
A by-level analysis of Multiplicative Exponential

Linear Logic

Marco Gaboardi1, Luca Roversi1, and Luca Vercelli2

1 Dipartimento di Informatica - Università di Torino
2 Dipartimento di Matematica - Università di Torino

http://www.di.unito.it/∼{gaboardi | rover | vercelli}

Abstract. We study the relations betweenMultiplicative Exponential Lin-
ear Logic (meLL) and Baillot-Mazza Linear Logic by Levels (mL3). We
design a decoration-based translation between propositional meLL and
propositional mL3. The translation preserves the cut elimination. More-
over, we show that there is a proof netΠ of second ordermeLL that cannot
have a representative Π′ in second order mL3 under any decoration. This
suggests that levels can be an analytical tool in understanding the com-
plexity of second order quantifier.

1 Introduction

The implicit characterization of the polynomial and elementary time computa-
tions by means of structural proof theory takes its origins from a predicative
analysis of non termination. We recall, indeed, that Girard conceived Elemen-
tary Linear Logic (ELL) and Light Linear Logic (LLL) [1] by carefully analyzing
the formalization of naı̈ve set theory inside the Multiplicative and Exponential
fragment of Linear Logic (meLL). The comprehension scheme could be repre-
sented without any paradoxical side effect by forbidding the logical principles
dereliction !A⊸ A and digging !!A⊸ !A.

Intuitively, without dereliction and digging the proof nets of both ELL and
LLL are stratified. Namely, during the cut elimination process, every node of a
proof net either disappears or it is always contained in a constant number of
regions, called boxes. The stratified proof nets of ELL are characterized by a cut
elimination costwhich is bounded by an elementary functionwhose parameters
are the size of a given net Π and its depth, i.e. the maximal number of nested
boxes in Π.

Moreover, Girard noted that ruling out the monoidality of the functor “!”, i.e.
(!A⊗!B) ⊸!(A ⊗ B), from ELL yields LLL whose cut elimination cost lowers to
a polynomial. The reason is that the logical connective ⊗ somewhat allows to
count the resources we may need. Commuting ⊗ with ! hides the amount of
used logical resources because of the contraction !A ⊸ (!A⊗!A). So, the absence
of monoidality allows to keep counting the needed resource by means of ⊗.

2 Marco Gaboardi, Luca Roversi, and Luca Vercelli

In [2], the authors pursue the predicative analysis on meLL by introducing mL3.
This system generalizesELL bymeans of explicit indices associated to the edges

of the proof nets of meLL. Moreover, further structural restrictions on mL3 yield

a polynomial time sound generalization mL4 of LLL. The use of indices in meLL
analysis is not new and traces back to, at least, [3, 4]. The new systems mL3 and

mL4 still characterize implicitly the elementary and polynomial computations.
Their distinguishing feature lies in a more flexible use of the nodes that change
the level, so, somewhat generalizing the notion of box.

Since mL3 is a restriction of meLL, it is natural that some derivation of the latter
cannot be represented inside the former, the reason being we know that the cost

of the cut elimination of meLL overwhelms the elementary one of mL3.

In this paper, we show that indices strongly restrictmeLL proof nets in presence
of ∃ and ∀, while they are minor restriction when quantifier do not get used.
Indeed, we can show that every proof netΠ in the propositional fragment of meLL
has a representative Π′ in mL3 that preserves the cut elimination. Specifically,
Π′ is the result of a predicative analysis of Π, based on indices we can use to

label every edge of mL3 proof nets. The proof net Π′ of mL3 is the result of
the algorithm @, applied to Π, we introduce in this work. The proof net @(Π)
is a decoration of both the edges and the formulæ of Π, using the paragraph
modality §, whose instances correspond to an index change in the proof net of

mL3 being constructed.

The interest of the translation that @ implements is twofold. Concerning the
structural proof theory, @ shows that the modality § internalizes the notion
of index at the level of the formulæ. Concerning the implicit characterization
of complexity classes, @ offers the possibility of a finer study of normaliza-

tions measures of propositional meLL, thanks to the structural aspects that mL3

supplies.

