Under consideration for publication in Math. Struct. in Comp. Science

Intersection Types andA-definability

ANTONIO BUCCIARELLI! ADOLFO PIPERNGT and IVANO SALVO3T

1pPS, Universi Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France.
E-mail: buccia®@pps. jussieu.fr.

2Dipartimento di Scienze dell'Informazione, Univessiti Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, ltaly. E-majiiperno@dsi.uniromal.it.

3Dipartimento di Informatica, Universitdi Torino, C.so Svizzera 185, 10149 Torino, Italy.
E-mail: salvo@di.unito.it.

Received 28 September 2001

This paper presents a novel method to compare computational propetti¢srais typeable with
intersection types, with respect to terms typeable with Curry types. We introduce a translation from
intersection typinglerivationsto Curry typeableéermswhich is preserved b@-reduction: this

allows to simulate a computation starting from a term typeable in the intersection discipline by
means of a computation starting from a simply typeable term. Our approach proves strong
normalization for the intersection system naturally by means of purely syntactical techniques. The
paper extends the results presented in [Bucciarelli, De Lorenzis, Piperno, Saive,

Computational Properties of Intersection TypeECS’'99] to the whole intersection type system of
Barendregt, Coppo and Dezani, thus providing a complete proof of a conjecture proposed by
Leivant in 1990: all functions uniformly definable using intersection types are already definable
using Curry types.

1. Introduction

TheA-calculus originates astgpe-freetheory of functions: every term may be considered either
as a function or as an argument, and no syntactic restriction is imposed on function application.
This makes the system powerful enough to represent all computable functions.

Types are syntactical objects assigned to pure terms in order to give a description of their
functional behavior. The constraints imposed by types usually restrict expressiveness, since the
set of legal (well typed) terms is in general a proper subset of untyped ones, and hence the set of
representable functions is in general smaller than the set of computable ones.

In this paper, we compare function definability in intersection type systems with function
definability in the simply typed lambda-calculus.

The simply typed lambda calculug () was introduced by Curry in (Cur34), while inter-
section types originate in works by Barendregt, Coppo and Dezani (CDC80; BCDC83; Sal78).
From the point of view of the set of typeable terms, simple types are much less expressive than

T Partially supported by MURST Cofin TOSCA

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 2

intersection types. In particular, intersection types are able to type all untyped terms or, when the
universal type is disallowed, all strongly normalizing ones. From here onwards, we will consider
intersection types without the universal type.

The leitmotiv of our comparison of such type systems is a translatidh which permits us
to mimic the computations of terms typeable in the intersection type discipline by means of the
computations of Curry typeable terms. Such translation is defined on typing derivations in the
strict intersection type syste(?\ﬁ), which has been introduced in (CDCV81), and has received
a systematic treatment in (vB92; vB93). Although strict types are a proper subset of intersection
types, they preserve, from the point of typeability, the expressive power of the whole system
(vB93,54.3).

More precisely, we will show that, for any terivh typeable with strict intersection types, and
for any of its typing derivation®, there exists a terril,, which is typeable in the Curry system
and which is able to “represent” the whole computatiorivofin other words, thé-calculus
with intersection types can be embedded into the simply typed calculus. This will allow us to
simulate all possible reductions starting frashby means of reductions dflp. Hence, using
purely syntactic techniques, strong normalization and lambda definabilky are reduced to
the same problems for Curry typeable terms.

The first result that we present is a new proof of the strong normalization property for intersec-
tion types. We recall here that there is a close relationship between the definability problem and
the “difficulty” of a normalization proof in typed-calculi (see (FLO83, Sections 2 and 6)). Sim-
ply typedA-calculus allows for normalization proofs which assign a decreasing metric to terms
during reduction (Gan80b; Gan80a). On the other hand, normalization in polymarghiculi
is usually proven using variants of the so-calteanputabilitytechnique ((Tai67)), which has a
merelysemanticahature (namely, it is not based on a metric approach): consider, as an example,
Girard-Reynolds second ordercalculus (Gir71; Rey74).

We will present a normalization proof for tRecalculus with intersection types which only
makes use of syntactical technigues, in that it reduces the strong normalization problem for in-
tersection types to the case of Curry types. Different syntactical approaches and normalization
proofs forA-calculus with intersection types are (KW95) and (KP99).

After having discussed the normalization property, we compare simple and intersection types
with respect to the problem @fdefinability. In such case, the relationship between the systems
is not as clear as from the typeability perspective.

Intersection types have been proposed in the design of the type system of concrete program-
ming languages, as an alternative to parametric polymorphism. An example is the language
Forsyth proposed by Reynolds (Rey96b; Rey96a). Intersection types allow a faliscodte
polymorphismsince the same variable can appear inside a term in a finite number of places
where different functionalities are required. Observe that this kind of polymorphism is not to be
confused withoverloading where computations vary according to types (CGL95).

However, as already observed by Leivant (Lei90), typings obtained in the intersection type
discipline may be highlypon—uniformn particular, it may happen that a teivh representing an
unary numeric functio, needs to be typed with different types depending on its argumeee
Example 4.3). Type inference for intersection types is undecidable, since the typeability problem
is equivalent to termination; also for decidable fragments (KW99), it appears quite unnatural

Intersection Types ank-definability 3

to design a compiler which checks the functional behavior of a program statically, taking into
account all possible inputs.

These considerations lead to a more natural notion of lambda definability in the presence of
types, which requires that a term representing a function must be uniformly typed independently
from its possible inputs.

Once we have imposed the uniformity condition, we emerge with the following scenario. The
severe restrictions imposed by the structure of Curry types allow the simply dypaftulus to
uniformly represent only a proper subsetetdmentary functions strict subset of total recursive
ones. Even simple numeric functions, such as the predecessor function, cannot be represented
(see (Sch76)). Indeed, the class of representable functions has been characterized in (Sch76;
Sta79; Sta82; Zai91; Lei93). A first attempt to compare the expressiveness of simple and inter-
section types appears in (Lei90), where it was proved that functions uniformly representable in
the intersection system are elementary, whereas all total computable functions are representable
in a non-uniform way. In addition, starting from these results, Leivant conjectured that the class
of functions uniformly representable in the intersection discipline coincides with the class of
functions definable in the Curry system. The proof of this conjecture is the main achievement
presented in the present paper.

Note that Leivant’s results have a purely semantical nature, since the considered systems are
compared by characterizing the class of definable functions. In contrast, we obtain our results
using syntactical techniques only.

As already mentioned, we define an embedding which maps every typing derivation in the
strict intersection type system to a Curry typeable term. In some sense, the term subject of the
typing has the same computational behavior as the Curry typeable term obtained via a translation
function|-|P. Since we are able to map computations of terms typeal)g into computations
of terms typeable ir_,, it is natural to ask whether our syntactic approach can be used to
compare the expressive powen\af andA?S from the point of view of representable functions.

As a matter of fact, by translating a typing of a term which uniformly represents a numeric
function$, we obtain a Curry typeable term which represegntaodulo suitable coding of the
arguments and decoding of the result. The structure of derivations typing Church numerals in the
intersection system, and their translations, will be analyzed. Finally, we define Curry typeable
terms which realize the aforementioned coding and the corresponding decoding, thus allowing a
proof of Leivant’s conjecture in the case of strict intersection types.

A preliminary paper presenting such results appeared in (BDLPS99). In this paper, we com-
plete the proofs in (BDLPS99) and we extend the characterization to the full intersection type
system of Baredregt-Coppo-DezahPEP), removing the restrictions imposed by strict types.
Such an extension is not straightforward, for two main reasons: (i) the sy&fefis not syntax-
directed, so that the translation of derivations cannot be adapted to it; (i) the s\&tErallows
more typings to be derived, hence the uniformity condition must be completely re-analyzed. A
key role in our final characterization is played by theule of theA-calculus, which enables us
to fill the gap between the system“P andA3.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 4

1.1. Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce firstly some basic termi-
nology about type systems, and then simply typed lambda calculi (or Curry type system) and the
strict intersection type system, together with some of their basic results.

We will then (Section 3) introduce a translation function which transforms a typing derivation
in the intersection type assignment system into a term typeable with Curry types. We will then
show that the translation is preserved®Byeduction. Using this fact, we will be able to give a
simple, syntactic proof of the strong normalization property for the strict intersection type system
that stems from strong normalization for the simply typed lambda calculus.

In Section 4, we analyze some pathologies of typings in the intersection type discipline. In
particular, we show that some terms, representing functions in the untyped scenario, have to be
typed with different types to be applied to a term represeninfgr differentn. Thus, a more
natural definition of definability for typed lambda calculi is introduced. This definition, due to
Leivant, requires that a term whichiformlyrepresents a function is type independent from any
particular input it has to be applied to. Leivant conjectured that intersection types do not increase
the set of uniformly representable functions with respect to Curry types.

The translation defined in Section 3 maps a typing derivatiokgifior a termM to a Curry
typeable ternM. In Section 5, we argue about how to udeo represent a numeric functiops
in A_, whenM uniformly represents in AS. We show that in a particular, but significant case,

M itself “almost representsy.

In Section 6, we show thafl represents computations over an unusual class of numerals: we
characterize such numerals and obtain a general method for explaiﬁng)rder to represert
by a Curry typeable term. This allow us to give a positive answer to Leivant’s conjecture in the
case of strict intersection type system.

Finally, we analyze relationships between different intersection type systems, with respect to
the problem of uniform definability of numeric functions, and extend our result to the system
ABCD,

Some remarks and directions for further work conclude the paper.

2. The Type Systems

We assume the reader to be familiar with the basic definitions and properties of pure and typed
lambda calculus, for which we refer to (Bar84) and (Bar92). In particidNatenotes the set of
untypedA-terms. Terms will be considered modudeequivalence, and the so-callgdriable
conventiorwill be assumed: bound variables are all distinct and different from free ones.

We start giving some general terminology and notations about typed lambda calculi.

