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This paper presents a novel method to compare computational properties ofλ-terms typeable with
intersection types, with respect to terms typeable with Curry types. We introduce a translation from
intersection typingderivationsto Curry typeabletermswhich is preserved byβ-reduction: this
allows to simulate a computation starting from a term typeable in the intersection discipline by
means of a computation starting from a simply typeable term. Our approach proves strong
normalization for the intersection system naturally by means of purely syntactical techniques. The
paper extends the results presented in [Bucciarelli, De Lorenzis, Piperno, Salvo,Some
Computational Properties of Intersection Types, LICS’99] to the whole intersection type system of
Barendregt, Coppo and Dezani, thus providing a complete proof of a conjecture proposed by
Leivant in 1990: all functions uniformly definable using intersection types are already definable
using Curry types.

1. Introduction

Theλ-calculus originates as atype-freetheory of functions: every term may be considered either
as a function or as an argument, and no syntactic restriction is imposed on function application.
This makes the system powerful enough to represent all computable functions.

Types are syntactical objects assigned to pure terms in order to give a description of their
functional behavior. The constraints imposed by types usually restrict expressiveness, since the
set of legal (well typed) terms is in general a proper subset of untyped ones, and hence the set of
representable functions is in general smaller than the set of computable ones.

In this paper, we compare function definability in intersection type systems with function
definability in the simply typed lambda-calculus.

The simply typed lambda calculus (λ→) was introduced by Curry in (Cur34), while inter-
section types originate in works by Barendregt, Coppo and Dezani (CDC80; BCDC83; Sal78).
From the point of view of the set of typeable terms, simple types are much less expressive than
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intersection types. In particular, intersection types are able to type all untyped terms or, when the
universal type is disallowed, all strongly normalizing ones. From here onwards, we will consider
intersection types without the universal type.

The leitmotiv of our comparison of such type systems is a translation| · |D, which permits us
to mimic the computations of terms typeable in the intersection type discipline by means of the
computations of Curry typeable terms. Such translation is defined on typing derivations in the
strict intersection type system(λS

∩), which has been introduced in (CDCV81), and has received
a systematic treatment in (vB92; vB93). Although strict types are a proper subset of intersection
types, they preserve, from the point of typeability, the expressive power of the whole system
(vB93,§4.3).

More precisely, we will show that, for any termM typeable with strict intersection types, and
for any of its typing derivationsD, there exists a term̂MD , which is typeable in the Curry system
and which is able to “represent” the whole computation ofM. In other words, theλ-calculus
with intersection types can be embedded into the simply typed calculus. This will allow us to
simulate all possible reductions starting fromM by means of reductions of̂MD . Hence, using
purely syntactic techniques, strong normalization and lambda definability inλS

∩ are reduced to
the same problems for Curry typeable terms.

The first result that we present is a new proof of the strong normalization property for intersec-
tion types. We recall here that there is a close relationship between the definability problem and
the “difficulty” of a normalization proof in typedλ-calculi (see (FLO83, Sections 2 and 6)). Sim-
ply typedλ-calculus allows for normalization proofs which assign a decreasing metric to terms
during reduction (Gan80b; Gan80a). On the other hand, normalization in polymorphicλ-calculi
is usually proven using variants of the so-calledcomputabilitytechnique ((Tai67)), which has a
merelysemanticalnature (namely, it is not based on a metric approach): consider, as an example,
Girard-Reynolds second orderλ-calculus (Gir71; Rey74).

We will present a normalization proof for theλ-calculus with intersection types which only
makes use of syntactical techniques, in that it reduces the strong normalization problem for in-
tersection types to the case of Curry types. Different syntactical approaches and normalization
proofs forλ-calculus with intersection types are (KW95) and (KP99).

After having discussed the normalization property, we compare simple and intersection types
with respect to the problem ofλ-definability. In such case, the relationship between the systems
is not as clear as from the typeability perspective.

Intersection types have been proposed in the design of the type system of concrete program-
ming languages, as an alternative to parametric polymorphism. An example is the language
Forsyth proposed by Reynolds (Rey96b; Rey96a). Intersection types allow a form ofdiscrete
polymorphism, since the same variable can appear inside a term in a finite number of places
where different functionalities are required. Observe that this kind of polymorphism is not to be
confused withoverloading, where computations vary according to types (CGL95).

However, as already observed by Leivant (Lei90), typings obtained in the intersection type
discipline may be highlynon–uniform. In particular, it may happen that a termM, representing an
unary numeric functionϕ, needs to be typed with different types depending on its argumentn (see
Example 4.3). Type inference for intersection types is undecidable, since the typeability problem
is equivalent to termination; also for decidable fragments (KW99), it appears quite unnatural
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to design a compiler which checks the functional behavior of a program statically, taking into
account all possible inputs.

These considerations lead to a more natural notion of lambda definability in the presence of
types, which requires that a term representing a function must be uniformly typed independently
from its possible inputs.

Once we have imposed the uniformity condition, we emerge with the following scenario. The
severe restrictions imposed by the structure of Curry types allow the simply typedλ-calculus to
uniformly represent only a proper subset ofelementary functions, a strict subset of total recursive
ones. Even simple numeric functions, such as the predecessor function, cannot be represented
(see (Sch76)). Indeed, the class of representable functions has been characterized in (Sch76;
Sta79; Sta82; Zai91; Lei93). A first attempt to compare the expressiveness of simple and inter-
section types appears in (Lei90), where it was proved that functions uniformly representable in
the intersection system are elementary, whereas all total computable functions are representable
in a non-uniform way. In addition, starting from these results, Leivant conjectured that the class
of functions uniformly representable in the intersection discipline coincides with the class of
functions definable in the Curry system. The proof of this conjecture is the main achievement
presented in the present paper.

Note that Leivant’s results have a purely semantical nature, since the considered systems are
compared by characterizing the class of definable functions. In contrast, we obtain our results
using syntactical techniques only.

As already mentioned, we define an embedding which maps every typing derivation in the
strict intersection type system to a Curry typeable term. In some sense, the term subject of the
typing has the same computational behavior as the Curry typeable term obtained via a translation
function| · |D. Since we are able to map computations of terms typeable inλS

∩ into computations
of terms typeable inλ→, it is natural to ask whether our syntactic approach can be used to
compare the expressive power ofλ→ andλS

∩ from the point of view of representable functions.

As a matter of fact, by translating a typing of a term which uniformly represents a numeric
functionϕ, we obtain a Curry typeable term which representsϕ modulo suitable coding of the
arguments and decoding of the result. The structure of derivations typing Church numerals in the
intersection system, and their translations, will be analyzed. Finally, we define Curry typeable
terms which realize the aforementioned coding and the corresponding decoding, thus allowing a
proof of Leivant’s conjecture in the case of strict intersection types.

A preliminary paper presenting such results appeared in (BDLPS99). In this paper, we com-
plete the proofs in (BDLPS99) and we extend the characterization to the full intersection type
system of Baredregt-Coppo-Dezani (λBCD

∩ ), removing the restrictions imposed by strict types.
Such an extension is not straightforward, for two main reasons: (i) the systemλBCD

∩ is not syntax-
directed, so that the translation of derivations cannot be adapted to it; (ii) the systemλBCD

∩ allows
more typings to be derived, hence the uniformity condition must be completely re-analyzed. A
key role in our final characterization is played by theη-rule of theλ-calculus, which enables us
to fill the gap between the systemsλBCD

∩ andλS
∩.



Antonio Bucciarelli, Adolfo Piperno and Ivano Salvo 4

1.1. Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce firstly some basic termi-
nology about type systems, and then simply typed lambda calculi (or Curry type system) and the
strict intersection type system, together with some of their basic results.

We will then (Section 3) introduce a translation function which transforms a typing derivation
in the intersection type assignment system into a term typeable with Curry types. We will then
show that the translation is preserved byβ-reduction. Using this fact, we will be able to give a
simple, syntactic proof of the strong normalization property for the strict intersection type system
that stems from strong normalization for the simply typed lambda calculus.

In Section 4, we analyze some pathologies of typings in the intersection type discipline. In
particular, we show that some terms, representing functions in the untyped scenario, have to be
typed with different types to be applied to a term representingn, for differentn. Thus, a more
natural definition of definability for typed lambda calculi is introduced. This definition, due to
Leivant, requires that a term whichuniformlyrepresents a function is type independent from any
particular input it has to be applied to. Leivant conjectured that intersection types do not increase
the set of uniformly representable functions with respect to Curry types.

The translation defined in Section 3 maps a typing derivation inλS
∩ for a termM to a Curry

typeable termM̂. In Section 5, we argue about how to useM̂ to represent a numeric functionsϕ
in λ→, whenM uniformly representsϕ in λS

∩. We show that in a particular, but significant case,
M̂ itself “almost represents”ϕ.

In Section 6, we show that̂M represents computations over an unusual class of numerals: we
characterize such numerals and obtain a general method for exploitingM̂ in order to representϕ
by a Curry typeable term. This allow us to give a positive answer to Leivant’s conjecture in the
case of strict intersection type system.

Finally, we analyze relationships between different intersection type systems, with respect to
the problem of uniform definability of numeric functions, and extend our result to the system
λBCD
∩ .
Some remarks and directions for further work conclude the paper.

2. The Type Systems

We assume the reader to be familiar with the basic definitions and properties of pure and typed
lambda calculus, for which we refer to (Bar84) and (Bar92). In particular,Λ denotes the set of
untypedλ-terms. Terms will be considered moduloα-equivalence, and the so-calledvariable
conventionwill be assumed: bound variables are all distinct and different from free ones.

We start giving some general terminology and notations about typed lambda calculi.

Definition 2.1. Let λT be a typedλ-calculus:

— TypeT denotes the set of types forλT . We use small greek letters for types, with the convention
thatα, β andγ denote type variables.

— M:τ is called astatement, whereM ∈ Λ is thesubjectandτ ∈ TypeT is thepredicateof the
statement.

— A basisis a partial function from term variables to types ofλT . Sometimes it is convenient to
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(Var)→
A(x) = σ
A`→ x:σ

(→I)→
A∪{x:σ} `→ M:τ
A`→ λx.M:σ→ τ

(→E)→
A`→ M:σ→ τ A`→ N:σ

A`→ (M N):τ

Fig. 1. The type assignment system ofλ→

consider a basis as a set of statements where subjects are distinct variables. The set of bases
is indicated byBasesT . We use uppercase roman letters for bases.

— B`T M:τ is a judgment(or a typing). Judgments are derivable from axioms and rules ofλT .
If B is the empty basis, we writèT M:τ for {} `T M:τ.

— A term M is typeablein λT if there exists a basisB∈ BasesT and a typeτ ∈ TypeT such that
the judgmentB`T M:τ is derivable inλT . The set of typeable terms is denoted byΛT .

— D[A`T M:σ] denotes atyping derivationin λT proving the typingA`T M:σ.
— The set of all typing derivations inλT will be denoted byDerT .

2.1. Lambda Calculus with Simple (or Curry) Types

The simply typedλ-calculus originates from Church’s work
(Chu40). We are interested in theimplicit typingapproach, introduced by Curry in (Cur34) for

the theory of combinators. The system was adapted for the lambda calculus in (CF68).