Finally we answer negatively to the following two natural questions: (i) Is there

any extension of @ able to translate every proof net of (full) meLL into mL3?,
and (ii) Is there any translation, alternative to any generalization of @, from

meLL to mL3? The reason of the negative answer lies in the proof netΠ of meLL
in Figure 6. There is no decoration Π′ in mL3 of Π because to obtain Π′ either
we should collapse two distinct indices of Π′ or we would need a new node
able to change indices but not the formulæ. Both solutions would imply a cut

elimination cost blow up, unacceptable inside mL3.

Summing up, the predicative analysis of meLL by means of the indices inside

mL3 identifies as the true source of impredicativity of meLL the collapse of indices,
implicit in the second order quantification of the formulæ of meLL itself. Then, the
“side effect” of such a collapse is the huge cut elimination bound of meLL.

Acknowledgments.We warmly thank the anonymous referees for the detailed
comments and suggestions on the preliminary version of the paper.

A by-level analysis of Multiplicative Exponential Linear Logic 3

2 Second order meLL

We start by recalling second order Multiplicative Exponential Logic (meLL) in
proof nets style. In particular, analogously to [2], we present a meLL version
including the paragraph (§) modality.

The formulæ. meLL derives multisets of formulæ that belong to the language
generated by the following grammar:

F ::= A | ♭A A ::= α | A ⊗ A | A` A | ∀α.A | ∃α.A | !A | ?A | §A | A⊥

The start symbol F generates both (standard) formulæ and partially discharged
formulæ. Standard formulæ are generated from the start symbol A. Partially
discharged formulæ are of kind ♭A; the syntax prevents nesting of ♭ symbols.
We shall use A,B,C, possibly with sub or superscripts, to range over standard
formulæ, F,G to range over formulæ. Γ, ∆, Ξ range over multisets of formulæ.
The standard meLL formulæ are quotiented by the De Morgan rules, where
(A,A⊥), (⊗,`), (∀,∃), (§, §) and (!, ?) are the pairs of dual operators. Notice that
§ is self dual, namely: (§A)⊥ = §(A⊥).

Proof nets of meLL. Given the nodes in Figure 1, we say that an Axiom node is a
proof net. Moreover, given two proof nets:

Π1

......F1 Fm

Π2

......G1 Gn

Π1 :F1, . . . , Fm Π2 :G1, . . . ,Gn

with m, n ≥ 1, then all the graphs inductively built from Π1 and Π2 by the rule
schemas in Figure 2 are proof nets.

Cut elimination in meLL. Every pair of dual linear nodes (axiom/cut, ⊗/`, ∀/∃,
§/§) annihilates in one step of reduction, as usual in literature. The exponential
pair of dual nodes !/? rewrites by means of the big-step in Figure 3.

Basic definitions and properties in meLL. The modality § is not part of the original
version of meLL; it is easy to show that in meLL § is, essentially, useless, i.e.
A and §A may be proved equivalent in meLL. Nevertheless, § become useful
when handling sublogics of meLL. §kA means § . . .§A with k paragraphs.

The original formulation of meLL also contains the mix rule and units, but for
simplicity we omit them.

A weakening node is a contraction with 0 premises. We call axiom-edge,
weakening-edge, cut-edge, etc. an edge connected to an an axiom node, a
weakening node, a cut node, etc..

4 Marco Gaboardi, Luca Roversi, and Luca Vercelli

⌣
A⊥ A

⌢A⊥ A
⊗

A B

A⊗B

`
A B

A`B

∀

A

∀α.A

∃

A{B/α }

∃α.A

Axiom Cut Tensor Par Forall Exists

♭

A

♭A

?
♭A

...

♭A

?A

!

A

!A

§

A

§A

pax

♭A

♭A

Flat Contraction Bang Paragraph Aux. Port

Fig. 1. Nodes for the nets of meLL.

