
A P2P Market Place Based on Aggregate Signatures

Dario Catalano1, Giancarlo Ruffo2, and Rossano Schifanella2

1 École Normale Supérieure, Paris, France
2 Dip. di Informatica - Università di Torino, Italy

Abstract. A peer-to-peer market place is likely to be based on some underlying
micro-payment scheme where each user can act both as a customer and as a mer-
chant. Such systems, even when designed for largely distributed domains, may
be implemented according to hybrid topologies where trusted third intermedi-
aries (e.g. the broker) are single points of failures. For this reason it is crucial that
such central entities scale well w.r.t. the overall number of transactions. In this
paper, we focus on PPay as a case study, to show how the broker would greatly
benefit in terms of computational cost if aggregate signatures are adopted instead
of RSA signatures.

1 Introduction

Incentives and micro-payments can be used to stimulate the users [1] and to avoid the
free-riding phenomenon [2], and they are largely used in practice, e.g., BitTorrent [3],
EMule [4] and Mojo-Nation1. In particular, a micro-payment scheme is an interesting
alternative to a differential service incentives, especially when a market place is layered
on top of a p2p system. Current peer-to-peer micro-payment schemes use an hybrid
topology, because some central units (e.g., the broker, the certification authority) are
needed. For example, PPay [5] is based on the idea of “transferable coins”. Basically
a tranferable coin allows a user to either cash it, by interacting with the broker, or to
re-assign it to other peers. The second alternative has been introduced for fault toler-
ance reasons, because when millions of transactions occur during a short time period,
the broker is likely to be responsible of many concurrent, computationally expensive,
operations (such as digital signature verifications and generations). Moreover, the bro-
ker should be able to detect frauds (e.g. duplicate coins) and then it has to store all the
information related to forged coins for future checkouts. For this reason coins should be
kept on floating for a while, before the broker is asked to cash them. At the same time,
digital coins should not (excessively) grow in size after each re-assignment.

The choice of a coin re-assignment strategy that is scalable in terms of the overall
number of transactions is thus of crucial importance: as the broker is a single point of
failure, the best (in terms of both space and time) assigment strategy should be used in a
practical market place. For example, FairPeers [6], a p2p application that allows profit
and file sharing, uses PPay coins extensively, and the entire system would break down
if the broker is overwhelmed by an inefficient strategy.

1 At the time of this writings the beta version of Mojo-Nation platform has been shut down by
its creator Jim McCoy. He announced that another project will get the heritage.

G. Chen et al. (Eds.): ISPA Workshops 2005, LNCS 3759, pp. 54–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A P2P Market Place Based on Aggregate Signatures 55

In this paper, we compare different coins management policies, introducing also
a novel approach based on the idea of aggregate signatures [7]. PPay and aggregate
signatures are briefly introduced respectively in Section 2 and 3. In Section 4 we outline
the comparative model, and the results of our analysis are given in Section 5.

2 An Overview of PPay

PPay, proposed by Yang and Garcia-Molina [5], tries to minimize the interaction with
the broker allowing direct transactions between peers. To this end, they suggested the
idea of floating and self-managed currency. The coins can float from one peer to an-
other, and the owner of a given coin manages the currency itself, except when it is
created or cashed. In particular, the user manages all the security features of his/her
coin(s). As other micro-payments systems, in PPay coin frauds are possible, but they are
unprofitable. More precisely, frauds are detectable and malicious users can be punished
as well. Moreover, each fraud concerns only small amounts of currency thus making
the benefits not worth the risks. In what follows we provide a short overview of PPay,
the interested reader is deferred to [5] for further details.

Table 1. Coins, assignments and re-assignments in PPay

γ = {X, sn}SKB (raw coin)
λX = {X, liml, limu}SKB (limit certificate)
γ′ = {X, sn}SKX (user signed raw coin)
αXY = {Y, seq1, γ}SKX (assigned coin)
�XY Z = {Z, αXY }SKY (re-assignment request)
α′

XZ = {Z, seq2, γ}SKX (re-assigned coin)
αB

XZ = {Z, seq2, γ}SKB (broker’s reassigned coin)
πXY Z = {Z, Y, seq3, αXY }SKY (layered coin)

Let X , Y and Z be three users of a p2p system, and let B be the broker. When
setting up her own account, a user, say X , purchases digital coins from B. An user can
buy a set of raw coins γ, signed by B, or a limit certificate λX that allows her to print
her own raw coins γ′. Each raw coin has a serial number sn to detect double spending
frauds. The serial number in a coin printed by a user, must belong to the interval defined
in the corresponding limit certificate (i.e., liml ≤ sn ≤ limu).