Definition 2.2. Simple (or Curry) typesare generated using the following grammar:

σ ::= α | (σ→ σ), (1)

whereα ranges over a countable set of type variables. We callType→ the set of types resulting
from (1). As usual, the arrow type constructor,→, associates to the right and henceσ1→ σ2→
··· → σn→ τ is an abbreviation forσ1→ (σ2→ (· · ·(σn→ τ) · · ·)).

Note that a typeσ always has the shapeσ1→ σ2→ ··· → σn→ α, for some type variableα and
n≥ 0.

Definition 2.3. In thesimply typedλ-calculusλ→, judgments of the shapeA `→ M:σ, derived
from the rules in Fig. 1, are proven.

2.2. Lambda Calculus With Strict Intersection Types

A family of intersection type systems have been introduced in the literature, starting from the
work of Coppo and Dezani in (CDC80). Our approach for comparing intersection type systems
and Curry type system works for a syntax directed system, thestrict intersection type system. We
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(Var)s
A(x) = τ1∩ . . .∩ τn 1≤ i ≤ n

A`s x:τi

(→I)s
A∪{x:σ} `s M:τ
A`s λx.M:σ→ τ

(→E)s
A`s M:(τ1∩·· ·∩ τn)→ τ A`s N:τ1 . . .A`s N:τn

A`s MN:τ

Fig. 2. The type assignment system ofλS
∩

will introduce other intersection type disciplines and discuss the extension of our results to them
in Section 7.

Following (vB93, Ch. 4), we define a restricted version of the intersection type assignment sys-
tem of Coppo and Dezani (CDC80). It is based on a restricted set of types, in which intersections
appear in the left-hand side of the arrow constructor only.

Definition 2.4. Strict intersection typesare generated using the following grammar:

σ ::= τ1∩·· ·∩ τn (n≥ 1)
τ ::= α | (σ→ τ)

(2)

We call strict types(Types∩) the set of types resulting from (2) with start symbolτ, andstrict
intersection types(TypeS∩) the set of types originated with start symbolσ. Observe that strict
types do not contain intersections as principal type constructor and that strict intersection types
are just intersections of strict types.

Definition 2.5.

1 In λS
∩, judgments of the kindA`s M:τ, derived from the rules of Fig.2, are proven, whereA

contains statements of the shapex:σ, with σ ∈ TypeS∩ , andτ ∈ Types∩.
2 Moreover, the judgmentA`S M:σ is derived if and only if there exist typesσ1, . . . ,σn such

thatσ1∩ . . .∩σn = σ and, for all 1≤ i ≤ n, the judgmentA`s M:σi is derivable.

Observe that intersections of types may appear as predicates in bases, only; types assigned
to terms in derivations always belong toTypes∩. An important property that distinguishes this
system from other intersection type systems is that typing derivations aresyntax directed, i.e. we
can guess the last rule applied in a typing derivation just by looking at the syntactic structure of
the subject. We exploit this fact in the definition of the translation introduced in Section 3 and in
the proofs of its properties.

We end this section by stating basic properties of systemsλ→ andλS
∩ that will be referred to

in the sequel.

Proposition 2.6. For the systemsλ→ andλS
∩, the following properties hold(let λT stand for both

λ→ andλS
∩):

1 Basis Lemma: If B`T M:τ thenB|FV(M)`T M:τ.
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2 Subject Reduction: If B`T M:τ andM
∗−−→
β

M′, thenB`T M:τ.

3. A Translation from λS
∩ to λ→

The original proof of the fact that any term typeable inλS
∩ is strongly normalizing relies on a

computability argument. This is in sharp contrast with the case ofλ→, where strong normaliza-
tion can be proven by defining a (well founded) “measure” for typeable terms, which strictly
decreases as reductions go on.

In this section, we introduce an embedding ofλS
∩ into λ→, which allows us to mimic any re-

duction path rooted in a term typeable inλS
∩ with a (in general longer) reduction path rooted in

a suitable simply typed term. An immediate corollary of this is a syntactic proof of strong nor-
malization forλS

∩. Moreover, since our embedding allows to represent inλ→ any “computation”
feasible inλS

∩, it provides a framework for studyingλ-definability in these systems. This will be
the subject of Section 4.

The mentioned embedding is based on a function,| · |D, which associates to any typing deriva-
tion in λS

∩ a pureλ-term. We prove that the image of such map is a subset ofΛ→, and that the
map commutes with respect toβ-reduction. To obtain such results, we also define a translation of
types,| · |T, which maps strict intersection types to simple types, and a translation of bases,| · |B,
which mapsBasesS to Bases→.

Notation 3.1. In the next definitions, we use the following notational convention concerning
variable names: we consider an injective function

f : Var×N→ Var,

and, for anyx∈ Var,n∈ N, we writexn for f (x,n).

Definition 3.2. The functions

| · |T :Types∩→ Type→ (translation of types),
| · |B :BasesS→ Bases→ (translation of bases)

are inductively defined as follows:

|α |T = α
|(σ1∩·· ·∩σn)→ τ |T = |σ1 |T→ ··· →|σn |T→|τ |T

|{} |B = {}
|A∪{x:σ1∩·· ·∩σn}|B = |A|B ∪{x1: |σ1 |T, . . . ,xn: |σn |T}.

Note that the term variablesx1, . . . ,xn arefreshwith respect toA, i.e. they do not appear inA.

Definition 3.3. Define the function| · |D :DerS→ Λ (translation of derivations)inductively on
the structure of typing derivations:

(i)

∣∣∣∣A(x) = σ1∩·· ·∩σn

A`s x:σi

∣∣∣∣D = xi ;
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(ii)

∣∣∣∣∣∣
D1

A∪{x:σ1∩·· ·∩σn} `s M:τ
A`s λx.M:(σ1∩·· ·∩σn)→ τ

∣∣∣∣∣∣
D

= λx1 . . .xn.

∣∣∣∣ D1

A∪{x:σ1∩·· ·∩σn} `s M:τ

∣∣∣∣D ;

(iii)

∣∣∣∣∣∣
D0

A`s M:(τ1∩·· ·∩ τn)→ τ
D1

A`s N:τ1 . . .

Dn

A`s N:τn

A`s MN:τ

∣∣∣∣∣∣
D

=

∣∣∣∣ D0

A`s M:(τ1∩·· ·∩ τn)→ τ

∣∣∣∣D ∣∣∣∣ D1

A`s N:τ1

∣∣∣∣D . . . ∣∣∣∣ Dn

A`s N:τn

∣∣∣∣D .
Remark 3.4. Typing with strict intersection types is totally syntax-driven, by considering in-
tersections as equivalent modulo permutations and repetitions of their components. This equiv-
alence is also widely adopted in the literature on intersection types and relies on the intuitive
set-interpretation. This is not the case of the present paper. The difference betweenσ∩ τ and
τ∩σ (σ∩σ andσ) becomes significant with respect to the translation in the previous definition.
For instance, two derivations, assigning toλx.x the typesσ∩ τ→ σ andτ∩σ→ σ, respectively,
are mapped into different lambda terms,λx1x2.x1 andλx1x2.x2, respectively.

An expected property of the translation defined above is that it maps a typing derivation ofλS
∩

into a simply typeable term.

Lemma 3.5. For any derivationD of the typingA`s M:σ in λS
∩, we have that

|A|B`→|D |D : |σ |T

is a typing inλ→.

Proof. The proof proceeds by induction on the structure of the typing derivation. We have to
consider three cases, depending on the last applied rule inD.

Case 1The last applied rule is (Var)s. In this case, the derivationD has the shape:

A(x) = σ1∩ . . .∩σn 1≤ i ≤ n

A`s x:σi
.

Then{x1: |σ1 |T, . . . ,xn: |σn |T} ⊆|A|B and|D |D= xi . Hence, by rule (Var)→, we obtain

|A|B`→ xi : |σi |T

and this case is settled.
Case 2The last applied rule is (→E)s. In this case, the derivationD has the shape:

D0 D1 · · · Dn

A`s MN:τ

where

D0 =
D ′0

A`s M:(τ1∩·· ·∩ τn)→ τ
D1 =

D ′1
A`s N:τ1

. . . Dn =
D ′n

A`s N:τn
.
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By the induction hypothesis, we have:

|A|B`→|D0 |D : |τ1 |T→ ··· →|τn |T→|τ |T,

|A|B`→|Di |D : |τi |T, for 1≤ i ≤ n.

By definition of| · |D, we have:

|D |D=|D0 |D|D1 |D . . . |Dn |D,

and this case is settled, applyingn times the rule (→E)→.
Case 3The last applied rule is (→I)s. In this case, the derivationD has the shape:

D ′

A`s λx.M:(σ1∩·· ·∩σn)→ τ

where, for some derivationD ′′, the shape ofD ′ is

D ′′

A∪{x:σ1∩·· ·∩σn} `s M:τ .

By the induction hypothesis, we have:

|A|B ∪{x1: |σ1 |T, . . . ,xn: |σn |T} `→|D ′ |D : |τ |T

so that, applyingn times the rule (→I)→,

|A|B`→ λx1 . . .xn. |D ′ |D : |σ1 |T→ ··· →|σn |T→|τ |T .

The case is settled by observing that

|D |D= λx1 . . .xn. |D ′ |D

and

|(σ1∩·· ·∩σn)→ τ) |T=|σ1 |T→ ··· →|σn |T→|τ |T .

A crucial property of the presented translation is that it enjoys a commutation property with
respect toβ-reduction.

Lemma 3.6. Let D be a derivation of the typingA `s M:τ in λS
∩ and letM −−→

β
N. Then there

exists a derivationD ′ of the typingA`s N:τ such that†:

|D |D +−−→
β
|D ′ |D .

Proof. The proof proceeds by induction on the structure of the derivationD. The only in-
teresting case is when the last rule applied inD is (→E)s, and the subject of the judgment is
the contracted redex. The other cases are settled by straightforward applications of induction

† Observe that this statement implies the subject reduction property.



Antonio Bucciarelli, Adolfo Piperno and Ivano Salvo 10

hypothesis. In the considered case,D has the shape:

D0

A`s λx.P:τ1∩·· ·∩ τn→ τ
D1

A`s Q:τ1
. . .

Dn

A`s Q:τn

A`s (λx.P)Q:τ
(3)

The variablex appears inD0 as the subject ofq instances (for someq≥ 0) of the rule (Var)s.
Hence, a setPairs(D,x) can be defined as follows, where 1≤ j ≤ q:

(i, j) ∈ Pairs(D,x) ⇔
A j(x) = τ1∩·· ·∩ τn

A j `s x:τi
appears inD.

Clearly, for everyj ∈ {1, . . . ,q}, A j ⊇A. By theBasis Lemma(Proposition 2.6), for any(i, j)∈
Pairs(D,x), a derivationD j

i of the typingA j `s Q:τi is built by replacing inDi every occurrence
of a basisB with B∪A j . It follows that the derivationD ′ is obtained out ofD0 in two steps:

1 replacing every occurrence of

A j(x) = τ1∩·· ·∩ τn

A j `s x:τi

with D j
i ;

2 replacing every occurrence of the variablex with Q, in the subjects of the derivation obtained
from D0 by applying step 1.

It turns out thatD ′ is a derivation of the typing

A`s P[x := Q] :τ.