Π1 Π2

⌢

A⊥=Fp Gq=A

Π1

`

Fp Fq

Fp`Fq

Π1 Π2

⊗

Fp Gq

Fp⊗Gq

Π1

pax pax pax !

...

♭F1

♭Fm−1

Fm

♭F1 ♭Fm−1
!Fm

Π1

......

?

Fp=♭A Fq=♭A

?A

Π1

§

Fp

§Fp

!-box.

Π1

∀

Fp

∀α.Fp

Π1

♭

Fp

♭Fp

Π1

∃

Fp {
B/α }

∃α.Fp

Fig. 2. Inductive rule schemes to build proof nets of meLL.

Fact 1 (About the Structure of the Proof Nets) Let Π be a proof net of meLL, and
u one of its cut links or conclusions. Let ρ be a graph-theoretical path alongΠ from u to
an axiom or to a weakening node v, not containing any other axioms. Then ρ does not
contain any other cut node.

Thanks to this Fact, we can state that all the edges of our proof nets are di-
rected downwards, from axioms or weakening nodes towards conclusions or
cut nodes, even if we do not draw the corresponding arrows. A path inside a
meLL proof net Π is a sequence of nodes τ = 〈u0, . . . , uk〉 in Π such that (i) each
ui is connected with ui+1, (ii) the direction of such edge is from ui towards ui+1,
and (iii) for every i, ui , ui+1. The size of a meLL proof net is the number of its
nodes.

A by-level analysis of Multiplicative Exponential Linear Logic 5

Π

... ♭ ♭

pax pax ! pax pax

pax ... pax

?

⌢

♭Γ B

♭Γ !B

?B⊥

♭B⊥ ♭B⊥

B⊥ B⊥

♭B⊥ ♭B⊥

♭B⊥ ♭B⊥}n }m

→

Π ... Π ...

⌢ ⌢

pax pax pax pax

pax pax pax pax

? ?

♭Γ ♭Γ

?Γ

♭Γ ♭Γ

B B⊥ B B⊥

}n }m

Fig. 3. Big-step reduction. A contraction with k premises in the redex implies k copies of
Π in the reduct. For the sake of clarity we do not draw all the boxes in the picture.

⌣
i i

⌢i i
⊗

i i

i

`
i i

i

∀

i

i

∃

i

i

Axiom Cut Tensor Par Forall Exists

♭

i

i

?
i+1

...

i+1

i

!

i+1

i

§

i+1

i

pax

i

i

Flat Contraction Bang Paragraph Aux. Port

Fig. 4. Costraints for indexing meLL proof nets.

3 Multiplicative Linear Logic by Levels: mL3

The system mL3 is described in [2]. It is the subsystem of all the proof nets of
meLL admitting an indexing:

Definition 1. Let Π be a proof net of meLL. An indexing for Π is a function I from
the edges of Π to Z satisfying the constraints in Figure 4 and such that I(e) = I(e′) for
all the conclusions e, e′ of Π.

Fact 2 (Indexes do not Increase from Axioms to Conclusions) Let Π be an mL3

proof net, I an indexing for Π, ρ a path from some node u to some node v. Then
I(u) ≥ I(v).

It will be convenient to consider a particular kind of indexing.

Definition 2. Let Π be an mL3 proof net, and I be an indexing for Π. We say that I is
canonical if Π has an edge e such that I(e) = 0, and I(e′) ≥ 0 for all edges e′ of Π.

Fact 3 (Existence of Canonical Indexing [2]) Every proof net of mL3 admits one
and only one canonical indexing.

6 Marco Gaboardi, Luca Roversi, and Luca Vercelli

We can now define a measure on mL3 proof nets.

Definition 3. Let Π be an mL3 proof net, and let I0 be its canonical indexing. The
level of Π is the maximum integer assigned by I0 to the edges of Π.