Definition 2.1. Let At be a typed\-calculus:

— Typer denotes the set of types fdr. We use small greek letters for types, with the convention
thata, B andy denote type variables.

— Mt is called astatementwhereM € A is thesubjectandt € Typer is thepredicateof the
statement.

— A basisis a partial function from term variables to types\gf. Sometimes it is convenient to

Intersection Types ank-definability 5

(Var)_ AX) =0
Al _Xo
(=D AUu{xo} . Mt
AF_AXM:o—=T
(-E). A-_M:o—1 AF_N:O

AF_ (M N):t
Fig. 1. The type assignment systemhaf

consider a basis as a set of statements where subjects are distinct variables. The set of bases
is indicated byBases. We use uppercase roman letters for bases.
— Bk M:Tis ajudgment(or atyping). Judgments are derivable from axioms and ruleksof
If B is the empty basis, we writer M:t for { } -1 M:T.
— AtermM is typeablein At if there exists a basiB € Bases and a typa € Typer such that
the judgmenB 1 M:T is derivable inAt. The set of typeable terms is denoted/by.
— D[AFT M: 0] denotes dyping derivationin At proving the typingA -t M:o.
— The set of all typing derivations ikr will be denoted byDery.

2.1. Lambda Calculus with Simple (or Curry) Types

The simply typed-calculus originates from Church’s work
(Chu40). We are interested in thplicit typingapproach, introduced by Curry in (Cur34) for
the theory of combinators. The system was adapted for the lambda calculus in (CF68).

Definition 2.2. Simple (or Curry) typeare generated using the following grammar:
c:=0a](oc—o0), 1)

wherea ranges over a countable set of type variables. WeTsgle the set of types resulting
from (1). As usual, the arrow type constructef, associates to the right and herme— 0, —
.-+ — Op — T is an abbreviation foo; — (02 — (--- (On — T)--)).

Note that a type always has the shajmg — 0, — --- — 0, — a, for some type variable and
n>0.

Definition 2.3. In the simply typedi-calculusi_,, judgments of the shap&t_ M: o, derived
from the rules in Fig. 1, are proven.

2.2. Lambda Calculus With Strict Intersection Types

A family of intersection type systems have been introduced in the literature, starting from the
work of Coppo and Dezani in (CDC80). Our approach for comparing intersection type systems
and Curry type system works for a syntax directed systensttiw intersection type syste/e

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 6

AX)=11N...NTy, 1<i<n

Var
(Vans AR X T
A 10} g M:
(=), U{xc}.s 1
AR AXM:0— 1
(-E) AFsM:(t1N---NTp) =T AksNiT1...AFsN:T,

AFsMN:T

Fig. 2. The type assignment system}\éf

will introduce other intersection type disciplines and discuss the extension of our results to them
in Section 7.

Following (vB93, Ch. 4), we define a restricted version of the intersection type assignment sys-
tem of Coppo and Dezani (CDC80). Itis based on a restricted set of types, in which intersections
appear in the left-hand side of the arrow constructor only.

Definition 2.4. Strict intersection typeare generated using the following grammar:

o:l=T1N---NTy (N>1)
Ti=a|(0—1)

(2)

We call strict types(Typ€) the set of types resulting from (2) with start symboland strict
intersection typegType) the set of types originated with start symhml Observe that strict
types do not contain intersections as principal type constructor and that strict intersection types
are just intersections of strict types.

Definition 2.5.

1 In A3, judgments of the kind\ s M: T, derived from the rules of Fig.2, are proven, whére
contains statements of the shape, with o € Type, andt € Typé.

2 Moreover, the judgmeri s M: o is derived if and only if there exist types, ... ,0, such
thatoi1N...No, =0 and, for all 1<i < n, the judgmenA ¢ M: g; is derivable.

Observe that intersections of types may appear as predicates in bases, only; types assigned
to terms in derivations always belong Tgp€. An important property that distinguishes this
system from other intersection type systems is that typing derivatiorsyatax directedi.e. we
can guess the last rule applied in a typing derivation just by looking at the syntactic structure of
the subject. We exploit this fact in the definition of the translation introduced in Section 3 and in
the proofs of its properties.

We end this section by stating basic properties of systemandAS that will be referred to
in the sequel.

Proposition 2.6. For the systems . andA3, the following properties holdet At stand for both
A_ andA3):

1 Basis Lemmalf Bt M:T thenB|gy)1 M:T.

Intersection Types ank-definability 7

2 Subject Reductionf Bt M:T andM % M’, thenB 1 M:T.

3. ATranslation from AS to A,

The original proof of the fact that any term typeableAf is strongly normalizing relies on a
computability argument. This is in sharp contrast with the case gfwhere strong normaliza-
tion can be proven by defining a (well founded) “measure” for typeable terms, which strictly
decreases as reductions go on.

In this section, we introduce an embedding\gfinto A_,, which allows us to mimic any re-
duction path rooted in a term typeableNp with a (in general longer) reduction path rooted in
a suitable simply typed term. An immediate corollary of this is a syntactic proof of strong nor-
malization forAS. Moreover, since our embedding allows to represeat irany “computation”
feasible in\3, it provides a framework for studyinkrdefinability in these systems. This will be
the subject of Section 4.

The mentioned embedding is based on a functigR, which associates to any typing deriva-
tion in AS a pureA-term. We prove that the image of such map is a subsét gfand that the
map commutes with respectfereduction. To obtain such results, we also define a translation of
types,|-|T, which maps strict intersection types to simple types, and a translation of bgSes,
which mapsBasesg to Bases.

Notation 3.1. In the next definitions, we use the following notational convention concerning
variable names: we consider an injective function

f:Varx N — Var,
and, for anyx € Var,n € N, we writex" for f(x,n).

Definition 3.2. The functions

|-|T : Typ€ — Type. (translation of types)
|-|B:Bases — Bases (translation of bases)

are inductively defined as follows:

aff = a
(@unnom) = T[T = oy —fon[T=[1["
e =

|AU{x:01N---Nan}[B |AIBU{Xt: [o1|T,...,x" |on|T}.

Note that the term variables, ... ,x" arefreshwith respect td, i.e. they do not appear i.

Definition 3.3. Define the functiorj - |° : Ders — A (translation of derivations)nductively on
the structure of typing derivations:
A(X)=01ﬂﬂ0'nD i

i =x;
® Al X Oj

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 8

Dy D i]
. 1
(ii) AU{xo1N---NOp} FsM:T | =Axt...x". . |
AFsAXM:(01N---N0p) — T AU{Xx:01N---N0p} FsM:T

Do Dy Dy |°
(iii) AbEsM:(T1N---NT) =T AFsNity ... AFNiTy| =
AFsMN:T
Do) D, |°

D ‘

AEsM:(T1N---NTy) — T| |[AFsNiTy ANt

Remark 3.4. Typing with strict intersection types is totally syntax-driven, by considering in-
tersections as equivalent modulo permutations and repetitions of their components. This equiv-
alence is also widely adopted in the literature on intersection types and relies on the intuitive
set-interpretation. This is not the case of the present paper. The difference betweesand

TNo (cno ando) becomes significant with respect to the translation in the previous definition.
For instance, two derivations, assigningktox the typeso Nt — ¢ andtno — g, respectively,

are mapped into different lambda terms!x?.x! andAx!x2.x?, respectively.

An expected property of the translation defined above is that it maps a typing derivalsién of
into a simply typeable term.

Lemma 3.5. For any derivationD of the typingAtsM: o in)\2, we have that
|APE | DP: [o|"
is a typing inA_..

Proof. The proof proceeds by induction on the structure of the typing derivation. We have to
consider three cases, depending on the last applied rdbe in

Case 1The last applied rule is (Vay)In this case, the derivatioP has the shape:

AX)=01N...Nay 1<i<n
Al X O '

Then{x': |o1[T,... ,x": |on|T} C|A[B and| D|P= x. Hence, by rule (Var), we obtain

|AB-_X:|gi|"
and this case is settled.
Case 2The last applied rule is-¢E)s. In this case, the derivatiof has the shape:
Do Dy - Dy
AFsMN:T

where
Do 2 D

= Q): e - .
Do AbEsM:(T1N---NTy) — T ! AFsN:iTq i AFsN:Th

Intersection Types ank-definability 9

By the induction hypothesis, we have:
[APE Do [T [T— - =]t T T[T,
|IABF_| D |P: ||, fori<i<n.
By definition of |- |P, we have:
|DP=|Do[°| D[P ... | Da|°,

and this case is settled, applyingimes the rule GE) .
Case 3The last applied rule is-¢1). In this case, the derivatioR has the shape:
Q)/
AFsAXM:(o1N---N0p) — T

where, for some derivatio®”’, the shape of)’ is

Q)"
AU{x01N---NOop} FsM:T .

By the induction hypothesis, we have:
IAB U |oy|T,...,x" |on|T} | D/ (P : 1|7

so that, applying times the rule 1) _,

[ABF_ A X D P o |T— - —|on|T=T|T.
The case is settled by observing that

| D|IP=Axt... X | |P

and

[(@10--N0n) =) [T= 01 [T - —|on T=1[T.

[

A crucial property of the presented translation is that it enjoys a commutation property with
respect tg3-reduction.

Lemma 3.6. Let D be a derivation of the typing s M: T in AS and letM T N. Then there
exists a derivatior’ of the typingA N: T such that:
| DIP—|D'P.
B
Proof. The proof proceeds by induction on the structure of the derivafioThe only in-

teresting case is when the last rule appliedZins (—E)s, and the subject of the judgment is
the contracted redex. The other cases are settled by straightforward applications of induction

T Observe that this statement implies the subject reduction property.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 10

hypothesis. In the considered cagehas the shape:
Do Dy Dn
AFAMXPTIN---NTh—T AFsQi11 7 AsQiTy 3)
AFs (AX.P)Q:T
The variablex appears iy as the subject af instances (for some > 0) of the rule (Var).
Hence, a seRairs(D, x) can be defined as follows, where<lj < q:

Aj(X)=11N---NT
Aj s X
Clearly, for everyj € {1,...,q}, Aj 2 A. By theBasis LemmégProposition 2.6), for anf, j) €
Pairs(9,x), a derivationD! of the typingA| i-s Q:T; is built by replacing inD; every occurrence
of a basisB with BU A;. It follows that the derivatior?’ is obtained out ofDg in two steps:

1 replacing every occurrence of

(i,]) € Pairs(D,x) & " appears irD.