Moreover, by a straightforward induction on the structure ofD0, observing that

∀i, j.(i, j) ∈ Pairs(D,x) ⇒ |D j
i |

D=|Di |D,

the following holds:

|D ′ |D=|D0 |D [x1: =|D1 |D, . . . ,xn: =|Dn |D ]. (4)

Now,

|D |D =
∣∣∣∣ D0

A`s λx.P:(τ1∩·· ·∩ τn)→ τ

∣∣∣∣D |D1 |D . . . |Dn |D

= (λx1 . . .xn. |D0 |D) |D1 |D . . . |Dn |D

+−−→
β
|D0 |D [x1 :=|D1 |D, . . . ,xn :=|Dn |D]

= |D ′ |D , by (4),

which proves the lemma.

It is easy to see that the commutation property holds for the reflexive and transitive closure of
−−→

β
, too.



Intersection Types andλ-definability 11

Lemma 3.7. Let D be a derivation of the typingB`s M : σ in λS
∩, and letM

+−−→
β

N. Then there

exists a derivationD
′
of the typingB`s N : σ such that

|D |D +−−→
β
|D ′ |D .

Proof. The proof proceeds by induction on the length of the reduction ofM
+−−→
β

N, using

Lemma 3.6.

We are now able to prove strong normalization inλS
∩, reducing it to strong normalization in

λ→.

Theorem 3.8 (Strong Normalization forλS
∩). For anyM ∈Λ, if M is typeable inλS

∩, then every
β-reduction path starting fromM is finite.

Proof. If M is typeable inλS
∩, then there exists a basisB and a typeσ such thatB`s M : σ is

derivable. LetD be a derivation of such typing. IfM has an infiniteβ–reduction path, then, by
Lemma 3.7,|D |D also has an infiniteβ-reduction path, and by Lemma 3.5,|B|B`→|D |D : |σ |T,
so that|D |D has a typing inλ→, hence it is strongly normalizing, a contradiction.

4. Lambda Definability

In this section, we discuss lambda definability in typed lambda calculi. We refer to (Bar84, Ch. 6)
for basic definitions of numeral system and lambda definability in the untyped lambda-calculus.
For the sake of simplicity, we focus on unary functions; every definition and result can be easily
extended to the case of functions withk> 1 arguments.

In this work, we consider the numeral system introduced by Church.

Definition 4.1 (CHURCH NUMERALS ). The Church numeralcn is the lambda term:

λpq.pnq.

Definition 4.2 (NUMERAL TYPES). We say thatτ ∈ TypeT is a (Church) numeral typeif there
existsn∈N such thatτ can be assigned tocn in λT . We say thatτ is afull (Church) numeral type
if τ can be assigned to all Church numerals inλT .

Church numerals can be uniformly typed inλ→. Each Church numeral can be typed with an
instance of the principal type of Church numerals in the Curry type system,(γ→ γ)→ γ→ γ.
We will write N[γ] as an abbreviation for such type.

Observe that Church numerals are essentiallyiterators. In Example 5.3, we use this fact to
define the exponential function as the iteration of multiplication and addition.

4.1. Lambda Definability in Type Systems

From the definition of function representation given in the previous subsection, it is easy to show
that there are functions representable inλS

∩ which are not representable inλ→. In particular,
using the fact that all strongly normalizing terms are typeable inλS

∩, one can show that all total
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computable functions are definable inλS
∩, whereas only a subset of elementary functions are

representable inλ→. We consider the following example.

Example 4.3. Let E ≡ λx.x(λy.yx)x. For any Church numeralcn, Ecn reduces toN ≡ cn . . .cn︸ ︷︷ ︸
n+1

,

hence providing the Church numeralcϕ(n), where:

ϕ(n) = nn
..

n}
n times

.

ThusE computes a non–elementary function; moreover, for alln, Ecn is typeable inλS
∩, since

it is strongly normalizing. We observe that the typing ofEcn depends onn, as is clear from
the structure ofN. This example shows that terms which represent functions may have highly
“non–uniform” typings inλS

∩, depending on its arguments.

It is interesting to investigate the set of representable functions under a reasonable uniformity
condition on typings ofMcn, whereM represents a numeric function (Lei90): intuitively, we
require that there exist typesσ andτ such thatM is typeable withσ→ τ, and, for alln, cn is
typeable withσ.

Definition 4.4 (UNIFORM REPRESENTATION OF FUNCTIONS I). Let λT be a typed lambda
calculus andϕ : N→ N a partial numeric function. We say that a lambda termM representsϕ
uniformly in λT , if there are typesσ andτ such that:

1 for all n∈ N, such thatϕ(n) is defined,Mcn
∗−−→
β

cϕ(n);

2 σ is a full numeral type inλT ;
3 the judgment{x:σ} `T Mx:τ is derivable inλT .

We callσ the input type, andτ theoutput typeof M.

If σ andτ are equal, we say thatM representsϕ strictly in λT .

For the type systems we are interested in, the following definition of uniform function repre-
sentation is equivalent.

Definition 4.5 (UNIFORM REPRESENTATION OF FUNCTIONS II). Let λT be a typed lambda
calculus andϕ : N→ N a partial numeric function. A lambda termM uniformly representsϕ, if
M is a closed term of the shapeλx.M′ for someM′, and the judgment̀ T M:σ→ τ is derivable
in λT , with σ a full numeral type inλT .

In the rest of the paper, we will use Definition 4.4 or Definition 4.5 up to convenience. Since
we consider type systems enjoying the subject reduction property, from the assumption that
Mcn

∗−−→
β

cϕ(n), we have thatτ is a numeral type assignable, at least, to each Church numeral

representing a natural number in the range ofϕ.
In (Lei90), Leivant proved that all functions uniformly representable inλS

∩ are elementary, as is
the case forλ→. Moreover, the argument showing that subtraction is not uniformly representable
in λ→ seems to apply also toλS

∩. Therefore, Leivant proposed the following conjecture.

Conjecture 4.6 (Leivant 1990).Functions uniformly (resp. strictly) representable inλS are al-
ready uniformly (resp. strictly) representable inλ→.
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The rest of the paper is devoted to prove Leivant’s conjecture in the case of strict intersection
types and to extend the result to other intersection type disciplines.

5. A Technical Description of the Syntactical Approach

In this section, we discuss how our translation function of Section 3 can be used to compare
the sets of representable functions inλ→ andλS

∩. Our syntactic approach differs strongly from
previous attempts to solve Leivant’s conjecture, which were based on semantic characterizations
of the set of representable functions inλ→ andλS

∩. Indeed, for every termM which represents
a numeric function inλS

∩, we exploit ourλS
∩ embedding intoλ→, to construct a Curry typeable

term which represents the same function.
First we describe the general approach, then we discuss a restricted, yet meaningful case, and

finally we present an example. In the next section, we prove formally Leivant’s conjecture.

5.1. General Description of the Approach

Let ϕ : N→ N be a numeric function uniformly represented inλS
∩, say by a termM ≡ λx.M′.

Therefore, a type assignable toM in λS
∩ has the shapeτ1∩ . . .∩ τk→ τ0.

Moreover, it follows from the uniformity condition thatτ1, . . . ,τk are full numeral types inλS
∩

and, by Subject Reduction property, we have that any Church numeralcm such thatϕ(n) = m,
for somen, can be typed withτ0.

Let D be a derivation of the judgment̀S M : τ1∩ . . .∩ τk→ τ0, and define

M̂ ≡|D[`S M : τ1∩ . . .∩ τk→ τ0] |D . (5)

SinceM representsϕ uniformly, and using the definition of the translation function| · |D, we
have that for alln ∈ N and for all D1

n [`S cn : τ1], . . . ,Dk
n[`S cn : τk] there exists a derivation

Dn[`S Mcn : τ0] such that:

|Dn |D= M̂ |D1
n |D . . . |Dk

n |D . (6)

Our aim is to use the term̂M in order to construct a term representing uniformlyϕ in λ→,
since we know, by Lemma 3.7, that:

M̂ |D1
n |D . . . |Dk

n |D
∗−−→
β
|D ′[`S cϕ(n)] |D≡ ĉϕ(n)

for some derivationD ′.
However, the simply typed term̂M is not a representation ofϕ in general: indeed, in (6),̂M

needsk arguments which may not be Church numerals; moreover, alsoĉϕ(n) may not be a Church
numeral.

To overcome such problems, we will find suitable simply typeable terms,

D[τ],E[τ1], . . . ,E[τk],
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such that:

“encoders”: E[τi ]cn
∗−−→
β
|D[`S cn : τi ] |D for someD,

“decoder”: D[τ](|D[`S cn : τ0] |D) ∗−−→
β

cn for all D,

in such a way that the term

λx.D[τ](M̂(E[τ1]x) . . .(E[τk]x)) (7)

is Curry typeable, and, for alln, reduces tocϕ(n). As we will see, types of encodersE[τi ] depend
on the type|τi |T, and therefore the term in (7) cannot be typeable inλ→, because we need to give
different types to the variablex. We will therefore introduce a Curry typeable encoderE[τ1,... ,τk,τ],
such that:

E[τ1,... ,τk,τ]cn
∗−−→
β

λz.zĉn
1 . . . ĉn

k,

whereĉn
i =|D i

n[`S cn : τi ] |D for some derivationD i
n. Hence we have that the term:

P = D[τ](E[τ1,... ,τk,τ]cnM̂) (8)

reduces as follows:

P
∗−−→
β

D[τ](M̂ĉn
1 . . . ĉn

k) ∗−−→
β

D[τ]ĉϕ(n)
∗−−→
β

cϕ(n).

Note that the termsD[τ] andE[τ1,... ,τk,τ] will be proven to have simple types. In our notation,
they are indexed over intersection types, because their construction depends on intersection types.

We will build terms satisfying all the mentioned requirements. For the sake of clarity, we start
with a simple case.

5.2. A Strengthened Uniformity Condition

Since Church numerals are essentially iterators, it is interesting to consider the significant case
in whichτ1, . . . ,τk,τ0 are instances of the principal simple type of Church numerals,(α→ α)→
α→ α.

Fact 5.1. If τ = (τ′→ τ′)→ τ′→ τ′ ∈ Types∩, then

|D[`S cn : τ] |D≡ cn.

Proof. Merely observe that, sinceτ′ is not an intersection, in any derivation of`S λpq.pnq : τ
we use the statementsp : τ′→ τ′ andq : τ′, and hence the translation| · |D does not generate new
variables.

Using this fact, the definition of| · |D, and Lemma 3.7, we obtain the following.

Proposition 5.2. Let M be a term that uniformly representsϕ :N→N in λS
∩, with typeτ1∩ . . .∩

τk→ τ0, and letτ1, . . . ,τk,τ0 be instances of(α→ α)→ α→ α. Then the term

M̂ ≡|D[`S M : (τ1∩ . . .∩ τk)→ τ0] |D
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is such that, for alln∈ N,

M̂ cn . . .cn︸ ︷︷ ︸
k

= cϕ(n).

thatuniformly represents inλ→ the

In comes out that̂M needsk> 1 copies ofcn to computeϕ(n). Of course, the functionϕ could
be uniformly represented inλ→ by a term, totally unrelated tôM, which does not requirek copies
of the input. This is shown by the following example.