If 2nx is the function such that 2n
0
= 2n and 2nm = 22

n
m−1 , then:

Theorem 1 (Elementary bound for mL3 [2]). Let Π be an mL3 proof net of size s
and level l. Then, the round-by-round cut-elimination procedure reaches a normal form
in at most (l + 1)2s

2l
steps.

The Theorem above is a result ofweak polynomial soundness, as it only has been
proved for a particular cut-elimination procedure. It is reasonable however that
it can be generalized to any reduction strategy, in analogy to what happens in
ELL and LLL [5]. The interested reader may find the definition of the round-by-
round procedure and a proof of Theorem 1 in [2].

4 Embedding propositional meLL into mL3

Definition 4. Let Π be a proof net of meLL. A quasi-indexing for Π is a function
Q from the edges of Π to Z that respects all the constraints in Figure 4, with the
possible exception of the axiom edges, and such that for all conclusion e, e′ of Π it holds
Q(e) = Q(e′).

Fact 4 (Quasi-Indexing Exists) Every meLL proof net admits a quasi-indexing.

Proof. Let Π be a proof net of meLL; we want to build some quasi-indexing Q.
We call c1, . . . , cn the cut nodes ofΠ. We arbitrarily choose a valueQ(e) = i for all

the conclusion edges e of Π, and a value Q(e
j

1
) = Q(e

j

2
) = i j for every couple of

edges e
j

1
, e

j

2
incident in c j. Then, using the rules in Figure 4, we can calculate the

value ofQ in all the edges of the proof net. The process of calculation terminates
when the axiom and weakening nodes are reached. ⊓⊔

For every Π, whose cut nodes are c1, . . . , cn, we call Q(i, i1, , ...in) the (unique)
quasi-indexing that has value i on the conclusions and value i1, . . . , in on the
cut-edges. This definition is justified looking at the proof of Fact 4.

The coming level of a formula is completely unrelated to the levels of Definition 3:

Definition 5. For every formula A of meLL let the formula level fl(A) be:

fl(α) = 0 fl(⋄A) = fl(A) + 1 ⋄ ∈ {!, ?, §}

fl(♭A) = fl(A) fl(A�B) = max{fl(A),fl(B)} � ∈ {⊗,`}

Definition 6. Let Π be a proof net of meLL, Q a quasi-indexing for it. Let e be an
edge in Π, labelled by a formula A. Then, the absolute level of e in Π is defined as
al(e) = Q(e) + fl(A).

A by-level analysis of Multiplicative Exponential Linear Logic 7

Π → Π

§

§

§

Aiei

j

(Ai)
∗

j+ki

§(Ai)
∗

j+ki−1

...

§ki (Ai)
∗

j

(a)

Π →ϑ Π

§

⊗ §

⊗

B⊗Ce

j

Bf

j

Cg

j

(C)∗

j+kig

...

B

j

f

§d(C)∗

j

gd

(B⊗C)∗e

j

(b) Herewe assume that fl(B) > fl(C)

Fig. 5. The main cases of the rewriting steps performed by @ (Proof of Proposition 1).

Notice that the definition depends on the chosen quasi-indexing.

The following map is crucial in the proof of Proposition 1:

Definition 7. For every meLL formula A let (A)∗ be defined as:

(α)∗ = α

(B�C)∗ = §d(B)∗ �(C)∗ if d = fl(C) − fl(B) ≥ 0 � ∈ {⊗,`}

(B�C)∗ = (B)∗ � §−d(C)∗ if d = fl(C) − fl(B) ≤ 0 � ∈ {⊗,`}

(⋄A)∗ = ⋄((A)∗) ⋄ ∈
{

!, ?, ♭
}

.