AJ(X) =T1N---NTp
Aj s X

with Q)ij;

2 replacing every occurrence of the variakheith Q, in the subjects of the derivation obtained
from Dp by applying step 1.

It turns out that?' is a derivation of the typing

AkPx:=QJ:t.
Moreover, by a straightforward induction on the structuré@gf observing that
v, j.(1,]) € Pairs(D,x) = | D) P=| D[P,

the following holds:

| D' |P=| Do |P [xt: =| D1 |P, X" =| Dy |P]. (4)

Now,
D
D _ Do D D
‘D| - Al_s)\XP(Tlman)—)T |®l| |@n‘
= (M X Do |P) [Dy|P ... | Dn|P
% | Do [P Xt :=| Du [P, X" =] Dy [P
|D'[P, by (4)

which proves the lemma. L]

It is easy to see that the commutation property holds for the reflexive and transitive closure of
—, too.
B

Intersection Types ank-definability 11

Lemma 3.7. Let D be a derivation of the typing -sM : o in A3, and letM % N. Then there
exists a derivatiorD’ of the typingB s N : ¢ such that

|DIP| D'

Proof. The proof proceeds by induction on the length of the reductioMef% N, using
Lemma 3.6. L]

We are now able to prove strong normalizatior\fy reducing it to strong normalization in
A

Theorem 3.8 (Strong Normalization forAS). For anyM € A, if M is typeable il\3, then every
B-reduction path starting from is finite.

Proof. If M is typeable im3, then there exists a badisand a typeo such thaBsM : ¢ is
derivable. LetD be a derivation of such typing. M has an infinit3—reduction path, then, by
Lemma 3.7) D |P also has an infinit@-reduction path, and by Lemma 3|B|B-_|D|P : |a|T,
so that| 2 |P has a typing in\ ., hence it is strongly normalizing, a contradiction.]

4. Lambda Definability

In this section, we discuss lambda definability in typed lambda calculi. We refer to (Bar84, Ch. 6)
for basic definitions of numeral system and lambda definability in the untyped lambda-calculus.
For the sake of simplicity, we focus on unary functions; every definition and result can be easily
extended to the case of functions with- 1 arguments.

In this work, we consider the numeral system introduced by Church.

Definition 4.1 (CHURCH NUMERALS). The Church numerat, is the lambda term:

Apg.p"qg.

Definition 4.2 (NUMERAL TYPES). We say that € Typer is a(Church) numeral typd there
existsn € N such that can be assigned &, in At. We say that is afull (Church) numeral type
if T can be assigned to all Church numeralan

Church numerals can be uniformly typedAn,. Each Church numeral can be typed with an
instance of the principal type of Church numerals in the Curry type system,y) —y— V.
We will write N[y] as an abbreviation for such type.

Observe that Church numerals are essentitdiyators In Example 5.3, we use this fact to
define the exponential function as the iteration of multiplication and addition.

4.1. Lambda Definability in Type Systems

From the definition of function representation given in the previous subsection, it is easy to show
that there are functions representable\fiwhich are not representable M. In particular,
using the fact that all strongly normalizing terms are typeabl?e?i,none can show that all total

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 12

computable functions are definable A, whereas only a subset of elementary functions are
representable ih_,. We consider the following example.

Example 4.3. Let E = Ax.x(Ay.yx)x. For any Church numeral, Ec, reduces tdN = ¢;,...cp,
——
n+1

hence providing the Church numetg|y, where:

. n} ntimes

¢(n) =n"
ThusE computes a non—elementary function; moreover, fondlc, is typeable i3, since

it is strongly normalizing. We observe that the typingEd, depends om, as is clear from

the structure oN. This example shows that terms which represent functions may have highly

“non-uniform” typings inA3, depending on its arguments.

It is interesting to investigate the set of representable functions under a reasonable uniformity
condition on typings oMc,, whereM represents a numeric function (Lei90): intuitively, we
require that there exist typesandt such thatM is typeable witho — t, and, for alln, ¢, is
typeable witho.

Definition 4.4 (UNIFORM REPRESENTATION OF FUNCTIONS I). LetAt be a typed lambda
calculus andp : N — N a partial numeric function. We say that a lambda té&imepresents
uniformlyin A, if there are types andt such that:

1 forallne N, such thaty(n) is definedMcy, % Co(n);

2 oisafull numeral type iit;
3 thejudgment{x:c} -t Mx:T is derivable imAt.
We callo theinput type andt theoutput typeof M.

If o andt are equal, we say thM representg strictly in At.

For the type systems we are interested in, the following definition of uniform function repre-
sentation is equivalent.

Definition 4.5 (UNIFORM REPRESENTATION OF FUNCTIONS Il). LetAt be a typed lambda
calculus and : N — N a partial numeric function. A lambda terwh uniformly represents, if
M is a closed term of the shap&.M’ for someM’, and the judgmeritt M:o — 1 is derivable
in A, with o a full numeral type in\r.

In the rest of the paper, we will use Definition 4.4 or Definition 4.5 up to convenience. Since
we consider type systems enjoying the subject reduction property, from the assumption that
Mcn % cy(n)» We have that is a numeral type assignable, at least, to each Church numeral

representing a natural number in the rangé .of

In (Lei90), Leivant proved that all functions uniformly representablgjmre elementary, as is
the case foh_,. Moreover, the argument showing that subtraction is not uniformly representable
in A_. seems to apply also &3. Therefore, Leivant proposed the following conjecture.

Conjecture 4.6 (Leivant 1990). Functions uniformly (resp. strictly) representablé\inare al-
ready uniformly (resp. strictly) representable\in.

Intersection Types ank-definability 13

The rest of the paper is devoted to prove Leivant’s conjecture in the case of strict intersection
types and to extend the result to other intersection type disciplines.

5. A Technical Description of the Syntactical Approach

In this section, we discuss how our translation function of Section 3 can be used to compare
the sets of representable functionshin andAS. Our syntactic approach differs strongly from
previous attempts to solve Leivant's conjecture, which were based on semantic characterizations
of the set of representable functionshin, andAS. Indeed, for every ternvl which represents
a numeric function i3, we exploit ourA\S embedding intd\ ., to construct a Curry typeable
term which represents the same function.

First we describe the general approach, then we discuss a restricted, yet meaningful case, and
finally we present an example. In the next section, we prove formally Leivant’s conjecture.

5.1. General Description of the Approach

Let ¢ : N — N be a numeric function uniformly represented\ip, say by a terrM = Ax.M’.
Therefore, a type assignableNbin AS has the shape, N...N Tk — To.

Moreover, it follows from the uniformity condition thai, . .. , T¢ are full numeral types ia3
and, by Subject Reduction property, we have that any Church numgrlch thath(n) = m,
for somen, can be typed withp.

Let D be a derivation of the judgmeht M : 11 N...N Tk — To, and define

M=|DFsM:TiN...NTk— o] |P. (5)

SinceM represents uniformly, and using the definition of the translation functieiP, we
have that for alin € N and for all D}[-scn: 14],... ,Q),'ﬂkg cn : Tk there exists a derivation
DnlFsMcy, : To] such that:

| DaP=Ni [DL ... | DEIP. (6)

Our aim is to use the terril in order to construct a term representing uniformilyn A_,
since we know, by Lemma 3.7, that:

M D3[P ... |Q),'§\D%>|@'[Fsc¢(n)] °= &m

for some derivatior?’.

However, the simply typed terid is not a representation @f in general: indeed, in (GM
needsk arguments which may not be Church numerals; moreovercglganay not be a Church
numeral.

To overcome such problems, we will find suitable simply typeable terms,

Dpe)s By -+ B

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 14

such that:
“encoders” Epcn %4 D[Fscn:] |P for someD,

“decoder”: Dpy(| D[Fscn:To] P) % cn forall D,

in such a way that the term
)\X.D[T] (M\(E[Tl]X) ... (E[Tk] X)) (7)

is Curry typeable, and, for afl, reduces tay). As we will see, types of encodels;; depend
on the typgT;|T, and therefore the term in (7) cannot be typeable in because we need to give
different types to the variabbe We will therefore introduce a Curry typeable encollgy, .. 1, 1.
such that:

* ~1 ~k
Efy.. et]Cn 'y AzGt &,

whered;' =| Dl [Fscn : Ti]|P for some derivatiomD,. Hence we have that the term:

A~

P =D (... 1,0nM) ®

15-5 Tk T
reduces as follows:
P %) D[T](Ac/ﬁl. . CAnk) ? D[T]C/—\(n) %) Co(n)-
Note that the term®p; andEp, . 1, Will be proven to have simple types. In our notation,
they are indexed over intersection types, because their construction depends on intersection types.

We will build terms satisfying all the mentioned requirements. For the sake of clarity, we start
with a simple case.

5.2. A Strengthened Uniformity Condition

Since Church numerals are essentially iterators, it is interesting to consider the significant case
in whichty,... 1k, To are instances of the principal simple type of Church numefals; o) —
a—a.

Fact5.1. If t= (U —» 1) =17 — 1 € Typé, then
| DlFscn: 1 |P=cn.

Proof. Merely observe that, sina@ is not an intersection, in any derivationte§ Apq.p"q: 1
we use the statemengs T — 1’ andq: T, and hence the translation® does not generate new
variables. 0

Using this fact, the definition df.|°, and Lemma 3.7, we obtain the following.