Example 5.3. The functionϕ(x) = xx is representable inλS
∩ by the termω = λx.xx, typeable

with σ = ((ρ→ τ)∩ρ)→ τ, for arbitrary typesρ andτ. The termω is the typical example of
a non Curry typeable term (the restrictions imposed by Curry types prevent self application).
The translation| (D[`S ω : σ]) |D gives the termλxy.xy which represents the binary exponential
function in λ→. We now show a term typeable inλ→ that representsϕ. Let τ0 = (o→ o)→
(o→ o) andτi+1 = τi→ τi . Observe thatτ0 = N(o), τ1 = N(o→ o) andτn+2 = N(τn) . Consider
the termsA (typed withτ0→ τ0→ τ0) andM (typed withτ2→ τ0→ τ0), which respectively
compute addition and multiplication on natural numbers (we write types used in the derivation
as superscript, to increase readability):

A = λxτ0yτ0 po→oqo.xp(ypq), M = λxτ2yτ0.x(Ay)c0.

Then the term:

E = λxτ2.x(Mx)c1

computes the unary exponential function. As this example shows, strict intersection types add
expressive power at least in the sense of compact representation of functions.

Example 5.4. In order to anticipate the general techniques of the next sections, we show another
Curry typeable term which computesϕ, where we use the termλxy.xy that we obtain from the
translation. Observe that we can type the successor functionS with both τ0→ τ0 andτ1→ τ1,
and the Church numeralc0 with bothτ0 andτ1. As a consequence, the pairZ? =<c0,c0> can be
typed with(τ1→ τ0→ γ)→ γ, for an arbitrary typeγ. The term:

S? = λz(τ1→τ0→γ)→γwτ1→τ0→γ.z(λyτ1
1 yτ0

2 .w(Sy1)(Sy2))

maps a pair of Church numerals,<cn,cm>, to the pair<cn+1,cm+1>. Following types indicated
inside terms, it easy to see thatZ? can be typed withτ1× τ0 andS? with (τ1× τ0)→ (τ1× τ0);
hence we can iterate them. Choosingγ = τ0, the term:

λxN(τ1×τ0).(xS?Z?)(λxy.xy)

is typeable inλ→ with the typeN(τ1× τ0)→ τ0, and represents the functionϕ(x) = xx.

6. A Proof of Leivant’s Conjecture

In the Curry system, types of Church numerals are instances of theprincipal type scheme(α→
α)→ α→ α. This is no longer the case inλS

∩. However, we can analyze structural properties
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A(x) = µ1∩·· ·∩µ`(
andµi ≡ µi

1∩ . . .∩µi
ki
→ µi

0

for some 1≤ i ≤ `

)
A`s x:µi

1∩ . . .∩µi
ki
→ µi

0

D1

A`s xn−1y:µi
1 . . .

Dki

A`s xn−1y:µi
ki

A`s xny:τ′ (≡ µi
0)

B`s λy.xny:ρ→ τ′

C `s λxy.xny:τ (≡ µ→ ρ→ τ′)
where

B = C∪{x:µ≡ µ1∩·· ·∩µ`} and, for 1≤ j ≤ `,µi ≡ µj
1∩ . . .∩µj

k j
→ µj

0;

A = B∪{y:ρ≡ ρ1∩·· ·∩ρm};

Fig. 3. Type structure of Church numerals

of typing derivations (vB92,§4.1.5) in order to characterize the shape of a typeτ which can be
assigned inλS

∩ to a Church numeral. Indeed, Figure 3 shows that

τ≡ µ→ ρ→ τ′,

whereµ≡ µ1∩ . . .∩µ` andρ ≡ ρ1∩ . . .∩ρm, for some`,m∈ N. Moreover, every typeµi (1≤
i ≤ `) has the shapeµi

1∩ . . .∩µi
ki
→ µi

0.
Our first goal is to characterize the shape of terms produced by the translation of typing deriva-

tions of Church numerals, since such terms are not, in general, Church numerals themselves.

Definition 6.1. Let τ≡ µ→ ρ→ τ′ be a Church numeral type inλS
∩, where

µ≡ µ1∩ . . .∩µ`,ρ≡ ρ1∩ . . .∩ρm andµi ≡ µi
1∩ . . .∩µi

ki
→ µi

0 (1≤ i ≤ `).

We inductively define a family of sets of strict intersection types:

T0
τ = {ρ1, . . . ,ρm},

Th+1
τ =

⋃
1≤i≤`{µi

0 | ∀s∈ {1 . . . ,ki}.µi
s∈ Th

τ }.

Moreover, we defineTτ =
⋃

n∈NTn
τ .

We use the next example to clarify the intended meaning of Definition 6.1.

Example 6.2. Let τ≡ µ→ ρ→ β, where

µ≡ (α∩β→ β)∩ (γ∩β→ β)∩ (α→ γ)∩ (γ→ α) andρ≡ α∩β.

We have

T0
τ = {α,β} T1

τ = {β,γ} T2
τ = {α,β} T3

τ = {β,γ}
· · · T2k−1

τ = {β,γ} T2k
τ = {α,β} · · ·

ThereforeTτ = {α,β,γ}.
A straightforward induction shows thatTn

τ is exactly the set of types which can be assigned
in λS

∩ to the termpnq (thebodyof the Church numeralcn) with basis{p:µ,q:ρ}. Therefore, if
a given typeσ belongs toTn

τ for all n, thenµ→ ρ→ σ is a full numeral type. We observe that,
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given the general structure of Church numeral types (Figure 3), we have

∀n.Tn
τ ⊆ {µ1

0, . . . ,µ
`
0,ρ1, . . . ,ρm}.

In this example, the typing

{p:µ,q:ρ} `S pnq:β (9)

is derivable for alln. But Tτ contains typesα,γ such that the typings

{p:µ,q:ρ} `S pnq:α and{p:µ,q:ρ} `S pnq:γ

arenot derivable for everyn. More precisely, in order to obtain the typing (9), for somen> 0,
either the typing{p:µ,q:ρ} `S pn−1q:α or the typing{p:µ,q:ρ} `S pn−1q:γ must be derived.
The former can be derived only ifn−1 is even and the latter only ifn−1 is odd, since

Tk
τ =

{
{α,β} if k is even,
{β,γ} if k is odd.

Remark 6.3. Let τ ≡ µ→ ρ→ τ′ be a Church numeral type inλS
∩, with µ≡ µ1∩ . . .∩µ`,ρ ≡

ρ1∩ . . .∩ρm andµi ≡ µi
1∩ . . .∩µi

ki
→ µi

0 (1≤ i ≤ `). We will assume w.l.o.g. that

{µi
1, . . . ,µ

i
ki
,µi

0} ⊆ Tτ, (10)

for eachi ∈ {1, . . . , `}. Indeed, if (10) does not hold for some 1≤ i ≤ `, then the judgment
B`S p:µi is never used in any derivation of`S cn:τ.

Given a Church numeral typeτ as in Figure 3, we characterize the translations inλ→ of any
possible derivationD of the judgment{p:µ,q:ρ} `S pnq:σ, for all n and for allσ ∈ Tτ. In the
next definition,q j andp j are term variables generated by the translation| · |D (Definition 3.2). In
particular,q j is assigned type|ρ j |T, while pi is assigned type|µi |T.

Definition 6.4 (PSEUDONUMERALS). Let τ be a Church numeral type. For anyσ ∈ Tτ, we
define a set of termsBτ,σ =

⋃
n∈NBτ,σ

n as follows:

Bτ,σ
0 = {q j | ρ j = σ},

Bτ,σ
k+1 = {p jQ1 . . .Qk j

| 1≤ j ≤ l , σ = µj
0 andQr ∈ Bτ,µj

r
k (1≤ r ≤ k j)}.

Moreover, we define the setNτ =
⋃

n∈NNτ
n of τ-pseudonumeralsas follows:

Nτ
k = {λp1 . . . p`q1 . . .qm.b | b∈ Bτ,τ′

k }.

The structure of (B̈ohm trees of) pseudonumerals is shown in Figure 4.

Example 6.5. Let τ≡ µ→ ρ→ β be as in Example 6.2, i.e.

µ≡ (α∩β→ β)∩ (γ∩β→ β)∩ (α→ γ)∩ (γ→ α) andρ≡ α∩β.
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n̂ = λp1 . . . p`q1 . . .qm. p j

ooooooooo

OOOOOOOOO

p j1

|||| BBBB
. . . p

jkj

||| BBB

p− . . . p− p− . . . p−

q− q−q− q− q− q− q−q− q−

(all paths stop at depthn)

Fig. 4. Structure of pseudonumerals

We haveTτ = {α,β,γ} and

Bτ,β
0 = {q2} Bτ,α

0 = {q1} Bτ,γ
0 = {}

Bτ,β
1 = {p1q1q2} Bτ,α

1 = {} Bτ,γ
1 = {p3q1}

Bτ,β
2 = {p2(p1q1q2)(p3q1)} Bτ,α

2 = {p4(p3q1)} Bτ,γ
2 = {}

Bτ,β
3 = {p1(p2(p1q1q2)(p3q1))(p4(p3q1))}

Bτ,α
3 = {} Bτ,γ

3 = {p3(p4(p3q1))}

. . . . . . . . .

We observe that anyτ-pseudonumeralpn∈Nτ
n shares withcn the depthn of its Böhm tree. Hence,

the whole set of termsNτ
n can be considered as a redundant representation of the natural number

n.

Eachτ-pseudonumeralpn ∈ Nτ
n carries the same information provided by a typing derivation

of the judgment̀ S cn:τ.

Proposition 6.6. Let A = {p:µ,q:ρ} ∈ BasesS. For anyn∈ N andσ ∈ Tτ,

{|D |D|D is a typing derivation forA`S pnq:σ }= Bτ,σ
n .

Proof. Induction onn.
(n = 0). If q j ∈ Bτ,σ

0 , then there existsρ j such thatρ j = σ. In such a case, we haveA`s q:ρ j

and ∣∣∣∣A(q) = ρ1∩·· ·∩ρm

A`s q:ρ j

∣∣∣∣D = q j .

Conversely, if the typingA`S q:σ is derivable, then for somej, σ = ρ j andq j ∈ Bτ,σ
0 .

(n> 0). By definition ofBτ,σ
n , we have that a pseudonumeral bodyb belongs toBτ,σ

n if and
only if b ≡ piQ1 . . .Qr and for allr (1≤ r ≤ ki), Qr ∈Bτ,σr

n−1, σ≡ µi
0 andσr = µi

r . By the inductive



Intersection Types andλ-definability 19

λpq.p

mmmmmmmmm

p

�����
. . . p

jkj

p . . . p− p− . . . p−

q q−q− q− q− q− q−q− q−

Fig. 5. Extracting a Church numeral

hypothesis, we have thatQr ∈Bτ,σr
n−1 if and only if Qr =|Dr [A`S pn−1q:µi

r ] |D for some derivation
Dr and hence if and only if there exists a derivation of the following shape:

A(p) = µ1∩·· ·∩µ`
A`s p:µi

1∩ . . .∩µi
ki
→ µi

0

D1

A`s pn−1q:µi
1
. . .

Dki

A`s pn−1q:µi
ki

A`s pnq:µi
0≡ σ

By definition of| · |D, |D |D= piQ1 . . .Qr ≡ b.