The algorithm @. The main result of this section concerns the following algo-
rithm @. Let the arguments of @ be a proof net Π : A1, . . . ,An of propositional
meLL and a quasi-indexingQ forΠ. The algorithm returns anmL3 proof net. We
will give a direct proof of this fact. Let the conclusions and the cut edges of Π
be e1, . . . , en. Let K = max1≤i≤n {al(ei)}. For every edge ei, with 1 ≤ i ≤ n, labelled
with the formula Ai, we define @ to perform the following steps:

1. Replace Ai by (Ai)
∗.

2. Add ki new (§) nodes after the edge ei where ki = K − al(ei), label the
newedges respectively by §1(Ai)

∗, . . . , §ki(Ai)
∗ andmodify the quasi-indexing

accordingly. Note that now al (ei) = K. See Figure 5(a).
3. Apply the subroutine ϑ of @, here below, to the edge ei.

The subroutine ϑ takes an edge e of (the already modified version of) Π as its
argument. ϑ is recursive and is defined by cases on the kind of the edge e:

(a) If e is an axiom edge, then it is done.
(b) If e is the conclusion of a (⊗) node with premises the edges f and g labelled

with formulae B and C respectively, then replace B by (B)∗ and C by (C)∗

8 Marco Gaboardi, Luca Roversi, and Luca Vercelli

respectively. Let us suppose for clarity that fl(B) > fl(C) (see Figure 5(b)).
Calling d = (fl(B) − fl(C)), we add d new (§) nodes after the edge g and
label the new edges g1, . . . , gd respectively by §1(Ci)

∗, . . . , §d(Ci)
∗. Modify Q

accordingly, then apply ϑ on f and g.
(c) If e is the conclusion of a (!) node (or (♭) or (pax)) with premises the edge f

labelled with the formula B then replace it by (B)∗ and apply ϑ on f .
(d) If e is the conclusion of a (?) node with premises the edges f1, . . . , fl labelled

with formulae B1, . . .Bl, then replace them by (B1)
∗, . . . , (Bl)

∗ and apply ϑ on
every f1, . . . , fl.

Proposition 1 (Embedding Propositional meLL into mL3). There is an algorithm
@(·, ·) that takes every proof net Π of propositional meLL, endowed with a quasi-
indexing Q, and returns a proof net @(Q, Π) of mL3. The proof nets Π and @(Q, Π)
only differ for the possible presence of some new paragraph nodes.

Proof. @(·, ·) is the algorithm alreadydescribed.@(·, ·) transforms a proof netΠ of
meLL in a new graph@(Q, Π), with conclusions labelled by §k1(A1)

∗, . . . , §kn(An)
∗,

for some k1, . . . , kn, to which it is naturally associated a quasi-indexing Q′. The
quasi-indexing Q′ associates to conclusions and cut edges of @(Q, Π) the same
indices as Q assigns to conclusions and cut edges of Π. We need to check that

@(Q, Π) is really a proof net of meLL, and that this proof net is in mL3.

Let us consider the transformations previously described. The untyped graph
is still an untyped proof net of meLL, because we have just added some para-
graphs. Moreover, by construction every edge e of Π labelled by A is translated
into an edge e′ of @(Q, Π), labelled by (A)∗. So, in particular, axioms, cuts and
contractions are labelled correctly. The labelling of the other nodes follows by
construction of @(·, ·).

At last, we need to show that Q′ is an indexing. Let us consider two edges f , g
incident into an axiom in @(Q, Π), labelled resp. by A and A⊥. Notice that, by
construction, for every edge e of @(Q, Π) it holds al(e) = K. As a consequence, f
and g have the same quasi-index Q′(e) = al(e)− fl(A) = K − fl(A), and so Q′ is
also an indexing. ⊓⊔

Proposition 2 (@(·, ·) preserves the Cut-Elimination). For every reduction Π→+

Σ in propositional meLL, and for every quasi-indexing Q of Π, there exists a quasi-
indexing Q̃ of Σ such that @(Q, Π)→+ @(Q̃, Σ):

Π→+ Σ in meLL
↓ ↓

@(Q, Π)→+ @(Q̃, Σ) in mL3

Proof. It is enough toprove the result for 1-step reductionsΠ→ Σ. So, let c be the
cut fired during this reduction; c corresponds to a unique cut c′ of @(Q, Π). By
construction of @(·, ·), the only difference betweenΠ and @(Q, Π) is the possible
presence of paragraphs. As many (§) nodes as T may occur just above c′. If we
eliminate all the T (§) nodes we have that the edges entering c′ correspond to