Proposition 5.2. Let M be a term that uniformly represents N — N in A3, with typet;N...N
Tk — To, and letty, ... , Tk, To be instances dofa — o) — a — a. Then the term

|\//|\5|@D—SM (tN...NTK) HTOHD

Intersection Types ank-definability 15

is such that, for alh € N,

thatuniformly represents ih_, the

In comes out tha¥l needsk > 1 copies ok, to computep(n). Of course, the functios could
be uniformly represented kv, by a term, totally unrelated td, which does not requirecopies
of the input. This is shown by the following example.

Example 5.3. The function$(x) = x* is representable ihﬁ by the termw = Ax.xx, typeable

with o = ((p — 1) Np) — 1, for arbitrary typep andt. The termw is the typical example of

a non Curry typeable term (the restrictions imposed by Curry types prevent self application).
The translatior} (D[s w: a]) |P gives the term\xy.xy which represents the binary exponential
function inA_,. We now show a term typeable kv, that represent$. Let 1o = (0 — 0) —

(0— 0) andti;1 =T; — T;. Observe thatg = N(0), T1 = N(0 — 0) andtn2 = N(1p) . Consider

the termsA (typed withtg — 19 — Tg) andM (typed with1t, — 19 — Tg), which respectively
compute addition and multiplication on natural numbers (we write types used in the derivation
as superscript, to increase readability):

A=Ay pToq . xp(yp), M = AX'2y" . x(Ay)co.
Then the term:
E = AX"2.x(Mx)c1

computes the unary exponential function. As this example shows, strict intersection types add
expressive power at least in the sense of compact representation of functions.

Example 5.4. In order to anticipate the general techniques of the next sections, we show another
Curry typeable term which computés where we use the terixy.xy that we obtain from the
translation. Observe that we can type the successor funstwith bothtg — 19 andt; — 11,

and the Church numered with bothtg andt;. As a consequence, the péitr =<cg, co> can be

typed with(t1 — 19 — y) — vV, for an arbitrary type. The term:

S = A2V WO Z (AR W(Sy) (Sye)

maps a pair of Church numeralsey,, cy>, to the pair<cni1,cmy1>. Following types indicated
inside terms, it easy to see th&t can be typed witht1 x Tp andS* with (1 X Tg) — (T1 X To);
hence we can iterate them. Choosjng 1o, the term:

MN(TXT0) (xS7%) (Axy.xy)

is typeable im_, with the typeN(11 x Tg) — To, and represents the functigix) = x*.

6. A Proof of Leivant's Conjecture

In the Curry system, types of Church numerals are instances gfithapal type scheméx —
o) — o — o. This is no longer the case kﬁ However, we can analyze structural properties

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 16

A =pa0 0
<andp;_p'1ﬂ...mu{qﬂp{)>
for some 1<i </ Dy Dy,
AFSx:uiiﬂ...mu{qﬂpio Absxlygl L Aksxn‘ly:u{q
Al Xy T (= W)

B Ay XYy p— T
ChsAxyXy:1(=p—p—T)

where
B=CU{xp=pN- N} and, for 1< j g&uzp{m...muﬂ(j—mé;
A=BU{y:p=p1N---NPm};

Fig. 3. Type structure of Church numerals

of typing derivations (vB92§4.1.5) in order to characterize the shape of a typéhich can be
assigned i3 to a Church numeral. Indeed, Figure 3 shows that

'IfE|_,l—>p—>T/7

wherep=wN...NWw andp =p1N...Npm, for somel,m e N. Moreover, every typg; (1 <
i < ¢) has the shapg, N...NY, — 1.

Our first goal is to characterize the shape of terms produced by the translation of typing deriva-
tions of Church numerals, since such terms are not, in general, Church numerals themselves.

Definition 6.1. Lett = u— p — T’ be a Church numeral type m? where
M= N... N, Pp=pP1N...NPmandy El,lilﬂ...ﬁlJLiHH{-) (1<i<y).
We inductively define a family of sets of strict intersection types:

T-[O = {p17"' 7pm}7 .
T = Urcice{bp [Vs€ {1 ki}is € T).

Moreover, we defind; = Uney Y-
We use the next example to clarify the intended meaning of Definition 6.1.
Example 6.2. Lett =u— p — B, where

H=(anNB—B)N(YNB—PB)N(a—y)N(y—a)andp=anp.
We have
TTO = {a,B} Trl ={B,y} TT2 = {a,B} T'l'3 ={B,y}
TTZkil:{va} TTZKZ{GaB}
ThereforeT; = {a, B,v}.
A straightforward induction shows tha@}" is exactly the set of types which can be assigned

in AS to the termp"q (the bodyof the Church numeraly) with basis{p:,q:p}. Therefore, if
a given typeo belongs tdl;" for all n, thenu — p — o is a full numeral type. We observe that,

Intersection Types ank-definability 17

given the general structure of Church numeral types (Figure 3), we have
YN C {8, .. 16, P, .-+, Pm)-
In this example, the typing
{p:.q:p} s p"a: B)
is derivable for alh. But T; contains typesi,y such that the typings
{p:n.q:p} s pgrorand{p:p,a:p} Fs p oty

arenot derivable for everyn. More precisely, in order to obtain the typing (9), for some 0,
either the typing{p: |, g:p} Fs p"qg:a or the typing{p:u,q:p} s p"~*q:y must be derived.
The former can be derived onlyiif— 1 is even and the latter onlyiif— 1 is odd, since

Tk _ {a,B} if kiseven,
! { {B,y} if kis odd.

Remark 6.3. Let T = u— p — T be a Church numeral type &g, with u=p N...NW,p =
p1N...Npmandy = W N... N — Ky (1 <i < /). We will assume w.l.0.g. that

{ullvvulk,’ul()}gTTa (10)

for eachi € {1,...,¢}. Indeed, if (10) does not hold for some<li < ¢, then the judgment
B s p: 1 is never used in any derivation b§ c: T.

Given a Church numeral typeas in Figure 3, we characterize the translations_inof any
possible derivatiorD of the judgment p: ., g:p} Fs p"g: g, for all n and for allo € T;. In the
next definition,g) andp! are term variables generated by the translati¢h (Definition 3.2). In
particular,q’ is assigned typep; |7, while p' is assigned typgy; |T.

Definition 6.4 (PSEUDONUMERALS). Let T be a Church numeral type. For anye T, we
define a set of termB™° = J,., Br° as follows:

By’ = {d |pj =0}, ,
- . i J
By = {PIQ1...Q [1<j <1, o=pandQ € BN (1<r <kj)}.
Moreover, we define the sBE = [J,cy N}, of T-pseudonumeralas follows:
Ny = {Apt...p'q"...q"b|be BE’T/}.

The structure of (Bhm trees of) pseudonumerals is shown in Figure 4.

Example 6.5. Let1 =y — p — B be as in Example 6.2, i.e.

H=(anNB—=PRB)N(YNB—PRB)N(a—yN(y—a)andp=anp.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 18

A=Apt...p'gt...q™ pi

le e kaJ
/N VRN
a aqg gq a a aaqa aq
(all paths stop at depth)

Fig. 4. Structure of pseudonumerals
We havel; = {a,3,y} and

Bg" = {o°} By = {q") By' = {}

81" = {p'a'c’} B ={} By = {r’d"}

By” = (P(pa'e?) (PP} BE" = {p'(P°ah)} B3 ={}

B3P = {p'(P(p'atc?) (p°ab))(p*(pPab))}
BLY = {} B3 = {p*(p*(p3d"))}

We observe that arypseudonumeral, € NJ, shares witke, the deptn of its Bohm tree. Hence,
the whole set of termN[, can be considered as a redundant representation of the natural number
n.

Eacht-pseudonumeral,, € N, carries the same information provided by a typing derivation
of the judgment-scp: T.

Proposition 6.6. Let A= {p:l,q:p} € Bases. Foranyne Nando € T,
{|D|P| Dis atyping derivation foA s p"q:o } = BL°.

Proof. Induction onn.
(n=0).Ifg' € BB’G, then there existp; such thap; = o. In such a case, we have-s g: p;
and

A@) =p1N---Npm|°

= j.
Absqipj q

Conversely, if the typind\ s g: 0 is derivable, then for somg o = pj andg) € B°.
(n > 0). By definition ofBy°, we have that a pseudonumeral bddpelongs toBy° if and
onlyifb=p'Q;...Qr and forallr (1<r <k), Qr € B;°}, 0=, ando, = 1. By the inductive

Intersection Types ank-definability 19

Apg.p

P p .
Fig. 5. Extracting a Church numeral

hypothesis, we have th@ € B[} if and only if Q; =| Dr[At-s p"~1q: 1] |P for some derivation
D and hence if and only if there exists a derivation of the following shape:

Alp) =HaN--- Nk Dy Dy
Abspih NN =ty Absp" o 7 AR p g
Arspgph=0
By definition of|-|°, | D|P= p'Q;...Qr =b. O

6.1. Construction of the decoder[@

Given a Church numeral type we are now ready to address the problem of constructing a
A-term D, which we have already calletecodey such that

D[T] | Q)[FS Cn:T] |D%> Cn7

for every derivation?. The idea is to prune the tree of thgpseudonumerap,, (Figure 4),
keeping its leftmost branch and collapsing the non—leaf variables of this branch into a single one,
hence reconstructing a Church numeral, as shown in Figure 5.

Lemma 6.7. Let T = p— p — T be a Church numeral type X, with u=py N... N, p =
p1N...Npmandy = N...NK — L (1 <i < (). There exist a tery and a basi8; such
that

(1) By k- Dpy: |T|"™= (0—0) - 0—0;

(i) Dpypy % cn, for anyn € N andp,, € N§,.

Proof. We first define a Curry typeable temsuch that, for everym and for everyt-pseudo-
numeralp, € Ny,

Dpn —>* Cp.