6.1. Construction of the decoder D[τ]

Given a Church numeral typeτ, we are now ready to address the problem of constructing a
λ-termD[τ], which we have already calleddecoder, such that

D[τ] |D[`S cn:τ] |D ∗−−→
β

cn,

for every derivationD. The idea is to prune the tree of theτ-pseudonumeralpn, (Figure 4),
keeping its leftmost branch and collapsing the non–leaf variables of this branch into a single one,
hence reconstructing a Church numeral, as shown in Figure 5.

Lemma 6.7. Let τ ≡ µ→ ρ→ τ′ be a Church numeral type inλS
∩, with µ≡ µ1∩ . . .∩µ`,ρ ≡

ρ1∩ . . .∩ρm andµi ≡ µi
1∩ . . .∩µi

ki
→ µi

0 (1≤ i ≤ `). There exist a termD[τ] and a basisB[τ] such
that

(i) B[τ] `→ D[τ]: |τ |T→ (o→ o)→ o→ o;

(ii) D[τ]pn
∗−−→
β

cn, for anyn∈ N andpn ∈ Nτ
n.

Proof. We first define a Curry typeable termD such that, for everyn and for everyτ-pseudo-
numeralpn ∈ Nτ

n,

Dpn
∗−−→
β

cn.

We observe that, for anyn and for anypn ∈ Nτ
n, every free occurrence of the variablepi in the

bodybn of pn is followed by exactlyki arguments, sinceµi = µi
1∩ . . .∩µi

ki
→µi

0. Thus, considering
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the types

φi ≡ o→ . . .→ o︸ ︷︷ ︸
ki times

→ o (1≤ i ≤ `),

we are able to derive the typings

{pi :φi ,q
j :o}1≤i≤`,1≤ j≤m `→ bn:o,

for all σ ∈ Tτ,n∈ N andbn ∈ Bτ,σ
n .

We now consider, for 1≤ i ≤ ` and 1≤ j ≤m, the terms

Pi = λx1 . . .xki .px1 andQ j = q.

By assigning the typeo to everyx∈ {x1 . . .xki}, we have

{p:o→ o,q:o} `→ Pi :φi and{p:o→ o,q:o} `→ Q j :o.

In addition, a straightforward induction shows that

∀n∈ N,pn ∈ Nτ
n. pnP1 . . . P̀ Q1 . . .Qm

∗−−→
β

pnq.

It follows that the term

D≡ λxpq.xP1 . . . P̀ Q1 . . .Qm

has the required behavior. Moreover,

`→ D:ψ→ (o→ o)→ o→ o,

where

ψ≡ φ1→ ··· → φ`→ o→ . . .→ o︸ ︷︷ ︸
m times

→ o.

Hence,D accepts as argument a pseudonumeral having typeψ and transforms it into the cor-
responding Church numeral. In order to complete the proof, we slightly modify the previous
construction and we build a termD[τ], which depends onτ, accepting as argument a pseudon-
umeral with type| τ |T. We first observe that, w.l.o.g., a term can be typed using only one type
variable, sayo. Under such assumption, we have (1≤ i ≤ `)

|µi
0 |T= ξ1→ ··· → ξai → o

and

|µi
1 |T= ν1→ ··· → νbi → o

for someai ,bi ∈ N and some simple typesξ1, . . . ,ξai ,ν1, . . . ,νbi . Moreover, for 1≤ j ≤m,

|ρ j |T≡ ϕ1→ ··· → ϕr j → o,

for somer j ∈ N and some simple typesϕ1, . . . ,ϕr j , and

|τ′ |T≡ ϑ1→ ··· → ϑt → o,

for somet ∈ N and some simple typesϑ1, . . . ,ϑt . For 1≤ i ≤ ` and 1≤ j ≤m, we consider the
terms
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Pi = λx1 . . .xki s1 . . .sai .p(x1vi
1 . . .v

i
bi

)

and

Q j = λs1 . . .sr j .q,

where thev−−’s are free variables with suitable types, allowing a uniform typing forp andq with
o→ o ando, respectively. Therefore, everyPi can be assigned the type|µi |T, while everyQ j can
be assigned the type|ρ j |T. Finally, we define

D[τ] = λxpq.xP1 . . .Pl Q1 . . .Qmv0
1 . . .v

0
t .

6.2. Construction of the encoder E[τ1,... ,τk,τ]

The construction of terms which transform a Church numeral into a pseudonumeral (as obtained
from the translation function), is as follows.

Lemma 6.8. Let τ be a full numeral type. Then there exists a Curry typeable termE[τ], such that,

for anyn, E[τ]cn
∗→β pn, for somepn ∈ Nτ

n.

Proof. In general, the body of theτ-pseudonumeralpn contains pseudonumeral bodiesbk ∈
Bτ,σ

k as sub-terms, fork< n andσ ∈ Tτ (see Proposition 6.6). Letτ be a type as in Fig. 3 and let
t =|Tτ |. For eachσi ∈ Tτ, we indicate byδi the strict typeµ→ ρ→ σi . The idea is to construct a
term that uses a numeralcn to generate iteratively at-tuple ofδi pseudonumerals.

At thek-th step of the iteration, the mentionedt-tuple contains an element (if it exists) for each
setNδi

k . Hence it has the shape

<p1
k, . . . ,p

t
k>, for pi

k ∈ Nδi
k .

We first show the encoders construction under the hypothesis that for all 1≤ i ≤ t, δi is a full
numeral type (we recall that this is not always true, as previously shown in Example 6.2). Under
this hypothesis,Tτ = {ρ1, . . . ,ρm} and hencet = m, since types inTτ have to be assignable to the
body ofc0.

Moreover we can choose, for eachσ j ∈ Tτ, a µi such thatµi ≡ µi
1∩ . . .∩µi

ki
→ µi

0, µi
0 = σ j ,

and allµi
r are inTτ, for 1≤ r ≤ ki . Such a type exists under the above hypothesis since, for alln,

Tn
τ = Tτ. We can rearrange indexes of types inTτ, µ andρ in such a way thatσi = µi

0.
We define, for each 1≤ i ≤ t, an index function

gi :{1, . . . ,ki}→ {1, . . . , t}

such thatσgi( j) = µi
j . We also use the convention thatqi has type|ρi |T andpi has type

|µi
1 |T→ ··· →|µi

ki
|T→|µi

0 |T .

We now describe the behavior of two termsQ andP (fully defined later), that will serve as
arguments ofcn in the iteration outlined above.

1 Q is simply thet–tuple<p1
0, . . . ,p

t
0>, with pi

0 ∈ Nδi
0 . Observe that such a term can be typed

in λ→ with φ≡ (|δ1 |T→ ··· →|δt |T→ γ)→ γ, for an arbitrary typeγ;
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2 P is a term that, when applied to at–tuple of the form<p1
k, . . . ,p

t
k>, reduces to thet-tuple

<p1
k+1, . . . ,p

t
k+1> with pi

k ∈ Nδi
k . We will show thatP can be typed inλ→ with φ→ φ.

Let us consider the following “pseudosuccessors” (1≤ i ≤ t):

Si = λx1 . . .xt p
1 . . . pl q1 . . .qm.pi(xgi(1) p1 . . . pl q1 . . .qm) . . .(xgi(ki) p1 . . . pl q1 . . .qm).

Si is typeable with

|δ1 |T→ ··· →|δt |T→|δi |T

and it reduces to theδi pseudonumeralpk+1 once applied to thep1
k, . . . ,p

t
k ∈ Nδr

k (r = 1, . . . , t);
hence eachSi builds an element ofNδi

k+1, taking as argumentst elements, one for eachNδr
k ,

1≤ r ≤ t. We can now define the termP as follows:

P≡ λzw.z(λx1 . . .xt .w(S1x1 . . .xt) . . .(Stx1 . . .xt)).

Typing, for an arbitrary typeγ:

— xi with |δi |T,
— w with |δ1 |T→ ··· →|δt |T→ γ,
— z with (|δ1 |T→ ··· →|δt |T→ γ)→ γ,

the termP has typeφ→ φ.
Finally, we can extract, from the constructedt–tuple, theτ pseudonumeralpn, since we know

its position in thet–tuple, sayr, by applying the term:

N = λx1 . . .xt .xr ,

which is typeable inλ→ with |δ1 |T→ ···→|δt |T→|τ |T. Observe that, by the hypothesis thatτ is
a full numeral type, theτ pseudonumeralpk appears in thet–tuple at each stage of the iteration.
Choosingγ =|τ′ |T, we can type inλ→ the encoder

E[τ] = λx.xPQN

with the typeN(φ)→|τ |T.
This construction can be adapted to the general case in which we remove the hypothesis that for

eachσ∈ Tτ and for eachn, the judgment̀ S cn:µ→ ρ→ σ is derivable. In this case we must take
care of the fact that some pseudonumerals could not be constructed at some stage of the iteration,
and hence some successors could not be applicable at later stages. This difficulty can be overcome
by introducingt boolean valuesB1, . . . ,Bt representing the existence of pseudonumerals: at the
nth stage of the iteration,Bi is True if and only if a δi pseudonumeralpn can be constructed.
Moreover the arbitrary choice of a pseudosuccessor for eachδi is no longer justified‡. We must
check the applicability of each successor, as it is induced by aµi . When successors are looked-up
in order to perform an iteration step, the existence of their arguments is checked and the first
applicable successor is picked up. It is worth stressing that in this case we have to consider, for

‡ In Example 6.2, we have two ways to construct aµ→ ρ→ β pseudonumeralpn+1, one applicable only forn odd, and
the other only forn even.
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a givenσi in Tτ, all the successors constructing a pseudonumeral inNδi
k+1, whereas in the simple

case the arbitrary choice of one of these was sufficient.
More formally, consider for eachσi ∈ Tτ, the index setXi = { j : µj

0 = σi}, and for each
µr ,1≤ r ≤ l , the index setYr = { j : µr

n = σ j ,1≤ n≤ kr}.
LetXi = {r1, . . . , rn}. Using syntactic sugar to avoid usual lambda-calculus encoding of boolean

values and operators, the “pseudosuccessor” that builds a pseudonumeral of type|δi |T has the
shape:

Si ≡ λx1. . .xtb1 . . .bt pi . . . pl q1 . . .qm.

if
∧

j∈Yr1
b j

then pr1(xgr1(1) p1 . . . pl q1 . . .qm) . . .(xgr1(kr1) pr1 . . . pl q1 . . .qm)
else if

∧
j∈Yr2

b j

then pr2(xgr2(1) p1 . . . pl q1 . . .qm) . . .(xgr2(kr2) p1 . . . pl q1 . . .qm)
...

else if
∧

j∈Yrn
b j

then prn(xgrn(1) p1 . . . pl q1 . . .qm) . . .(xgrn(krn) p1 . . . pl q1 . . .qm)
elseZi

whereZi is an arbitrary term of type|δi |T.
Moreover, the invariant that, for alln, theith boolean value isTrue if and only if there exists a

δi pseudonumeralpn, is preserved usingt termsTi , which recalculate boolean values. EachTi is
defined as follows:

Ti = λb1 . . .bt .
∨

r∈Xi

∧
j∈Yr

b j .