A by-level analysis of Multiplicative Exponential Linear Logic 9

the edges entering c. Firing c′ yields a proof net Θ of mL3. We have to show
that Θ = @(Q̃, Σ), for some Q̃. If c was a cut with an axiom, or a cut between a
weakening and a closed box, then both c and c′ annihilate. Otherwise, we get
(at least) one residual c′′ of c′ inside Θ. We can define Q̃ equal to Q on all the
conclusions and cut edges that are not involved in the reduction, and that is
defined on the edges entering c′′ as follows. We distinguish two cases. If c is not
an exponential cut, e is an edge incident to c, and f is an edge incident to c′′,
then Q̃(f) = Q(e) + T. If c is an exponential cut, Q̃(f) = Q(e) + T + 1. ⊓⊔

Corollary 1 (Complexity Bound for meLL). Let Π be a proof net of meLL. Let’s
call M = max{fl(A) | A a formula labelling an edge of Π}. Then, the round-by-round

cut-elimination procedure of Π terminates in at most (M + 1) · 2M·|Π|
2M

steps.

Proof. Let us fix the quasi indexing Q = Q(0, 0, . . . , 0), and let us calculate
@(Q, Π). Notice in particular that (i) the constant K = max1≤i≤n {al(ei)} used
defining @ in this case is K = max1≤i≤n {fl(ei)} ≤ M; and (ii) the indexing I in-
duced on @(Q, Π) is canonical. We want apply Theorem 1 to @(Q, Π). The size
|@(Q, Π)| is bounded byK · |Π|: indeed, for every node ofΠ, @ adds atmostK new
(§) nodes. The level of @(Q, Π) is l = max{I(e) | e is an edge of @(Q, Π)}. Every

I(e) is bounded by K, so l ≤ K. Thus, @(Q, Π) reduces in at most (K + 1) · 2K·|Π|
2K
≤

(M + 1) · 2M·|Π|
2M

steps because of Theorem 1. At last, Proposition 2 tells that Π
reduces in at most as many steps as @(Q, Π), and the thesis follows. ⊓⊔

5 The full meLL case

The Proposition 1 fails for second order meLL proof nets. The counterexample
is the proof net Π in Figure 6. The behaviour of Π is analogous to the λ-term

(λx.xx)2. Note that the argument 2 of Π is not really necessary, but it is makes
evident the dynamic interaction of the two occurrences of x.

We call ρ the path starting from the axiom v and arriving into the contraction u
passing through the (∃) nodew1; we call τ the path starting from v and arriving
into u passing through the (∃) node w2.

Firstly, we can imagine to extend the algorithm @ used in the proof of Proposi-

tion 1, to a new algorithm @. It is necessary to extend the definitions of the map
(·)∗ and of the formula level. Themost naı̈ve assumption is that (QA)∗ = Q(A)∗ and
fl(QA) = fl(A) for each quantifier Q. It will be enough to study the behaviour

of @ along the paths ρ and τ. Starting from the cut node c, @ would add several
new (§) nodes to Π, in particular over the right premise of the (⊗) nodes z1
and z2, but no new nodes over ρ and τ. So, the resulting net would not admit
any indexing, because the two edges incident in v would still have different
quasi-indices 2 and 3.

Now, the readermay legitimately think that this problem is due to our particular

(and naı̈ve) definition of the algorithm @. In fact, the problem is more serious.

10 Marco Gaboardi, Luca Roversi, and Luca Vercelli

⌣ ⌣

♭

! pax

⊗

∃

♭ ⌣ ⌣

pax pax ! ♭ ⌣ ⌣ ⌣

? ? ⊗ ⊗ `

` ⊗ ` ♭ ♭

pax ! ∀ ?