We observe that, for any and for anyp, € N[, every free occurrence of the variafgein the
bodyb;, of p, is followed by exactly; arguments, singg = py N... N — Ho. Thus, considering

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 20

the types
@G=0—...—0—0 (1<i<¥),
\q.,_/
Kk times
we are able to derive the typings
{p:@,d":0hci<r1<j<mb byio,

forall o € Ty,n€ N andb, € Bf°.
We now consider, for X i </and 1< j <m, the terms

P =AX1...Xq.pX andQj =q.
By assigning the type to everyx € {x;...x }, we have
{p:o—o0,q:0} . R:@ and{p:0— o,0:0} - Q;j:0.
In addition, a straightforward induction shows that

vneN,p, e NL. pnP1...PgQ1...Qm%> p"g.

It follows that the term
D =AxpgxP;...PQ1...Qm
has the required behavior. Moreover,
F_D:y—(0—0)—0—0,
where
vb=¢pp—--—@—-0—...—50—0.
mtimes

Hence,D accepts as argument a pseudonumeral havingyypad transforms it into the cor-
responding Church numeral. In order to complete the proof, we slightly modify the previous
construction and we build a ter@y, which depends om, accepting as argument a pseudon-
umeral with type| T|T. We first observe that, w.l.0.g., a term can be typed using only one type
variable, say. Under such assumption, we have{1 < /)

o["=81— - — & —0
and
W [T=v1 = —vp =0
for somea;, by € N and some simple typ€s, ..., &4, V1, ..., V. Moreover, for 1< j <m,
pi["=¢1— - —0¢r, —o0,
for somer;j € N and some simple typels, ..., ¢;, and
|T/\T581—>---—>3t—>0,

for somet € N and some simple typd, ..., 9. For 1<i </and 1< j < m, we consider the
terms

Intersection Types ank-definability 21

R =AX1...XqS1. .. Sq-P(XaV) ... V)
and

Q; :)\sl...s,j.q,
where thev_’s are free variables with suitable types, allowing a uniform typingfandq with
0 — o ando, respectively. Therefore, eveRycan be assigned the typg |, while everyQj can
be assigned the tyge;|T. Finally, we define

Dy = AXpaxPr...AQ1...Qmvy... Y.

6.2. Construction of the encoder . -, 1

The construction of terms which transform a Church numeral into a pseudonumeral (as obtained
from the translation function), is as follows.

Lemma 6.8. Lett be a full numeral type. Then there exists a Curry typeable Bfmsuch that,
for anyn, Erjcn —>g pp, for somep,, € N,

Proof. In general, the body of the-pseudonumeral, contains pseudonumeral bodigsc
BL’“ as sub-terms, fdk < nando € T; (see Proposition 6.6). Letbe a type as in Fig. 3 and let
t =| T |. For eacho; € Ty, we indicate byy; the strict typgl — p — o;. The idea is to construct a
term that uses a numerg| to generate iteratively &tuple ofd; pseudonumerals.

At the k-th step of the iteration, the mentionetuple contains an element (if it exists) for each
setNEi. Hence it has the shape

1 t i 5
<Pic,---» P>, for pe N

We first show the encoders construction under the hypothesis that foxaildt, & is a full
numeral type (we recall that this is not always true, as previously shown in Example 6.2). Under
this hypothesisT; = {p1,... ,pm} and henceé = m, since types ifl; have to be assignable to the
body ofcg.

Moreover we can choose, for eadh € Tr, apy such thaly = [y N ... N — 1o, Ky = 0},
and ally, are inTy, for 1 <r < k;. Such a type exists under the above hypothesis since, for all
T = T;. We can rearrange indexes of typedinu andp in such a way thati; = p'o

We define, for each ¥ i <t, an index function

g:{1,....k} = {1,... ,t}
such thatgj = ;. We also use the convention tighthas type{pi |” andp' has type

[T= - = "=l
We now describe the behavior of two ter@sand P (fully defined later), that will serve as
arguments ot in the iteration outlined above.

1 Qis simply thet—tuple<p}, ... ,ph>, with p € N3 Observe that such a term can be typed
inA_ with 9= (|&1|"— --- —|&|"—y) — v, for an arbitrary typa,

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 22

2 Pis aterm that, when applied totatuple of the form<p§, ,p}(>, reduces to the-tuple
<Pii1,--- Pl 1> With pl € Ny'. We will show thatP can be typed itk_. with @ — @.
Let us consider the following “pseudosuccessorsX (i< t):

S=Ma...xp" .. pat. g™ p (g Pt pat ™) (X) P

S is typeable with
&[T =& =[5 [T

and it reduces to th§ pseudonumeral,,, once applied to thef,... ,pk € N (r =1,... t);

hence eaclg builds an element oNﬁ‘H, taking as argumentselements, one for eadKy',
1 <r <t. We can now define the termas follows:

P=Azwz(Ax1... % W(SiX1... %) ... (SX1...%)).
Typing, for an arbitrary typs:
— X with | &7,
— wwith |6]_‘T~> ~>|6t|T~> Y,
— zwith (‘51|T~> —>|6t |T—> y) —Y,

the termP has typep — @.
Finally, we can extract, from the constructeduple, thet pseudonumerad,,, since we know
its position in the—tuple, say, by applying the term;

N =AX1...%.X,

which is typeable il _, with |8;|T— --- —|&|T—|t|T. Observe that, by the hypothesis thas
a full numeral type, the pseudonumeral, appears in the-tuple at each stage of the iteration.
Choosingy =|7'|T, we can type i\ . the encoder

E[T] =)\X.XPQN

with the typeN(@) —|T|T.

This construction can be adapted to the general case in which we remove the hypothesis that for
eacho € T; and for eachn, the judgmenkt-s cp: 1 — p — g is derivable. In this case we must take
care of the fact that some pseudonumerals could not be constructed at some stage of the iteration,
and hence some successors could not be applicable at later stages. This difficulty can be overcome
by introducingt boolean value8s, ... , B; representing the existence of pseudonumerals: at the
n'" stage of the iteratiorB; is True if and only if a& pseudonumerap, can be constructed.
Moreover the arbitrary choice of a pseudosuccessor for &asmo longer justifietl. We must
check the applicability of each successor, as it is inducedbywdhen successors are looked-up
in order to perform an iteration step, the existence of their arguments is checked and the first
applicable successor is picked up. It is worth stressing that in this case we have to consider, for

* In Example 6.2, we have two ways to construgt-a p — 8 pseudonumerd, , ;, one applicable only fon odd, and
the other only fon even.

Intersection Types ank-definability 23

a giveng; in Ty, all the successors constructing a pseudonumemi‘i@, whereas in the simple
case the arbitrary choice of one of these was sufficient. .

More formally, consider for eachy; € Ty, the index sei; = {j : |J$ = gi}, and for each
Mr,1<r <l theindexse¥, ={j : 4, =0;,1<n<k}.

LetX; = {r1,...,rn}. Using syntactic sugar to avoid usual lambda-calculus encoding of boolean
values and operators, the “pseudosuccessor” that builds a pseudonumeral |& typgeas the
shape:

S=Ma...xbi...bp...plgt...g™
if /\jele bi
then p'(xg (1)P"-.- pat...qm) o (g () P pat...qm
else if A jey,, bj
then p"2(xy,, (1) P* .- p'ql...qm)...(xgrz(krz)pl...p

else if Ajey, b
then p™(xg, 1Pt...p'at...a™)... (Xg, (k) P*- - P
elsez;

wherez; is an arbitrary term of typéd; |.

Moreover, the invariant that, for atl, thei boolean value iJrue if and only if there exists a
0, pseudonumeral,, is preserved usingtermsT;, which recalculate boolean values. E&glis
defined as follows:

To=Abi...b. \/ A bj.

rex jevr
We can now redefine tern@@ andP that will serve as argument of in the iteration:
1 Qisthe 2-tuple<Q,...,Q;,B1 ... ,B>, where:

Q= po if oi = pj,for somej
' | z foran arbitrary tern¥; of type &; otherwise

B True if gy = pj,for somej
'7 | False otherwise
2 Pistheterm:

P=Azwz(AXq...%b1...bew(Sixg. .. by ...) ... (SX1...%br...by)
(Tiby...by)... (Teby...by)).
O

By properties of the translation function, the Curry typeable t&nexpects as arguments
k> 1 pseudonumeralst, ... ,pk (p, € Nz). However, the term

)\X.M\(E[Tl]X) ce. (E[Tk] X)

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 24

is not, in general, Curry typeable, because different encoders require arguments of different types,
and hence they cannot be applied to the same variabie,inThus, we use an encoder which
constructs in parallel pseudonumergls. .. pk and puts them finally into k-tuple.

Lemma 6.9. Let M be a term typeable ik3, which uniformly represents a numeric unary func-
tion ¢. LetM =| (D[FsM:11N...N T« — 1)) |°. Then there exists a terfy, . g1, such that
Efr,... n./cnM is a Curry typeable term which reducesMipy ... pf, ph € NiY, for 1<r < k.

Proof. The construction of Lemma 6.8 works the same for the set of tirpesw}‘leTi,
instead of a singlé.

We extract thek pseudonumerals of types; |',...,|1k|" from thet—tuple generated by the
termc,PQ, knowing their positions, say, . .. , Ik, in thet—tuple, using the term:

N =AX1...%ZZ%) ... Xr,-

We can type the termy with

(18]T= - =|&[T =),
and hence, instantiating the arbitrary typa the type@ with (|11 |T— - —|t|T—|T|T) —
|T|T and typing the numeral, with (¢ — @) — @ — @, the term(c,PQ)N has typey. Since
M is typeable with|T1 |T— --- —| ¢ |T—|T|T (by definition of|-|T and Lemma 3.5), the term
(cnPQ)NM is typeable irh_, with |T|T and it reduces tpt...pK, pf, € NI Hence the term

E[Tl,....rk,T] = AXy.XPQNy
satisfies the statement. L]
Using the above lemmas we prove the main result of this section.