We can now redefine termsQ andP that will serve as argument ofcn in the iteration:

1 Q is the 2t–tuple<Q1, . . . ,Qt ,B1 . . . ,Bt>, where:

Qi =
{

p0 if σi = ρ j , for somej
Zi for an arbitrary termZi of typeδi otherwise

Bi =
{

True if σi = ρ j , for somej
False otherwise

2 P is the term:

P≡ λzw.z(λx1 . . .xtb1 . . .bt .w(S1x1 . . .xtb1 . . .bt) . . .(Stx1 . . .xtb1 . . .bt)
(T1b1 . . .bt) . . .(Ttb1 . . .bt)).

By properties of the translation function, the Curry typeable termM̂ expects as arguments
k≥ 1 pseudonumeralsp1

n, . . . ,p
k
n (pr

n ∈ Nn
τr

). However, the term

λx.M̂(E[τ1]x) . . .(E[τk]x)
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is not, in general, Curry typeable, because different encoders require arguments of different types,
and hence they cannot be applied to the same variable inλ→. Thus, we use an encoder which
constructs in parallel pseudonumeralsp1

n, . . .p
k
n and puts them finally into ak–tuple.

Lemma 6.9. Let M be a term typeable inλS
∩, which uniformly represents a numeric unary func-

tion ϕ. Let M̂ =| (D[`S M:τ1∩ . . .∩ τk→ τ]) |D. Then there exists a termE[τ1,... ,τk,τ], such that

E[τ1,... ,τk,τ]cnM̂ is a Curry typeable term which reduces tôMp1
n . . .p

k
n, pr

n ∈ Nτr
n , for 1≤ r ≤ k.

Proof. The construction of Lemma 6.8 works the same for the set of typesT =
⊎k

i=1Tτi ,
instead of a singleTτ.

We extract thek pseudonumerals of types| τ1 |T, . . . , | τk |T from thet–tuple generated by the
termcnPQ, knowing their positions, sayr1, . . . , rk, in thet–tuple, using the term:

N = λx1 . . .xtz.zxr1 . . .xrk.

We can type the termN with

(|δ1 |T→ ··· →|δt |T→ γ),

and hence, instantiating the arbitrary typeγ in the typeφ with (| τ1 |T→ ··· →| τk |T→| τ |T)→
| τ |T and typing the numeralcn with (φ→ φ)→ φ→ φ, the term(cnPQ)N has typeγ. Since
M̂ is typeable with| τ1 |T→ ·· · →| τk |T→| τ |T (by definition of| · |T and Lemma 3.5), the term
(cnPQ)NM̂ is typeable inλ→ with |τ |T and it reduces tôMp1

n . . .p
k
n, pr

n ∈ Nτr
n . Hence the term

E[τ1,... ,τk,τ] = λxy.xPQNy

satisfies the statement.

Using the above lemmas we prove the main result of this section.

Theorem 6.10. Every functionϕ:N→ N, uniformly representable inλS
∩, is uniformly repre-

sentable inλ→.

Proof. If M represents a function inλS
∩, let M̂ be the term obtained by the translation function

from a type derivation ofM. Using Lemmas 6.7 and 6.9, we have that the term

M′ ≡ λx.D[τ](E[τ1,... ,τk,τ]M̂x), (11)

representsϕ in λ→.

7. Beyond Strict Types

In the previous section, we proved that the set of uniformly representable functions in the strict
intersection type system is exactly the set of uniformly representable functions in the simply
typed lambda calculus. It is worth analyzing whether the same result can be proven forλ→ with
respect to other intersection type systems. In this section, we consider the Barendregt-Coppo-
Dezani system (BCDC83) and the essential intersection type system (Hin82). Even if the sets of
typeable terms are exactly the same as the one ofλS

∩, such systems allow more type judgments to
be derived, and implications on uniform definability of functions are not straightforward. Never-
theless, we will prove that the set of uniformly representable functions in these systems coincides
with the set of uniformly representable functions in the simply typedλ-calculus.
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(Var)BCD
A(x) = σ

A`BCD x:σ

(→I)BCD
A∪{x:σ} `BCD M:τ
A`BCD λx.M:σ→ τ

(→E)BCD
A`BCD M:σ→ τ A`BCD N:σ

A`BCD MN:τ

(∩I)BCD
A`BCD M:σ A`BCD M:τ

A`BCD M:σ∩ τ

(∩E)BCD
A`BCD M:σ∩ τ

A`BCD M:σ
A`BCD M:σ∩ τ

A`BCD M:τ

(≤)BCD
A`BCD M:σ σ≤ τ

A`BCD M:τ

Fig. 6. The type assignment system ofλBCD
∩

7.1. Lambda Calculus with Intersection Types

We briefly recall the system of Barendregt-Coppo-Dezani ((BCDC83)).

Definition 7.1. Intersection typesare generated using the following grammar:

σ ::= α | (σ→ σ) | (σ∩σ) (12)

where α ranges over a countable set of type variables. We callintersection types, notation
TypeBCD

∩ , the set of types resulting from (12). The intersection type constructor,∩, takes prece-
dence over the arrow type constructor and henceσ1∩σ2→ τ is an abbreviation for(σ1∩σ2)→ τ.

Definition 7.2. Thetype inclusion relation≤ (⊆ TypeBCD
∩ ×TypeBCD

∩ )
is inductively defined by:

1 σ≤ σ;
2 σ∩ τ≤ σ andσ∩ τ≤ τ;
3 (σ→ τ)∩ (σ→ ρ)≤ σ→ τ∩ρ;
4 σ≤ τ & τ≤ ρ⇒ σ≤ ρ;
5 σ≤ τ & σ≤ ρ⇒ σ≤ τ∩ρ;
6 σ′ ≤ σ & τ≤ τ′⇒ σ→ τ≤ σ′→ τ′.

We will write σ∼ τ if σ≤ τ & τ≤ σ.

Definition 7.3. λBCD
∩ , theBarendregt-Coppo-Dezani intersection type systemproves judgments

of the kindA`BCD M:τ. The basisA contains statements of the shapex:σ, with σ∈ TypeBCD
∩ . The

typeτ belongs to the set of intersection types,TypeBCD
∩ . The systemλBCD

∩ consists of the rules in
Fig. 6.
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(Var)e
A(x) = σ σ≤e τ

A`e x:τ

(→I)e
A∪{x:σ} `e M:τ
A`e λx.M:σ→ τ

(→E)e
A`e M:(τ1∩·· ·∩ τn)→ τ A`e N:τ1 . . .A`e N:τn

A`e MN:τ

Fig. 7. The type assignment system ofλE
∩

7.2. Essential Intersection Type System

A restricted version of theλBCD
∩ system, calledessential intersection type assignment systemin

(vB93, Ch. 5), was introduced by Hindley (Hin82). The only difference with respect to the strict
system is the (Var)e-rule, where the type inclusion relation≤E is used.

Definition 7.4. Thetype inclusion relation≤E (⊆ TypeS∩×TypeS∩) is inductively defined by:

1 σ≤E σ;
2 σ∩ τ≤E σ andσ∩ τ≤E τ;
3 σ≤E τ & τ≤E ρ⇒ σ≤E ρ;
4 σ≤E τ & σ≤E ρ⇒ σ≤E τ∩ρ;
5 σ′ ≤E σ & τ≤E τ′⇒ σ→ τ≤E σ′→ τ′.

We will write σ∼E τ if σ≤E τ & τ≤E σ.

Definition 7.5.

1 The essential intersection type system(λE
∩) proves judgments of the kindA `e M:τ, where

τ ∈ Types∩. The systemλE
∩ consists of the rules of Fig. 7. The basisA contains statements of

the shapex:σ, with σ ∈ TypeS∩ .
2 Judgments of the shapeA`E M:σ are derivable inλE

∩ if and only if there exist typesσ1, . . . ,σn

such thatσ≡ σ1∩ . . .∩σn and, for every 1≤ i ≤ n, the judgmentA`e M:σi is derivable.

7.3. Full Numeral Types inλE
∩ andλS

∩

As stated by Hindley (Hin82), for any equivalence class of intersection types there is a strict
intersection type which belongs to it. This is proven observing that intersections in the right-hand
sides of arrows can be removed, using the equivalence on typesσ→ τ∩ρ∼ (σ→ τ)∩ (σ→ ρ).

Proposition 7.6 (Hindley (Hin82)). There exists a map

(·)∗ : TypeBCD
∩ → TypeS∩

such that, for everyσ ∈ TypeBCD
∩ ,

σ∗ ∈ TypeS∩ and σ∗ ∼ σ.
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Such translation of BCD types into strict intersection types allows for a strong relation between
λBCD
∩ andλE

∩ to be established. The following (vB93, Prop. 5.3.2) holds (translation of bases is
obtained just by applying the translation of types to all types that appear in bases).

Proposition 7.7.

1 For all σ,τ ∈ TypeS∩ , we haveσ≤ τ⇔ σ≤E τ;
2 B`BCD M:τ⇔ B∗ `E M:τ∗.

As a consequence we can easily prove that uniformly representable functions inλBCD
∩ are

uniformly representable inλE
∩.

Theorem 7.8. Let ϕ be a numeric function.ϕ is uniformly representable inλBCD
∩ if and only if

it is uniformly representable inλE
∩.

Proof. The only if part is obvious, since all judgments inλE
∩ can be derived also inλBCD

∩ .
Concerning the if part, let us consider a termM which uniformly representsϕ in λBCD

∩ . By
Proposition 7.7, ifσ is a full numeral type inλBCD

∩ then so isσ∗ in λE
∩, andx:σ `BCD Mx:τ

impliesx:σ∗ `E Mx:τ∗. HenceM uniformly representsϕ in λE
∩.

In (vB92) the systemλS
∩ has been proven powerful as theλBCD

∩ system from the point of view
of typeability. The relationship between the two systems (and betweenλE

∩ andλS
∩) is stated in

the following.

Proposition 7.9.

1 If B`BCD M:σ, then there areB′ andσ′ such thatB′ `S M:σ′, σ′ ≤ σ, andB≤ B′;
2 If B`E M:σ, then there areB′ andσ′ such thatB′ `S M:σ′, σ′ ≤E σ, andB≤E B′.

These results do not allow us to conclude that uniformly representable functions inλBCD
∩ are

uniformly representable inλS
∩. Indeed, the existentially quantified typeσ′ in Proposition 7.9

might not be a full numeral type inλS
∩, even whenσ is a full numeral type inλBCD

∩ or λE
∩. As an

example, take

τ = ((σ∩δ→ ρ)→ (σ∩δ→ ρ))→ (σ→ ρ)→ (σ∩δ→ ρ).

It is easy to see thatτ is full in the essential system, whereas it cannot be assigned to the numeral
c0 in the strict one.

However, numeral types in the essential system have the shape of numeral types in the strict
system (see Fig. 3), namely:τ = µ→ ρ→ τ′, whereµ = µ1∩ . . .∩ µl , ρ = ρ1∩ . . .∩ ρm and
µi = µi

1∩ . . .∩µi
ki
→ µi

0 for somel ,m,k1, . . . ,kl ∈ N.
We prove that full numeral types in the essential and strict systems are related as follows: if

τ is full in the essential system, then there existsτ• such thatτ• ≤E τ andτ• is full in the strict
system.