⊗ `

∃ ∀

♭ !

? ⌣

` ⊗

⌢

α⊥`α
2

α⊗α⊥

3

♭(α⊗α⊥) 3

!(α⊥`α) 1

α⊗α⊥

1

D⊥ 1

N
⊥ 1

♭N⊥ 1

♭(α⊗α⊥)3

α⊥`α
3

!(α⊥`α)2

♭(α⊗α⊥)3

?(α⊗α⊥)2

C2

♭N⊥ 1

α⊗α⊥

2

♭(α⊗α⊥)2

?(α⊗α⊥)

1

?(α⊗α⊥)

0

!(α⊥`α)

1

α⊥`α

0

D0

!C1 C⊥1

!C⊗C⊥1

N
⊥1

♭N⊥ 1

♭N⊥1

?N⊥ 0

N0

!N⊸N 0

α
2

α⊥

2

α
2

α⊥

2

α

1

α⊥

1

α⊗α⊥ 2 α⊗α⊥ 2

♭(α⊗α⊥) 2 ♭(α⊗α⊥) 2

?(α⊗α⊥) 1

α⊸α 1

D 1

N 1

!N 0
N
⊥0

(!N⊸N)⊥≡!N⊗N⊥0

N 0

v

w1

w2

z1

z2

t

u

c

N = ∀α.!(α⊸ α)⊸ (α⊸ α)

C = !(α⊸ α)⊸ !(α⊸ α) ≡ ?(α ⊗ α⊥)` !(α⊥ ` α) C⊥ = ?(α ⊗ α⊥) ⊗ !(α⊥ ` α)

D = !(α⊸ α)⊸ α⊸ α ≡ ?(α ⊗ α⊥)` (α⊥ ` α) D⊥ = !(α⊥ ` α) ⊗ (α ⊗ α⊥) .

Fig. 6. This proof net represents the λ-term (λx.xx)2. The two dashed boxes are the proof
nets proving ⊢ C⊥,D and, essentially, ⊢ ?D⊥,C.

We will show that there is no way of building an mL3 proof net just adding some
(§)-nodes to Π. In order to have the same index on the two sides of v, we need
to add along the path ρ one (§) node more than the ones we add along τ. The
problem arises as the two formulas labelling the premises of u must be equal.
Along ρ, a (§) node can be added only along the four edges connecting v to t;
but whatever edgewe choose, if we add a (§) node along it, we are forced to add
another (§) node along τ to make the premises of u agree. And so the resulting
proof net cannot be indexed.

6 Concluding Remarks and Further works

The main contribution of our work is a predicative analysis of meLL by means

of the indices inside mL3. Such an analysis highlights that the source of the
huge complexity cost of meLL is due to the use of second order quantifiers that

A by-level analysis of Multiplicative Exponential Linear Logic 11

Π1

......

(m)

Ap=B Aq=B

?B

Π1

? ? ? !

...

A1

Ak

B

?A1 ?Ak !B

Fig. 7. Exponential inductive rule schemes to build proof nets of SLL.

hide and collapse indices. Our analysis is also connected to other problems, that
motivate some further developments we outline in the following.

mL3 as a framework for ICC. We recall that the main reason behind mL3 is to
better understand computations with elementary cost. This work is to support

the idea that mL3 is very useful to characterize other complexity classes. Of

course, the simple definition of mL4 as a subsystem of mL3, that generalizes a
simplified version of LLL, studied in [6, 7], already supports such an idea. We
strengthen it further by embedding the propositional fragment of SLL [8] in

mL3. We recall that the formulæ of SLL are a subset of the meLL ones. The proof
nets of SLL are built using the “linear” nodes of meLL, and the “exponential”

nodes in Figure 7. Our embedding of SLL into mL3 is based on an intermediate
embedding of SLL into meLL. Let us call exponential every path from a (♭) node
u of a meLL proof net to the first (?) node we may cross, starting from u. SLL
can be identified with the subsystem of meLL including all and only the proof
nets Π that satisfy the following conditions:

R1: Every exponential path entering a (?) node with one premise crosses at
most one (pax) node.