Theorem 6.10. Every functiond:N — N, uniformly representable iA3, is uniformly repre-
sentable i\ _,.

Proof. If M represents a function kg, letM be the term obtained by the translation function
from a type derivation of. Using Lemmas 6.7 and 6.9, we have that the term

M =)\X'D[T](E[Tl,...,Tk,T]M\X)7 (11)

representg in A_.. L]

7. Beyond Strict Types

In the previous section, we proved that the set of uniformly representable functions in the strict
intersection type system is exactly the set of uniformly representable functions in the simply
typed lambda calculus. It is worth analyzing whether the same result can be proven fdth

respect to other intersection type systems. In this section, we consider the Barendregt-Coppo-
Dezani system (BCDC83) and the essential intersection type system (Hin82). Even if the sets of
typeable terms are exactly the same as the o€ afuch systems allow more type judgments to

be derived, and implications on uniform definability of functions are not straightforward. Never-
theless, we will prove that the set of uniformly representable functions in these systems coincides
with the set of uniformly representable functions in the simply typeadliculus.

Intersection Types ank-definability 25

Ax)=o0
(Vargep L
AFgcp X O
AU{x.o}tgcpM:T
(—Dscp {xa} -
AFBCD)\X.M.O'HT
(—>E) Al—BCDMZO'—>T AFBCDNZG
BCD Atgcp MN:T
(ﬂ|) AtgcpM:.o AFgcpM:T
BCD AtgecpM:oNt
(ﬁE) AbFgecpM:oNt AblgecpM:onNt
BCD AFBCDMZO' Al—BCDMZT
Al M:o o<t
(S)BCD BCD >

AFgcpM:T

Fig. 6. The type assignment systemk&FD

7.1. Lambda Calculus with Intersection Types

We briefly recall the system of Barendregt-Coppo-Dezani (BCDC83)).

Definition 7.1. Intersection typeare generated using the following grammar:
o:=a|(c—o0)|(cNno) (12)

wherea ranges over a countable set of type variables. We inédirsection typesnotation
Typ€CP, the set of types resulting from (12). The intersection type construttdakes prece-
dence over the arrow type constructor and henceo, — T is an abbreviation fofo1 N o2) — T.

Definition 7.2. Thetype inclusion relation< (C Typé©P x Typ&CP)
is inductively defined by:

oc<g;

ont<ocandoNt<T;
(o—=1)N(o—p)<c—1Np;
0<T & 1<p=>0<p;

0<T & o<p=0<1NPpP;
0'<o & 1<T=0—1<0—>T.

OOk, WNPE

We willwriteo~t1ifo<t & T1<O0.

Definition 7.3. ABCP, the Barendregt-Coppo-Dezani intersection type syspeaves judgments
of the kindA Fgcp M: T. The basiA contains statements of the shaqe, with o € Typ€CP. The
typet belongs to the set of intersection typ&ppe&P. The system\ECP consists of the rules in
Fig. 6.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 26

AX)=0 0<eT

Var

(Van AbeXT
A 10} Fe M:

(1), u{xc}.e T
AFcAXM:0—T1

(—E). AFeM:i(T1N---NTy) =T AFeN:T1...AFeN:T,

AFeMN:T

Fig. 7. The type assignment systermi&f

7.2. Essential Intersection Type System

A restricted version of théECD system, calle@ssential intersection type assignment system
(vB93, Ch. 5), was introduced by Hindley (Hin82). The only difference with respect to the strict
system is the (Vag}rule, where the type inclusion relatietg is used.

Definition 7.4. Thetype inclusion relation<g (C Typ€ x Typ€) is inductively defined by:

0 <gC,

oNt<gocandoNt <gT,

O<eT & T<Ep=0<ep;

O<gT & O0<gp=0<g1Np;
0<g0 & T<gTV=0—1<g0 —T.

a b~ wWwDNPE

We willwrite o ~gTif 0<gT & T<goO.

Definition 7.5.

1 Theessential intersection type systéNf) proves judgments of the kindl - M: T, where
T € Typé€. The system\E consists of the rules of Fig. 7. The bagigontains statements of
the shapeco, with o € Typé.

2 Judgments of the shape-g M: ¢ are derivable in\E if and only if there exist typesy, ... ,0n
such that = o1N...N oy and, for every K i < n, the judgmeniA ¢ M: g is derivable.

7.3. Full Numeral Types inE andA3S

As stated by Hindley (Hin82), for any equivalence class of intersection types there is a strict
intersection type which belongs to it. This is proven observing that intersections in the right-hand
sides of arrows can be removed, using the equivalence ondypesnp ~ (6 — 1)N (0 — p).

Proposition 7.6 (Hindley (Hin82)). There exists a map
()" : Typ€® — Type
such that, for everg € Typé©P,
o* € Typ€ and ¢* ~ 0.

Intersection Types ank-definability 27

Such translation of BCD types into strict intersection types allows for a strong relation between
ABCD and)E to be established. The following (vB93, Prop. 5.3.2) holds (translation of bases is
obtained just by applying the translation of types to all types that appear in bases).

Proposition 7.7.

1 Forallo,te Typé, we haveo <1< 0 <gT;
2 BlgcpM:T < B* g M:iT*.

As a consequence we can easily prove that uniformly representable functidafSHrare
uniformly representable iRE.

Theorem 7.8. Let ¢ be a numeric functior is uniformly representable iNECP if and only if
itis uniformly representable iNE.

Proof. The only if part is obvious, since all judgmentsif can be derived also iNECP.
Concerning the if part, let us consider a tefhwhich uniformly representg in AB°P. By
Proposition 7.7, ifo is a full numeral type imMECP then so iso* in AE, andx.o Fgcp Mx:T
impliesx:a* -g Mx:T*. HenceM uniformly represents in AE.]

In (vB92) the system> has been proven powerful as th&-P system from the point of view
of typeability. The relationship between the two systems (and betMeamd\?) is stated in
the following.

Proposition 7.9.

1 If BFgep M:o, then there ar® ando’ such thaB’' FsM:0’, o’ < g, andB < B';
2 If B M:0, then there ar& ando’ such thaB' -sM:0’, 0’ <g g, andB <g B'.

These results do not allow us to conclude that uniformly representable functiafsHrare
uniformly representable in3. Indeed, the existentially quantified tygé in Proposition 7.9
might not be a full numeral type ik3, even wheru is a full numeral type if\BCP or AE. As an
example, take

T=((6Nd—p)—(0Nd—p)) = (0—p) — (0Nd—p).

It is easy to see thatis full in the essential system, whereas it cannot be assigned to the numeral
cp in the strict one.

However, numeral types in the essential system have the shape of numeral types in the strict
system (see Fig. 3), namely=pu— p — 7, whereg=N...N W, p=p1N...NPm and
W=y 0. N, — W for somel, mky,... k €N,

We prove that full numeral types in the essential and strict systems are related as follows: if
T is full in the essential system, then there existsuch thatt®* <g T andt® is full in the strict
system.

Definition 7.10. Atype o = 01N...N 0k € Type is afull numeral typen AE (in AS, resp.) if all
theo; are full numeral types iAE (in AS, resp.).

Proposition 7.11. If 6 = o1N...N ok € Type is a full numeral type inE, then there exists a
numeral typeos® = 0} N...Nop € Typ& which is full in A3, and moreoves® <g o.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 28

AX)=11N...NTy 1<i<n

Var —
(Vans AlFg XT
AuU{x:o} g M:1
(—Ns :
Abg AXM:0 — 1
Alg MZ(Tlﬁ'“ﬂTn)—)T AFgNliTl...AFgNnZTn NiLN
(—B)s n

AFg MN:T

Fig. 8. The type assignment systemh&f

Proof. The proof makes uses of some lemmas and auxiliary definitions. For the sake of read-
ability, it is deferred to Section 8. L]

7.4. A Modified Strict Intersection Type System

Let M be a uniform representant ¢f: N — N in AE; then there exist a numeral type= 01 N
...Nap, fullin AE, and a typa such that

1 {x:o}teMxT;

2 VneN, Mc T Co(n)-

By Proposition 7.11, there exists a numeral tgdefull in A3, such that
{X:0%} Fe MX:T.

Therefore$ can be uniformly represented Nk using as input type some full numeral type in
AS.

We observe that the translation function (Section 3) cannot be adapted naturally to transform
derivations ofAE. Indeed, the definition of the translation function is based on the fact that a
variable-introduction rule in the strict system consists of a simple extraction of a strict type from
an intersection of strict types. Therefore, a finite amount of types can be derived for a variable in
A3, each of which is present in the type assumption for that variable. We call such a property the
type extraction (from basepyoperty. The type extraction property does not hold in the essential
system, where the variable-introduction rule makes a crucial use of the type inclusion relation
<e.

As pointed out in (vB93), typings are preservedpyeduction in the essential system, but not
in the strict one. We therefore introduce a varidtﬁ)(of the strict intersection type assignment
system, such that

— 7\% has the extraction property;
— typings in)\ﬁ are expresseghodulon-reduction.

We call)\ﬁ the strict extensional type system

Definition 7.12. The system}\ﬁ proves judgments of the kinl-g M: T, derived from the rules
of Fig. 8. The basi#\ contains statements of the shape, with o € Type’, andt € Typé€.

Intersection Types ank-definability 29

We first note that the syste)vﬁ enjoys the type extraction property. Moreover, given a typing
in AE having a termM as subject, there exists a typing)iﬁ for a suitablen-expansion o,
which preserves both the predicate and the type assumptions.