Definition 7.10. A typeσ = σ1∩ . . .∩σk ∈ TypeS∩ is afull numeral typein λE
∩ (in λS

∩, resp.) if all
theσi are full numeral types inλE

∩ (in λS
∩, resp.).

Proposition 7.11. If σ = σ1∩ . . .∩σk ∈ TypeS∩ is a full numeral type inλE
∩, then there exists a

numeral typeσ• = σ•1∩ . . .∩σ•k ∈ TypeS∩ which is full in λS
∩, and moreoverσ• ≤E σ.
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(Var)S′
A(x) = τ1∩ . . .∩ τn 1≤ i ≤ n

A`S′ x:τi

(→I)S′
A∪{x:σ} `S′ M:τ
A`S′ λx.M:σ→ τ

(→E)S′
A`S′ M:(τ1∩·· ·∩ τn)→ τ A`S′ N1:τ1 . . .A`S′ Nn:τn Ni

∗−−→
η

N

A`S′ MN:τ

Fig. 8. The type assignment system ofλS′
∩

Proof. The proof makes uses of some lemmas and auxiliary definitions. For the sake of read-
ability, it is deferred to Section 8.

7.4. A Modified Strict Intersection Type System

Let M be a uniform representant ofϕ : N→ N in λE
∩; then there exist a numeral typeσ = σ1∩

. . .∩σn, full in λE
∩, and a typeτ such that

1 {x : σ} `e Mx:τ;
2 ∀n∈ N, Mcn

∗−−→
β

cϕ(n).

By Proposition 7.11, there exists a numeral typeσ•, full in λS
∩, such that

{x : σ•} `e Mx:τ.

Therefore,ϕ can be uniformly represented inλE
∩ using as input type some full numeral type in

λS
∩.
We observe that the translation function (Section 3) cannot be adapted naturally to transform

derivations ofλE
∩. Indeed, the definition of the translation function is based on the fact that a

variable-introduction rule in the strict system consists of a simple extraction of a strict type from
an intersection of strict types. Therefore, a finite amount of types can be derived for a variable in
λS
∩, each of which is present in the type assumption for that variable. We call such a property the

type extraction (from bases)property. The type extraction property does not hold in the essential
system, where the variable-introduction rule makes a crucial use of the type inclusion relation
≤E.

As pointed out in (vB93), typings are preserved byη-reduction in the essential system, but not
in the strict one. We therefore introduce a variant (λS′

∩ ) of the strict intersection type assignment
system, such that

— λS′
∩ has the extraction property;

— typings inλS′
∩ are expressedmoduloη-reduction.

We callλS′
∩ thestrict extensional type system.

Definition 7.12. The systemλS′
∩ proves judgments of the kindA`S′ M:τ, derived from the rules

of Fig. 8. The basisA contains statements of the shapex:σ, with σ ∈ TypeS∩ , andτ ∈ Types∩.
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We first note that the systemλS′
∩ enjoys the type extraction property. Moreover, given a typing

in λE
∩ having a termM as subject, there exists a typing inλS′

∩ for a suitableη-expansion ofM,
which preserves both the predicate and the type assumptions.

Definition 7.13 (Type Extraction). We writeσ 4 τ iff σ ≡ σ1∩ ·· · ∩σn andτ ≡ σi , for some
1≤ i ≤ n.

Lemma 7.14. If A`e M:τ, then there existsM′ ∈ Λ such that

M′
∗−−→
η

M and A`S′ M
′:τ.

Proof. By induction on the structure of the derivation ofA`e M:τ. The only interesting case
is when the applied rule is of the form (Var)e. In such case, we note that, for some suitable types,
a (Var)e-rule has the shape

(Var)e
A(x) = σ σ4 ϕ≤E τ

A`e x:τ
where, by Definition 7.4,

ϕ ≡ ϕ1→ ··· → ϕk→ α
τ ≡ τ1→ ··· → τk→ α

τ j ≤E ϕ j ( j = 1, . . . ,k).
(13)

If we deriveA`e x:τ by rule (Var)e, we associate to the above judgment a derivation of the typing
A`S′ X:τ, by induction on the structure ofτ, andX

∗−−→
η

x.

B(x) = σ σ4 ϕ
B`S′ x:ϕ

(1)︷ ︸︸ ︷
B(x1) = τ1 τ1≤E ϕ1

B`E x1:ϕ1

B`S′ xx1:ϕ2→ ··· → ϕk→ α
· · ·

B`S′ xx1 . . .xk−1:ϕk→ α

(k)︷ ︸︸ ︷
B(xk) = τk τk ≤E ϕk

B`E xk:ϕk

B`S′ xx1 . . .xk:α
B−{xk:τk} `S′ λxk.xx1 . . .xk:τk→ α

···
A`S′ λx1 . . .xk.xx1 . . .xk:τ

By applying the induction hypothesis to sub-derivations indicated by(1), . . . ,(k), we obtain a
derivation inλS′

∩ of the typing

A`S′ λx1 . . .xk.xx1 . . .xk:τ.

Corollary 7.15. Let {x : σ} `e Mx:τ, whereM is a uniform representant ofϕ : N→ N, andσ is
a full numeral type inλE

∩; then there exists anη-expansion(Mx)′ of Mx and a typeσ• such that

{x : σ•} `S′ (Mx)′:τ
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andσ• is a full numeral type inλS
∩ (and therefore inλS′

∩ ).

Proof. By Proposition 7.11 and Lemma 7.14.

As for the systemλS
∩ (Lemma 3.5), the translation of a typing derivation inλS′

∩ is a simply
typeable term.

Lemma 7.16. For any derivationD of the typingA`S′ M:σ in λS′
∩ , we have that

|A|B`S′ |D |D : |σ |T

is a typing inλ→.

Proof. Identical to the proof of Lemma 3.5.

The translation still enjoys a kind of commutation property with respect toβ-reduction (see
Theorems 3.6 and 3.7).

Lemma 7.17.

1 Let D be a derivation of the typingA`S′ M:τ in λS′
∩ , and letM −−→

β
N. Then there exists an

η-expansionN′ of N and a derivationD ′ of the typingA`S′ N
′:τ such that:

|D |D +−−→
β
|D ′ |D .

2 Let D be a derivation of the typingA`S′ M:τ in λS′
∩ , and letM

∗−−→
β

N. Then there exists an

η-expansionN′ of N and a derivationD ′ of the typingA`S′ N
′:τ such that:

|D |D ∗−−→
β
|D ′ |D .

Proof.

1 The proof follows exactly the same pattern as the proof of Lemma 3.6. The only difference is
that the derivationsD1, . . . ,Dn appear in the proof of Lemma 3.6 as different derivations hav-
ing the same subject, while now they are derivations having as subjects differentη-expansions
of the same term.

2 From (Bar84,§3.3.8),
∗−−→
β

commutes with
∗−−→
η

, i.e.

P
∗
β

//

∗η

��

Q

∗η

��
R

∗
β

// S

Therefore, using such a diagram, ifN is obtained fromM by means of a sequence ofβ-
reductions andη-expansions, then

M
∗−−→
η

P ⇒ ∃Q such thatN
∗−−→
η

Q andP
∗−−→
β

Q. (14)
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The thesis follows from point 1., using (14). Graphically:

M̂
∗
β

// N̂1
∗
β

// N̂k

M
∗
β

//

| · |D
OO
O�
O�
O�

∗η
��

Q1 N1

| · |D
OO
O�
O�

∗
η

oo ∗
β

// · · · ∗
β

// Qk Nk ≡ N′
∗
η

oo

| · |D
OO
O�
O�

∗η
��

P
∗
β

// N

(15)

whereM̂, N̂1, N̂k are obtained translating suitable typing derivations having as subjectsM,N1,Nk,
respectively.

7.5. Lambda-definability inλS′
∩

Let M be a uniform representant ofϕ : N→ N in λE
∩. By Corollary 7.15, there exists a numeral

type σ•, full in λS
∩, and anη-expansion(Mx)′ of Mx such that, for some typeτ, {x : σ•} `S′

(Mx)′:τ. For alln∈ N, (λx.Mx)cn
∗−−→
β

cϕ(n). Hence, byη-postponement ((Bar84,§15.1.6)),

(λx.(Mx)′)cn
∗−−→
β

eϕ(n)
∗−−→
η

cϕ(n).

It follows that, by Lemma 7.17, the translation of the typing derivation of(λx.(Mx)′)cn β-reduces
to the translation of anη-expansion(eϕ(n)) of a Church numeral. It is therefore necessary to study

the structure of terms obtained by translating type derivations (inλS′
∩ ) of η-expansions of Church

numerals.
We use the following notation: ifF is a normal form andX is aλ-free normal form (a variable,

in particular), we denote by

F((X))

the normal form ofFX.

Definition 7.18. A hereditary finite combinatoris aλ-term

F≡ λax1 . . .xn.a(F1((xg(1)))) . . .(Fm((xg(m))))

wherem,n≥ 0, g : {1, . . . ,m} → {1, . . . ,n} and, fori = 1, . . . ,m, Fi is a hereditary finite combi-
nator. We denote byF the set of hereditary finite combinators.

The relevance of hereditary finite combinators in our setting is exemplified in Table 1, where
three different typing derivations are shown for theη-expansion of a variablex, together with
their translations. For the sake of simplicity, we have omitted bases from derivations in Table 1;
type assumptions for variables are drawn as superscripts in the subjects of variable-introduction
rules.

The next lemma will enable us to determine the shape of terms obtained from the translation
of λS′

∩ -typing derivations ofη-expansions of Church numerals.
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D |D |D

x(α∩β)→γ:(α∩β)→ γ yβ∩α:α yβ∩α:β
xy:γ

λy.xy:(β∩α)→ γ

λy1y2.xy2y1

⇓
|D |D= F1((x)), where
F1 ≡ λax1x2.ax2x1

xα→β:α→ β yα∩γ:α
xy:β

λy.xy:(α∩ γ)→ β

λy1y2.xy1

⇓
|D |D= F2((x)), where
F2 ≡ λax1x2.ax1

Let τ≡ (α∩β→ γ)∩ (α∩δ→ γ)→ ζ

xτ:τ

yα→γ:α→ γ zα∩β:α
yz:γ

λz.yz:α∩β→ γ

yα→γ:α→ γ zα∩δ:α
yz:γ

λz.yz:α∩δ→ γ
xy:ζ

λy.xy:(α→ γ)→ ζ

λy.x(λz1z2.yz1)(λz1z2.yz1)
⇓

|D |D= F3((x)), where
F3 ≡ λax1.a(F1

3((x1)))(F2
3((x1)))

F1
3 = F2

3 = λav1v2.av1

Table 1.Hereditary finite combinators and translation of derivations

Lemma 7.19. Let D be a derivation of the typing

A∪{x:σ1∩·· ·∩σn} `S′ X:σ,

whereX
∗−−→
η

x, a variable. Then there existsxi , for some 1≤ i ≤ n, such that

|D |D= F((xi)),

for someF ∈ F.

Proof. By induction on the lengthn of the reductionX
∗−−→
η

x. The casen = 0 is trivial. If

n> 0, then

X = λ~z.(λy.x~ZY),

whereY
∗−−→
η

y andZi
∗−−→
η

zi , for anyZi ∈ ~Z. Let B = A∪{x:σ1∩ ·· · ∩σn}. In such case, the

derivationD has the shape
D0

B2 `S′ x~Z:(τ1∩·· ·∩ τm)→ τ
D1

B2 `S′ Y1:τ1 . . .