R2: Every exponential path entering a (?) node with more that one premise
does not cross any (pax) node.

§N: No (§) node occurs in Π.

R1 and R2 simplify analogous conditions in [7]. Basing it on the R1, R2, and
§N, we define the following map algorithm from the proof nets of SLL to those
ones of meLL. Every (?) node of Π becomes a (♭) node followed by a (pax) node
followed by a (?) node. Every multiplexor (m) with k premises becomes a tree
composed by k (♭) nodes, followed by a (?) node. Proposition 1 implies that

propositional SLL has a corresponding subsystem in mL3. In particular, it is
easy to verify that such a subsystem is the one obtained by considering only the

proof nets of propositional mL3 satisfying exactly R1 and R2 since @ preserves
them.

Our future work is on the embedding of full SLL into mL3. This should be
possible because the structural constraints that lead from meLL to SLL limit
the interaction between second order quantifiers and indices, implicitly hidden
by the of-course modality. The proof net in Figure 6, not in SLL, supports this

12 Marco Gaboardi, Luca Roversi, and Luca Vercelli

idea, because the second order quantifiers, associated to the duplication-related
modality, may require to collapse indices which must be necessarily distinct, as
already observed in Section 5.

Complexity bounds for the simply typed λ-calculus. We also aim at a proof
theoretical based analysis of the computational complexity of the simply typed
λ-calculus, which, under the Curry-Howard analogy, can correspond to intu-
itionistic propositional meLL. We mean we want to trace back to simply typed
λ-calculus the purely structural analysis of the computational complexity that

mL3 supplies for propositional meLL. The point is to avoid any reference to the
type of a given simply typed λ-term to infer its normalization cost, as in [9, 10].

First steps in this direction are Proposition 1, and a careful inspection of the
definition of @. Let Π be a proof net of propositional meLL. Proposition 1

implies that the length of the reduction sequences of @(Π) in mL3 bound those
ones of Π. The definition of @ reveals a relation between the structure of Π and
the level of @(Π). The latter comes from the formulæ levels of formulæ of only
specific axiom nodes of Π. So, the open points for coming work are at least two:
(i) Is there any linear or polynomial function relating the size ofΠ and the level
of @(Π)?, and (ii) Is there any alternative @′ to @ never using the formulæ of the

above specific axioms in Π able to yield @′(Π) in mL3?

References

1. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2) (1998) 175–204
2. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Accepted

for publication in Theor. Comp. Sci. (2009)
3. Martini, S., Masini, A.: On the fine structure of the exponential rule. In Girard, J.Y.,

Lafont, Y., Regnier, L., eds.: Advances in Linear Logic. Cambridge University Press
(1995) 197–210 Proceedings of the Workshop on Linear Logic.

4. Martini, S., Masini, A.: A computational interpretation of modal proofs. InWansing,
H., ed.: Proof Theory of Modal Logic. Volume 2., Dordrecht (1996) 213–241

5. Terui, K.: Light affine lambda calculus and polynomial time strong normalization.
Arch. Math. Logic 46(3-4) (2007) 253–280

6. Mairson, H.G., Terui, K.: On the computational complexity of cut-elimination in
linear logic. In: ICTCS. (2003) 23–36

7. Mazza, D.: Linear logic and polynomial time. Mathematical Structures in Computer
Science 16(6) (2006) 947–988

8. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comp. Sci. 318 (2004)
163–180

9. Schwichtenberg,H.: Complexity ofnormalization in thepure typed lambda-calculus.
In Troelstra, A.S., van Dalen, D., eds.: Proc. of Brouwer Centenary Symp. Volume
110 of Studies in Logic and the Foundations of Math. North-Holland (1982) 453–457

10. Beckmann, A.: Exact bounds for lengths of reductions in typed lambda-calculus. J.
Symb. Log. 66(3) (2001) 1277–1285

