i))

= S(ρ, i)(S(φ, i) + S(ψ, i)) + (S(φ, i) + S(ψ, i))

= S(ρ, 0)S(π, 0) + S(π, 0)

If the last rule in π is !, the σ is again obtained by π and the inequality follows.

Let us now prove claim iii). Notice that the last rule in ρ must be ! rule, cause
A is modal and N is a value. If the last rule in π is IL

(
(II

(
), then σ is obtained

in the usual way and:

S(σ, 0) = S(ψ, 0) + 1 ≤ S(φ, 0) + 1 = S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)(
∑

j≤i

S(φ, j)) + S(φ, i)

= S(φ, i)(
∑

j≤i

S(π, j)) + S(π, i) ∀i ≥ 1

If the last rule in π is E(, then σ is obtained as in in point ii). Now we have:

S(σ, 0) = S(ξ, 0) + S(χ, 0) + 1 ≤ S(φ, 0) + S(ψ, 0) + 1 = S(π, 0)

∀i ≥ 1.S(σ, i) = S(ξ, i) + S(χ, i)

≤ S(ρ, i)(
∑

j≤i

S(φ, j)) + S(φ, i) + S(ρ, i)(
∑

j≤i

S(ψ, j)) + S(ψ, i)

= S(ρ, i)(
∑

j≤i

(S(φ, j) + S(ψ, j))) + S(φ, i) + S(ψ, i)

= S(ρ, i)(
∑

j≤i

S(π, j)) + S(π, i)

If the last rule in π is !, then we can suppose the last rule in ρ to be a ! and let ψ
be the immediate premise of ρ. We first apply the induction hypothesis (or one
of the other two claims) to the immediate premise φ of π and to ψ obtaining ξ;
then, we apply rule ! to ξ and we get σ. Clearly, S(σ, 0) = 0 by definition. For
every i ≥ 0, we have that

S(ξ, i) ≤ (
∑

j≤i

S(φ, j))S(ψ, i) + S(φ, i)



independently on the way we get ξ. As a consequence, for every i ≥ 1,

S(σ, i) = S(ξ, i− 1) ≤ (
∑

j≤i−1

S(φ, j))S(ψ, i− 1) + S(φ, i− 1)

≤ (
∑

j≤i

S(π, j))S(ρ, i) + S(π, i)

This concludes the proof. ¤

Proposition 5 For every d ∈ N, there are elementary functions fd, gd : N → N

such that, for every sequence

π0 →i0
v π1 →i1

v π2 →i2
v . . .

it holds that
– For every i ∈ N,

∑

e≤d S(πi, e) ≤ fd(S(π0)).
– There are at most gd(S(π0)) reduction steps with indices e ≤ d.

Proof. We go by induction on d and define fd and gd such that the given inequal-
ities hold and, additionally, fd(n) ≥ n for each n ∈ N. f0 and g0 are both the
identity on natural numbers, because S(π0, 0) can only decrease during reduc-
tion and it can do that at most S(π0, 0) times. Consider now d ≥ 1. Each time
S(πi, d) grows, its value goes from m to at most m(m+ fd−1(S(π0))). We claim

that after having increased n times, S(πi, d) is at most (fd−1(S(π0)) + n)2
n+1

.
Indeed, initially

S(πi, d) ≤ S(π0, d) ≤ S(π0) ≤ (fd−1(S(π0)))
2

And, after n ≥ 1 increases,

S(πi, d) ≤ (fd−1(S(π0)) + n− 1)2
n

((fd−1(S(π0)) + n− 1)2
n

+ fd−1(S(π0)))

≤ (fd−1(S(π0)) + n)2
n

((fd−1(S(π0)) + n− 1)2
n

+ (fd−1(S(π0)) + n− 1)2
n−1

)

≤ (fd−1(S(π0)) + n)2
n

((fd−1(S(π0)) + n− 1 + 1)2
n−1

)2

= (fd−1(S(π0)) + n)2
n+1

From the above discussion, it follows that the functions

fd(n) = fd−1(n) + (fd−1(S(π0)) + gd−1(n))2
gd−1(n)+1

gd(n) = gd−1(n) +

gd−1(n)
∑

i=0

(fd−1(S(π0)) + i)2
i+1

are elementary and satisfy the conditions above. This concludes the proof. ¤

Theorem 4 There is a finite set of free algebras A including the algebra U of
unary integers such that for every elementary function f : N → N, there is a
term Mf : U →!kU such that Mfdue →∗

v df(u)e (where dne is the term in U

corresponding to the natural number n).



Proof. We will show that if f : N → N is computable by a Turing Machine M
running in elementary time, then there is a term Mf representing that same
function. First of all, A will contain a free algebra C with four constructors
c1

C
, c2

C
, c3

C
, c4

C
having arities R1

C
= 4,R2

C
= 1,R3

C
= 1,R4

C
= 0. Constructors

, c2
C
, c3

C
, c4

C
can be used to build binary strings and a configuration will correspond

to a term c1
C
t1t2t3t4 where t1 represent the current state, t2 represents the current

symbol, t3 represents the left-hand side of the tape and t4 represents the right-
hand side of the tape. A closed term trans : C → C encoding the transition
function can be built using, in particular, the new constant condC. Iteration, on
the other hand, helps when writing init : U →!C (whose purpose is to translate
a unary integer t into the initial configuration of M for t) and final : C →!U
(which extracts a unary integer from the final configuration of M ). In this way,
the so-called qualitative part of the encoding can be done. The quantitative
part, on the other hand, can be encoded as follows. We will show there are
terms towern : U →!2n

U such that towerndme →∗
v d2n(m)e where 20(m) = m

and 2n+1(m) = 22n(m) for every n ≥ 0. We will prove the existence of such terms
by induction on n. tower0 : U → U is simply the identity λx.x. Consider now
the term

exp ≡ λx.iterUx(λyλz.y(yz))(λy.c
1
Uy) : U →!!(U → U)

We now prove that for every m ∈ N, expdme →∗
v Vm where Vm is a value such

that Vmdpe →∗
v d2m + pe for every p ∈ N. We go by induction on m. If m = 0,

then
expdme →∗

v (λx.c1Ux)

and (λx.c1
U
x)dpe →∗

v d1 + pe ≡ d2m + pe. If m > 0, then

expdme →∗
v (λx.λy.x(xy))Vm−1 →v λy.Vm−1(Vm−1y)

and

λy.Vm−1(Vm−1y)dpe →
∗
v Vm−1d2

m−1 + pe →∗
v d2m−1 + 2m−1 + pe ≡ d2m + pe

towern is
λx.(λy.towern−1y)((λz.zd0e)(esp x))

Finally, we need terms coercn : U →!nU such that coercndme →∗
v dme. coerc0

is simply the identity, while coercn is λx.iterUxc
1
U
c2

U
for every n ≥ 1. We can

suppose there is d such that M performs at most 2d(n) steps processing any
input of length n. The term Mf encoding f will then be:

λx.(λy.final y)((λz.λv.iterU z trans (init v))(coerc2d x)(towerd x))

¤