Definition 7.13 (Type Extraction). We writeo < Tiff 0 =01N0---No, andt = o;, for some
1<i<n

Lemma 7.14. If Al-¢ M:T, then there existb!’ € A such that
M’ T’ M and Alg M':T.
Proof. By induction on the structure of the derivation®f-¢ M:1. The only interesting case
is when the applied rule is of the form (Var)n such case, we note that, for some suitable types,

a (Var)-rule has the shape
AX)=0 o=x¢<gt

Var
(Vane AbFexT
where, by Definition 7.4,
=01~ —dx—a
T=T—-—T—0 (13)

1<e¢; (j=1,....K.

If we deriveAl-¢ x: T by rule (Var), we associate to the above judgment a derivation of the typing
Atg X:1, by induction on the structure of andX % X.

1)
Bx)=0 o0<¢ Bx)=11 T1<egd:1

BFg X0 BFexii¢1
BFg xxi:¢p2 — - — dx—a ()
. B(x) =T Tk <g ¢«
BFg XXi... % 1.0k — O B e X: Pk

BFg XxX1...x:Q
B— {X: Tk} Fg AXk. XX ... Xc: Tk — A

Abg AXp.. XXX ... X T

By applying the induction hypothesis to sub-derivations indicate@lby . ., (k), we obtain a
derivation inAg of the typing

Abg AXp .. X XX ... X T.
O

Corollary 7.15. Let{x: 0} ¢ Mx:T, whereM is a uniform representant ¢f: N — N, andg is
a full numeral type if\E; then there exists an-expansionMx)’ of Mx and a types® such that

{x:0%} Fg (MX):1

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 30

ando*® is a full numeral type inS (and therefore in3).
Proof. By Proposition 7.11 and Lemma 7.14. [

As for the system\% (Lemma 3.5), the translation of a typing derivation)\iﬁ is a simply
typeable term.

Lemma 7.16. For any derivationD of the typingAtg M:c in)\ﬁ, we have that
|APEg|DIP: ot
is a typing inA_..
Proof. Identical to the proof of Lemma 3.5. [

The translation still enjoys a kind of commutation property with respe@titeduction (see
Theorems 3.6 and 3.7).

Lemma 7.17.
1 Let D be a derivation of the typing g M:T in)\ﬁ, and letM T N. Then there exists an
n-expansiorN’ of N and a derivatior?’ of the typingA g N’: T such that:

PP /[P

2 Let D be a derivation of the typing g M:Tin A3, and letM % N. Then there exists an
n-expansiorN’ of N and a derivatior®D’ of the typingA g N’: T such that:

PP 2P

Proof.

1 The proof follows exactly the same pattern as the proof of Lemma 3.6. The only difference is
that the derivation®s, ..., D, appear in the proof of Lemma 3.6 as different derivations hav-
ing the same subject, while now they are derivations having as subjects difieegpainsions
of the same term.

2 From (Bar84,§3.3.8),%> commutes With%, ie.

Therefore, using such a diagram,Nfis obtained fromM by means of a sequence pf
reductions andj-expansions, then

M T P = 3Qsuch thaN T’ QandP T Q. (14)

Intersection Types ank-definability 31

The thesis follows from point.1using (14). Graphically:

NN ; Ne (15)
B B
\wD§ \ng \wD?
M 5 Q1 N ; Qx 7 N
ﬂl* ﬂl*
P - N
B

whereM, N\l, Ny are obtained translating suitable typing derivations having as subjebts Nk,
respectively.

O

7.5. Lambda-definability inS

Let M be a uniform representant ¢f: N — N in)\E. By Corollary 7.15, there exists a numeral
type @®, full in AS, and ann-expansion(Mx)’ of Mx such that, for some typg {x: 0} g
(Mx):1. For alln € N, (AXx.Mx)cp ? cp(n)- Hence, byn-postponement ((Bar8415.1.6)),

()\X.(MX)/)Cn ? € (n) %? Co(n)-
It follows that, by Lemma 7.17, the translation of the typing derivatiof\af(Mx))c, B-reduces
to the translation of an-expansior{ey) of a Church numeral. Itis therefore necessary to study
the structure of terms obtained by translating type derivationleﬁ)mf n-expansions of Church
numerals.
We use the following notation: F is a normal form and is aA-free normal form (a variable,
in particular), we denote by

F(X)
the normal form ofF X.

Definition 7.18. A hereditary finite combinatais aA-term

F=MNaxi...xn.a(F1((Xg1)) - - - (Fm(Xgm))

wheremn>0,9:{1,...,m} — {1,...,n} and, fori = 1,....m, F; is a hereditary finite combi-
nator. We denote b§ the set of hereditary finite combinators.

The relevance of hereditary finite combinators in our setting is exemplified in Table 1, where
three different typing derivations are shown for tipexpansion of a variablg, together with
their translations. For the sake of simplicity, we have omitted bases from derivations in Table 1;
type assumptions for variables are drawn as superscripts in the subjects of variable-introduction
rules.

The next lemma will enable us to determine the shape of terms obtained from the translation
of)\ﬁ—typing derivations ofj-expansions of Church numerals.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 32

D |D|°
XOBY:(anp) -y Yy AV xyPyt
¥y | D|P= F1(x), where
Ayxy: (Bna) —y F1 = AaxgXp.a%X1
X Ba By Vi Ay xyt
xy: B D_ v
| D|P=F3(x), where
Ayxy:- (any) — B Fy = Aaxixe.axq

Lett=(@nNB—yN@Nd—-y) —

VVa oy ABg yVig oy A0 MNXAZLZ2YyE) NP yZ)
yzZy yzZy
. [[E— D |P= F3(x), where
X1 AzyzoaNnp — AzyzaNod— ‘
yzang—y y ¥ Fs = Aaxg.a(Fi(x1)) (F3(x1))
XYZ F% = F% =)\aV1V2.aV1
AyXy: (o —y) = C

Table 1.Hereditary finite combinators and translation of derivations

Lemma 7.19. Let D be a derivation of the typing
AU{x:01N---Nop} kg X:0,

whereX —— x, a variable. Then there exists for some 1< i < n, such that
n

| DIP=F(X)),
for someF € 3.

Proof. By induction on the lengtim of the reductionX % X. The casen = 0 is trivial. If
n> 0, then
X = A2 (\y.x2Y),
whereY % y andZz % z, foranyz € Z. LetB=AU {x:01N---Nay}. In such case, the
derivationD has the shape

Do ™’ D
Bobg XZ:(T4N---NTm) =T BakgYiiTi ... BoFgYmiTm
By g XZY:1

B1 kg AY.XZY:p

BFg AZ(A\y.X2Y):0

Intersection Types ank-definability 33

where, fori=1,...,m,

Y, T Y. (16)

We observe thaB, = B;U{y:¢1N---N¢;}. By inductive hypothesis, there exists
FO?F17"'7Fm€S

such that

Do D

Bz}—gXZZ(Tlﬂ"-ﬁTm)—V[)
: = Fo(x)
Brg AZxZ:0'
and, fork=1,...,m,
D |°_ K

for some functiorg: {1,...,m} — {1,...,r}. Now,

Fo=)\a\Tv.Fé,

and hencéD|P= F(x')), where
F=amy"...y" Fy(F1(y*™)) ... (Fen(y*™)).

We recall that pseudonumerals have the followiridnB tree, whera,...,g € N:

pjl .. jkj
N
e CD/ @\ e ®/ \©\
p7 “ee » p7 “ee p7 e p:7
2@ @ @ ®O @O
q aq q q q aq q

(all paths stop at the same depth)

A subtree in such a tree is identified by a sequencé integers, as shown above, with the
empty sequence identifying the whole tree. Given a pseudonumeietius denote bgeq(p)
the set of sequences identifying all nodes in tlihi tree ofp. Moreover, we denote by@s
the subtree op identified bys. An extended pseudonumeialobtained from a pseudonumeral
p substituting in the nodp@s, for anys € Seq(p), the labelr € {p?,...,pf,q%,...,q™} with

Fs((r),

whereF; € § is a hereditary finite combinator which dependsson

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 34

Lemma 7.20. Let D be a derivation of the typing t-g bj,:0, whereb}, is ann-expansion of the
body of the Church numerah = Apg.p"g. Then| D |P is an extended pseudonumeral.

Proof. By induction onn. The case = O follows from Lemma 7.19. In the case=k+ 1, b},
has the shape
b1 =Az1...ZmX(b)Z1 ... Zm,
where, fori=1,....m, Z % z.. The thesis follows by induction and by invoking Lemma 7.19
overZy,...,Zm.]

A decoder for extended pseudonumerals can be constructed exactly in the same way as in
Lemma 6.7.

Lemma 7.21. Let Tt be a Church numeral type k¥. Then there exist a teriy and a basi8y
such that

(1) B - Dpy: |T|"™= (0—~0) —-0—0;
(i)) Dpjpn % cn, for anyn € N and any extended pseudonumeratesulting from the transla-

tion of a derivation of the typing. c,: T, wherec/, % cn.
Proof. We buildDy; using the construction of Lemma 6.7. Theref(ijeéholds. MoreoverDy;
prunes the tree qf, exactly as in the previous case. In additibg, p, has type
(0—0)—o0—o0.

Therefore, all additional information introduced by hereditary finite combinators is erased by the
decoder, which produces a Church numeral. [

7.6. Main Results

We are now able to prove the main results of this Section.

Theorem 7.22. Every function¢:N — N, uniformly representable ins, is uniformly repre-
sentable in_,.

Proof. Identical to the proof of Theorem 6.10.]

Theorem 7.23. Every functiong: N — N, uniformly representable ikB<P, is uniformly repre-
sentable in_..

Proof. Let ¢ be uniformly representable iRBCP, say by a termM. By Theorem 7.8¢ is
uniformly representable iAE, by the same ternvl. The thesis follows by Corollary 7.15 and
Lemma 7.21, using the same construction of the proof of Theorem 6.10; observe that the encoder
does not need to be modified since the input type coming from Corollary 7.15 is a full numeral
type inAS. O

Intersection Types ank-definability 35

8. Proof of Proposition 7.11

Definition 8.1. Lett = u— p — T be a numeral type in the essential system, and let

H=p1N . O, P = P10 ... Opm = NN — Hp (LT <).
Define:
— T={t,pj,i, | 1<j<m 1<i<I|,0<h<k};

— le={(p,)‘6€TT}U{(U7U-1 ﬁIJK_—>5)|1§ <l,0€eT};
— Br={p:unq:p}.