When X wants to purchase an item or a service from Y , he will send to Y an
assigned coin αXY , that contains a sequence number of seq1. The re-assignment of
this coin will have a greater sequence number. Now Y is the owner of the coin, and he
can decide to cash it or to re-assign it to another user (e.g., Z). In the latter case Y has
to send a reassignment request �XY Z to X . After receiving �XY Z , X processes it and
sends to Y andZ the new assignmentα′

XZ , containing a sequence number seq2 > seq1.
Of course, after αXZ has been released, αXY is no longer valid.

If X is down when Y wishes to reassign his own coin (or she simply denies to
serve Y ’s request), the downtime protocol is used instead: the broker plays the role

56 D. Catalano, G. Ruffo, and R. Schifanella

of the trusted intermediary, and she generates the newly assigned coin αB
XZ in place

of X . B sends the reassigned coin to X when this peer comes back on line. This is
because X should be responsible for detecting frauds committed when it was off-line.
Downtime protocol introduces a drawback due to high percentage of off-line periods
in a lifetime of a peer: Broker’s load significantly grows up to reassignment requests.
Moreover, Broker must continuously check when peers came back on-line, because
they must send back the newly assigned coin.

Another reassignment strategy is given by layered coins. In this case, Y can re-
assign γ itself by sending to Z the assigned coin αXY enveloped in a layer πXY Z . If
Z wishes to reassign the coin again, he has to add another layer to πXY Z . Each layer
represents a reassignment request and the broker andX can peel off all the layers to ob-
tain all the necessary proofs. Although this protocol is still considered secure, it has the
(relatively) negative drawbacks that fraud detection is delayed, and that floating coins
grow in size.

3 Fraud Detection Using Aggregate Signatures

Basic re-assignments and layers have both some drawbacks: the former involves mainly
the owner of the raw coin, but overloads the broker if she is off-line. The latter lets the
coin grow in size, by adding a different signature to each re-assignment; moreover,
when a layered coin is finally cashed, the broker has to verify many different signa-
tures. As a consequence, even if this strategy results in better performances w.r.t the
basic re-assignment strategy (see [8]), it remains of primary importance to investigate
for solution that allows better performances in practice. Ideally, the best re-assignment
strategy would be based on a layering scheme where: (a) the coin grows in size as lit-
tle as possible after each transfer, and (b) the cost of signature verifications does not
compromise the broker’s efficiency, independently from the number of coins that reach
the broker. In this paper we show how to meet both these requirements by using the
recently introduced notion of aggregate signatures [7].

3.1 Aggregate Signatures

Aggregate signatures were introduced by Boneh et al. [7] to reduce the size of aggregate
chains (by aggregating all signatures in the chain) and for reducing message size in
secure routing protocols such as SBGP. An implementation of aggregate signatures
using bilinear maps was given in [7] and uses the Boneh, Lynn and Shacham signature
scheme [9] as underlying building block. Very informally a bilinear map is a function e :
G1×G2 → GT (whereG1, G2 andGT are groups) which is linear with respect to both
G1 and G2. This means that for all integers a, b one has that e(xa, y) = e(x, y)a and
e(x, yb) = e(x, y)b. Of course, in order for a bilinear map to be useful in cryptography,
some additional properties are required. For the purposes of this it is sufficient to say
that “useful” bilinear maps can be constructed from the Weil pairing and the Tate pairing
over groups of points of certain elliptic curves. For more details the interested reader is
referred to [10].

A P2P Market Place Based on Aggregate Signatures 57

The rest of this paragraph is devoted to briefly describe the aggregate signature
scheme from [7]. For completeness, we give here a more formal definition of the bilinear
maps used in cryptography.

BILINEAR MAPS. Let G1 and G2 be two cyclic (multiplicative) groups of prime order
p. We denote with g1 a generator of G1 and with g2 a generator of G2. Moreover
let ψ be a computable isomorphism from G1 to G2, such that ψ(g1) = g2. Now, let
GT be an additional group such that |GT | = |G1| = |G2|. A bilinear map is a map
e : G1 ×G2 → GT with the following properties

1. Bilinear: for all x ∈ G1, y ∈ G2 and a, b ∈ Z, e(xa, yb) = e(x, y)ab.
2. Non-degenerate: e(g1, g2) �= 1.

Notice that these properties imply that (1) for all x ∈ G1, y1, y2 ∈ G2, e(x, y1y2) =
e(x, y1)e(x, y2) and (2) for any x, y ∈ G1 e(x, ψ(y)) = e(y, ψ(x)).

THE SCHEME. An aggregate signature scheme allows to sign (distinct) messages Mi ∈
{0, 1}∗. A signature σi is an element in G2. The groupsG1, G2, their generators g1, g2,
the computable isomorphism ψ fromG1 toG2 and the bilinear map e : G1×G2 → GT

(where GT is the target group), are all system parameters.
The key generation algorithm goes as follows. For each user it picks a random value

x ∈ Zp, where p is an n-bit prime, and sets v = gx
1 as the user public key. The user

secret key is x. A user, holding secret key x, signs a message M ∈ {0, 1}∗ as follows.
He computes h = H(M) (where H is an hash function modeled as a random oracle
mapping elements in {0, 1}∗ into elements in G2). The signature is σ = hx.