Dm

B2 `S′ Ym:τm

B2 `S′ x~ZY:τ
B1 `S′ λy.x~ZY:ρ....

B`S′ λ~z.(λy.x~ZY):σ
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where, fori = 1, . . . ,m,

Yi
∗−−→
η

Y. (16)

We observe thatB2 = B1∪{y:ϕ1∩·· ·∩ϕr}. By inductive hypothesis, there exists

F0,F1, . . . ,Fm∈ F

such that ∣∣∣∣∣∣∣∣∣
D0

B2 `S′ x~Z:(τ1∩·· ·∩ τm)→ τ....

B`S′ λ~z.x~Z:σ′

∣∣∣∣∣∣∣∣∣

D

= F0((xi))

and, fork = 1, . . . ,m, ∣∣∣∣ Dk

B2 `S′ Yk:τk

∣∣∣∣D = Fk((yg(k))),

for some functiong : {1, . . . ,m}→ {1, . . . , r}. Now,

F0≡ λa~w.F ′0,

and hence|D |D= F((xi)), where

F≡ λa~wy1 . . .yr .F ′0(F1((yg(1)))) . . .(Fm((yg(m)))).

We recall that pseudonumerals have the following Böhm tree, wherea, . . . ,g∈ N:

n̂ = λp1 . . . p`q1 . . .qm. p j

'&%$ !"#1 mmmmmmm

mmmmmmm '&%$ !"#a
RRRRRRR

RRRRRRR

p j1

'&%$ !"#1
xxx

xxx
'&%$ !"#b

FFF

FFF

. . . p
jkj

'&%$ !"#1
xxx

xxx
'&%$ !"#c

FFF

FFF

p−

'&%$ !"#1 /.-,()*+d

. . . p−

'&%$ !"#1 '&%$ !"#e

. . . p−

'&%$ !"#1 /.-,()*+f

. . . p−

'&%$ !"#1 '&%$ !"#g

q− q−q− q− q− q− q−q− q−

(all paths stop at the same depth)

A subtree in such a tree is identified by a sequences of integers, as shown above, with the
empty sequence identifying the whole tree. Given a pseudonumeralp, let us denote bySeq(p)
the set of sequences identifying all nodes in the Böhm tree ofp. Moreover, we denote byp@s

the subtree ofp identified bys. An extended pseudonumeralis obtained from a pseudonumeral
p substituting in the nodep@s, for anys ∈ Seq(p), the labelr ∈ {p1, . . . , p`,q1, . . . ,qm} with

Fs((r)),

whereFs ∈ F is a hereditary finite combinator which depends ons.
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Lemma 7.20. Let D be a derivation of the typingA`S′ b′n:σ, whereb′n is anη-expansion of the
body of the Church numeralcn≡ λpq.pnq. Then|D |D is an extended pseudonumeral.

Proof. By induction onn. The casen = 0 follows from Lemma 7.19. In the casen = k+1, b′n
has the shape

b′k+1≡ λz1 . . .zm.x(b′k)Z1 . . .Zm,

where, fori = 1, . . . ,m, Zi
∗−−→
η

zi . The thesis follows by induction and by invoking Lemma 7.19

overZ1, . . . ,Zm.

A decoder for extended pseudonumerals can be constructed exactly in the same way as in
Lemma 6.7.

Lemma 7.21. Let τ be a Church numeral type inλE
∩. Then there exist a termD[τ] and a basisB[τ]

such that

(i) B[τ] `→ D[τ]: |τ |T→ (o→ o)→ o→ o;

(ii) D[τ]pn
∗−−→
β

cn, for anyn∈N and any extended pseudonumeralpn resulting from the transla-

tion of a derivation of the typing̀ e c′n:τ, wherec′n
∗−−→
η

cn.

Proof. We buildD[τ] using the construction of Lemma 6.7. Therefore(i) holds. Moreover,D[τ]
prunes the tree ofpn exactly as in the previous case. In addition,D[τ]pn has type

(o→ o)→ o→ o.

Therefore, all additional information introduced by hereditary finite combinators is erased by the
decoder, which produces a Church numeral.

7.6. Main Results

We are now able to prove the main results of this Section.

Theorem 7.22. Every functionϕ:N→ N, uniformly representable inλS′
∩ , is uniformly repre-

sentable inλ→.

Proof. Identical to the proof of Theorem 6.10.

Theorem 7.23. Every functionϕ:N→ N, uniformly representable inλBCD
∩ , is uniformly repre-

sentable inλ→.

Proof. Let ϕ be uniformly representable inλBCD
∩ , say by a termM. By Theorem 7.8,ϕ is

uniformly representable inλE
∩, by the same termM. The thesis follows by Corollary 7.15 and

Lemma 7.21, using the same construction of the proof of Theorem 6.10; observe that the encoder
does not need to be modified since the input type coming from Corollary 7.15 is a full numeral
type inλS

∩.
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8. Proof of Proposition 7.11

Definition 8.1. Let τ = µ→ ρ→ τ′ be a numeral type in the essential system, and let

µ = µ1∩ . . .∩µl ,ρ = ρ1∩ . . .∩ρm,µi = µi
1∩ . . .∩µi

ki
→ µi

0 (1≤ i ≤ l).

Define:

— Tτ = {τ′,ρ j ,µi
h | 1≤ j ≤m, 1≤ i ≤ l , 0≤ h≤ ki};

— Iτ = {(ρ,δ) | δ ∈ Tτ}
⋃
{(µ,µi

1∩ . . .∩µi
ki
→ δ) |1≤ i ≤ l , δ ∈ Tτ};

— Bτ = {p : µ,q : ρ}.

Forn∈N, let bn = pnq be the body of the Church numeralcn = λpq. pnq. If D is a derivation
of a typing in the essential system, letI(D) be the set

I(D) = {(γ,γ′) | γ≤E γ′ a√√ea∇∫ 〉\ D}.

Lemma 8.2. If τ is a numeral type in the essential system, then for allδ ∈ Tτ and for alln∈ N,
if there exists a derivationDn of the typingBτ `e bn : δ, then there exists a derivationD ′n of the
typingBτ `e bn : δ such thatI(D ′n)⊆ Iτ.

Proof. The proof is by induction onn. If n= 0, andδ∈ Tτ, then any derivationD0[Bτ `e b0 : δ]
is obviously such thatI(D0)⊆ Iτ.

Let n = k + 1. δ ∈ Tτ, andDn[Bτ `e bn : δ]. The leftmost premise of the last rule ofDn is
Bτ `e p : γ for some strictγ = γ1∩ . . .∩ γs→ δ≥E µ. By (vB93, Lemma 5.1.2 (v)), we have that
γ ≥ µi

1∩ . . .∩µi
ki
→ µi

0 for some 1≤ i ≤ l . Henceγ1∩ . . .∩ γs≤E µi
1∩ . . .∩µi

ki
andµi

0 ≤E δ, by
(vB93, Lemma 5.1.2 (iv)). Moreover, for 1≤ r ≤ s, there existsD r

k[Bτ `e bk : γr ].
Now, sinceγ1∩ . . .∩ γs≤E µi

1∩ . . .∩µi
ki

we have that, for all 1≤ h≤ ki , there exists 1≤ j ≤ s
such thatγ j ≤E µh, (vB93) 5.1.3 (i). This implies that, for all 1≤ h≤ ki , there exists a derivation
Eh

k [Bτ `e bk : µi
h], by (vB93) 5.1.6. We can now use the inductive hypothesis, and conclude that,

for all 1≤ h≤ ki there exists a derivationF h
k [Bτ `e bk : µi

h] such thatI(F h
k )⊆ Iτ.

We can now construct easily the requiredD ′n[Bτ `e bn : δ], such thatI(D ′n)⊆ Iτ:

Bτ `e p : µ µ≤E µi
1∩ . . .∩µi

ki
→ δ

Bτ `e p : µi
1∩ . . .∩µi

ki
→ δ

F 1
k

Bτ `e bk : µi
1 . . .

F ki
k

Bτ `e bk : µi
ki

Bτ `e bk+1 : δ

and we are done.

Corollary 8.3. If τ = µ→ ρ→ τ′ is a full numeral type in the essential system, then for alln∈N,
there exists a derivationDn[Bτ `e bn : τ′] such thatI(Dn)⊆ Iτ.

Proof. Takeδ = τ′ in the lemma above.

Corollary 8.4. If τ = µ→ ρ→ τ′ is a full numeral type in the essential system, then there exists
a typeτ• ≤E τ which is a full numeral type in the strict system.

Proof. Let I =
⋃

n∈N I(Dn), whereDn[Bτ `e bn : τ′] is given by the previous corollary.I is a
finite set. Define the intersection typesµ andρ as follows:
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µ =
⋂

(µ,δ)∈I δ,
ρ =

⋂
(ρ,δ)∈I δ,

and letBτ• = {p : µ,q : ρ}. It is easy to conclude that, for alln∈N, Bτ• `S bn : τ′ has a derivation,
which is essentially the same asDn, up to the substitutions:

p : µ µ≤E δ
p : δ

⇒ p : . . .∩δ∩ . . .
p : δ

(and similarly forq andρ).
Henceτ• = µ→ ρ→ τ′ is a full numeral type in the strict system.
The relationτ• ≤E τ holds since, if(µ,δ) ∈ I (resp.(ρ,δ) ∈ I ), thenµ≤E δ (resp.ρ ≤E δ),

henceµ≤E µ, ρ≤E ρ, and finallyτ• ≤E τ.

We extend the notion of fullness to types inTypeS∩ as follows:

Definition 8.5. A type σ = σ1∩ . . .∩σk ∈ TypeS∩ is a full numeral typein λE
∩ (resp. inλS

∩) if all
theσi are full numeral types inλE

∩ (resp. inλS
∩).

Proposition 8.6. If σ = σ1∩ . . .∩σk ∈ TypeS∩ is a full numeral type inλE
∩, thenσ• = σ•1∩ . . .∩σ•k

is a full numeral type inλS
∩, andσ• ≤E σ.

Proof. For 1≤ i ≤ n, σ•i ≤E σi by Corollary 8.4. The statementσ1∩ . . .∩σm≤E τ1∩ . . .∩ τn

follows easily from the clauses 2, 3 and 4 of the definition of≤E.

9. Concluding Remarks

A new technique has been proposed to compare computational aspects of typed lambda calculi.
The presented technique, which is syntactic in nature, has been successfully applied to obtain a
new proof of strong normalization, and to characterize definable functions in intersection type
systems. Several directions for future work are suggested by this new approach.

It is interesting to investigate the algebraic structure of the redundant representation of num-
bers, which naturally comes out of our translation function, since they implicitly define recursive
schemas. In this work we chose Church numerals as representation of integers. It would be inter-
esting to investigate whether our results can be extended to arbitrary numeral systems.

Expressiveness is not only a matter of definability. A final remark is concerned with complex-
ity: the term that we construct via| · |D is much more complex than the original one, typeable in
the intersection type discipline. It would be interesting to analyze whether simply typed repre-
sentations of functions lead to more complex “algorithms”.
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