Forne N, letb, = p"g be the body of the Church numeral= Apg. p"q. If D is a derivation
of a typing in the essential system, I1€¢fD) be the set
=0/)\ D}

(D) ={(v.Y) vV 4%/

Lemma 8.2. If Tis a numeral type in the essential system, then fobd allT; and for alln € N,
if there exists a derivatiom, of the typingB; ¢ by, : , then there exists a derivatialy, of the
typing By te by : 0 such that (D)) C I;.

Proof. The proofis by induction on. If n=0, andd € T, then any derivatiotDy[B; e bo : J]
is obviously such thalt(D) C Iy.

Letn=k+ 1.8 € Ty, and Dy[B; Fe by : 8]. The leftmost premise of the last rule @f, is
BrFep: y for some strlct/ yin...Nys— & >g 1 By (vB93, Lemma 5.1.2 (v)), we have that
y> ulﬂ ﬂuki — Wy for some 1<i <. Henceyi1N...Nys < plm ﬂ“h andpO <g o, by
(vB93, Lemma 5.1.2 (iv)). Moreover, ford r < s, there existaDy [Br Fe by : yr].

Now, sincey;N...Nys <g K, N...N u{q we have that, for all X h < k;, there exists ¥ j < s
such thaty; <g pn, (vB93) 5.1.3 (i). This implies that, for all £ h <k, there exists a derivation
Ek [Br e bk : ph} by (vB93) 5.1.6. We can now use the inductive hypothesis, and conclude that,
for all 1 < h < k; there exists a denvatloﬁfk [Br e bk : uh] such that (fk) Cly.

We can now construct easily the requir®f[B; ¢ by : 3], such that (D)) C I

Bibep:l H<gpyN...NH —d 71 TN
Brbep:pn...NK —3 Briebk:ily ... Briebc:l
BrFebki1:0
and we are done. L]

Corollary 8.3. If 1=pu— p — T is a full numeral type in the essential system, then fonallN,
there exists a derivatiof[B; ¢ by, : T'] such thal (Dy) C I5.

Proof. Taked =1’ in the lemma above.]

Corollary 8.4. If t=p— p— 1’ is a full numeral type in the essential system, then there exists
atypet® <g t which is a full numeral type in the strict system.

Proof. Let| = Unen 1 (Dh), whereDn[Br e by : T'] is given by the previous corollary.is a
finite set. Define the intersection typgsandp as follows:

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 36

A=Ns)e O

P=Np5)el O
and letB;» = {p:[,q:p}. Itis easy to conclude that, for alle N, B s by, : T has a derivation,
which is essentially the same 4%, up to the substitutions:

p:d U<g o p:...NdN...
p:d - p:d
(and similarly forg andp).
Hencetr®* = 1 — p — T is a full numeral type in the strict system.
The relationt® <g T holds since, if(1,8) € | (resp.(p,d) € I), thenpu <g & (resp.p <g J),
henceu <g [, p <g P, and finallyt® <g 1.]

We extend the notion of fullness to typesTiype as follows:

Definition 8.5. A type o = 01N...N oy € Typ€ is afull numeral typein AE (resp. in\S) if all
theg; are full numeral types iAE (resp. inA3).

Proposition 8.6. If 0 =01N...N0k € Typ€is a full numeral type inE, theno® = o}n...N o},
is a full numeral type in3, ando® <g o.

Proof. For 1<i < n, o} <g o; by Corollary 8.4. The statemeai N...NOn <g T1N...NTy
follows easily from the clauses 2, 3 and 4 of the definitiorcgf O

9. Concluding Remarks

A new technique has been proposed to compare computational aspects of typed lambda calculi.
The presented technique, which is syntactic in nature, has been successfully applied to obtain a
new proof of strong normalization, and to characterize definable functions in intersection type
systems. Several directions for future work are suggested by this new approach.

It is interesting to investigate the algebraic structure of the redundant representation of num-
bers, which naturally comes out of our translation function, since they implicitly define recursive
schemas. In this work we chose Church numerals as representation of integers. It would be inter-
esting to investigate whether our results can be extended to arbitrary numeral systems.

Expressiveness is not only a matter of definability. A final remark is concerned with complex-
ity: the term that we construct via|P is much more complex than the original one, typeable in
the intersection type discipline. It would be interesting to analyze whether simply typed repre-
sentations of functions lead to more complex “algorithms”.

Acknowledgments

We are grateful to Mario Coppo for discussions about the topics of this paper, and to four anony-
mous referees for their useful remarks.

Intersection Types ank-definability 37

References

H. P. BarendregtThe lambda calculus. Its syntax and semantisrth-Holland Publishing Co., Amster-
dam, revised edition, 1984.

H. P. Barendregt. Lambda calculi with types. Hiandbook of logic in computer science, Vol.pgages
117-309. Oxford Univ. Press, New York, 1992.

H.P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of
type assignment). Symbolic Logic48(4):931-940 (1984), 1983.

A. Bucciarelli, S. De Lorenzis, A. Piperno, and |. Salvo. Some computational properties of intersection
types. InProceedings of the Fourteenth Symposium on Logic in Computer Science (LIO%ig85
109-118. IEEE Computer Society Press, 1999.

M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory fok-tedculus.
Notre Dame J. Formal Logi21(4):685-693, 1980.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable tridsith. Logik
Grundlag. Math, 27(1):45-58, 1981.

H. B. Curry and R. FeysCombinatory logic. Vol..INorth-Holland Publishing Co., Amsterdam, 1968.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyjpifagm. and
Comput, 117(1):115-135, 1995.

A. Church. A formulation of the simple theory of typek.Symbolic logic5:56—68, 1940.

H.B. Curry. Functionality in Combinatory Logic. IRroc. Nat. Acad Science USA 2@ages 584-590,
1934,

S. Fortune, D. Leivant, and M. O’'Donnell. The expressiveness of simple and second-order type structures.
J. Assoc. Comput. Magh80(1):151-185, 1983.

R. O. Gandy. An early proof of normalization by A. M. Turing. To H. B. Curry: essays on combinatory
logic, lambda calculus and formalismpages 453-455. Academic Press, London, 1980.

R. O. Gandy. Proofs of strong normalization. Ta H. B. Curry: essays on combinatory logic, lambda
calculus and formalisprpages 457—-477. Academic Press, London, 1980.

J.-Y. Girard. Une extension de l'integation de @del a I'analyse, et son applicatic I'€limination
des coupures dans I'analyse et lédhie des types. IRroceedings of the Second Scandinavian Logic
Symposium (Univ. Oslo, Oslo, 197pages 63-92. Studies in Logic and the Foundations of Mathematics,
Vol. 63, Amsterdam, 1971. North-Holland.

J. R. Hindley. The simple semantics for Coppo-DezaniéSgipes. Ininternational symposium on pro-
gramming (Turin, 1982)pages 212—-226. Springer, Berlin, 1982.

Z. Khasidashvili and A. Piperno. Normalization of typable terms by superdevelopmentSonhputer
science logic (Brno, 1998pages 260—-282. Springer, Berlin, 1999.

A.J. Kfoury and J.B. Wells. New Notions of Reduction and Non-Semantic Pro@fsSafong Normalization
in TypedA-Calculi. InProceedings of the Tenth Symposium on Logic in Computer Science (LICS’95)
pages 311-321. IEEE Computer Society Press, 1995.

A.J. Kfoury and J.B. Wells. Principality and Decidable Type Inference for Finite-Rank Intersection Types.
In Proceedings of the 26th ACM Symposium on Principles of Programming Languages, PQ#Iges
161-174. ACM Press, 1999.

D. Leivant. Discrete Polymorphism. Proc. of the ACM conference on Lisp and Functional Programming
pages 288-297, 1990.

D. Leivant. Functions over free algebras definable in the simple typed lambda cal€hkaret. Comput.

Sci, 121(1-2):309-321, 1993. A collection of contributions in honour of CorradlonBon the occasion
of his 70th birthday.

J.C. Reynolds. Towards a theory of type structurePlogramming Symposium (Proc. Collog. Program-
mation, Paris, 1974)pages 408—425. Lecture Notes in Comput. Sci., Vol. 19. Springer, Berlin, 1974.

Antonio Bucciarelli, Adolfo Piperno and Ilvano Salvo 38

J.C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-CS-96-146,
Carnegie Mellon University, 1996.

J.C. Reynolds. Replacing complexity with generality: The programming language Forsythe. Technical
report, Marked Carnegie Mellon University, 1996.

P. Sale. Une extension de la&brie des types exrcalcul. InAutomata, languages and programming (Fifth
Internat. Collog., Udine, 1978pages 398-410. Springer, Berlin, 1978.

H. Schwichtenberg. Definierbare Funktionen AaKalkul mit Typen. Arch. Math. Logik Grundlagen-
forsch, 17(3-4):113-114, 1975/76.

R. Statman. The typektcalculus is not elementary recursiveheoret. Comput. S¢i9(1):73-81, 1979.

R. Statman. Completeness, invariance &sakfinability. J. Symbolic Logic47(1):17-26, 1982.

W. W. Tait. Intensional interpretations of functionals of finite typel.ISymbolic Logic32:198-212, 1967.

S. van Bakel. Complete restrictions of the intersection type discipliheoret. Comput. S¢il02(1):135-
163, 1992.

S. van Bakel.Intersection Type Disciplines in Lambda Calculus and Applicative Term Rewriting Systems
PhD thesis, Matematisch Centrum Amsterdam, 1993.

M. Zaionc. A-definability on free algebraginn. Pure Appl. Logic51(3):279-300, 1991.