To verify the correctness of a signature σ on a message M , one computes h =
H(M) and checks whether e(g1, h) = e(v, h) holds.

To aggregate � different signatures σi (on corresponding different messagesMi) one
simply computes σ =

∏�
i=1 σi. The aggregate signature is σ ∈ G2.

Finally to verify an aggregate signature σ, for the given (different) messages
M1, . . . ,M� and public keys v1, . . . , v� one proceeds as follows. First ensure that all the
messages are different and reject otherwise. Next, compute hi = H(Mi) and accept if
e(g1, σ) =

∏�
i=1 e(vi, hi) holds.

EFFICIENCY ANALYSIS. First notice that a signature is a single point inG2. As pointed
out in [7], on certain elliptic curves these signatures are very short: roughly the half the
size of DSA signatures with comparable security. In particular one may set n = 160 as
security parameter.

To sign one message costs one exponentiation in G2, which costs O(n3) bit opera-
tions. Thus, signing is roughly 250 times faster than RSA-PSS.

Verification, on the other hand costs two pairing computations. Each pairing compu-
tation costs, roughly, 20 modular exponentiations. Thus the cost of verifying a signature
is basically 40n3. Thus verifying a single signature is, roughly, 150 more expensive than
RSA-PSS, with short public exponent.

Aggregation allows to verify � signatures doing � + 1 pairing computations only.
Still, verifying � signatures remains 75 more expensive than RSA-PSS (again, with
short public exponent).

58 D. Catalano, G. Ruffo, and R. Schifanella

4 Modeling Transferable Coins

The goal of modeling PPay is to numerically characterize the life-time of the coins,
recalling that they can be printed, transferred and cashed. The computational cost is
measured in terms of atomic operations, where an atomic operation is set, by construc-
tion, to a RSA digital signature verification.

We describes a framework where a set of peers interact reciprocally sharing items
and (re-)assigning coins minted by the broker. We characterize the behavior of the peers
in a time interval ∆t. We do not make any assumptions about the duration of this time
interval. Therefore, in order to simplify our analysis and without altering the results, we
can reasonably suppose that all the coins printed during∆t are finally cashed.

Each coin γ is associated to a re-assignment chain rcγs during its life-time. Such a
chain is made of a sequence of peers, i.e., rcγs = {pγ

0 , p
γ
1 , . . . p

γ
s}, where pγ

0 is the owner
of γ, and ∀i : 0 ≤ i < s, pi transfers γ to pi+1. Of course, ps will give the coin back to
the broker, to be properly cashed.

We define the re-assignment limit m as the maximum length of the re-assignment
chain. Hence, ∀rcs : s ≤ m. Intuitively, higherm is, more the broker load is decreased,
but the detection of double spending frauds is delayed. In the real world is reasonable
to set such a boundary.

Let us define a0, a1, . . . , am where ai represents the number of coins reassigned i
times and that have been cashed by the broker during the time interval∆t. For example,
let us suppose that during∆t, 10 coins are printed. Four of them are never reassigned 2

three are reassigned twice, and other three are reassigned once. If the limit m is set to
3, then we have that a0 = 4, a1 = 3, a2 = 3, and a3 = 0. Hence, we observe that C is
equal to

∑m
i=0 ai.

Therefore, we can derive the overall number of transactions performed in the market
place, namely T , as the sum

∑m
i=0(i + 1)ai, observing that a coin reassigned i times

corresponds to a re-assignment chain of length i+ 1.
In such a scenario, a meaningful role is played by the distribution of the ai coef-

ficients. In fact, for a given number of transactions T that take place during ∆t, the
ai distribution affects (1) the number of coins printed by the broker, (2) the amount of
re-assignments, and, thus, (3) the load of the broker.

Unfortunately, we do not have any idea how users will behave in such a market
place, because no one has experimented such technologies in the real world. This has
the consequence that neither the analysis parameters can be set in an unique way, nor
any empirical measure based on monitored peer-to-peer traffic can be used. Measures
performed in the present p2p networks cannot be used in our study, because past anal-
ysis (e.g. [2] [11]) were conducted in domains where users download files for free
without gaining any profit. Moreover, a fair micro-payment system, should seriously
incentive users to reduce the free-riding phenomenon, e.g., as in FairPeers [6]. For
such reason, we decided to evaluate the entire system making several hypotheses, and
comparing reassignment strategies under these different settings.

We focus on two different distributions: Pareto and FullChain. When Pareto is
used, the hypothesis is that an high number of coins will be cashed after few reas-

2 i.e., These four coins corresponds to a re-assignment chain of length s = 1.

A P2P Market Place Based on Aggregate Signatures 59

Table 2. Cost of atomic actions and modeling parameters

Name Value Description
|check| 1 Verification of one RSA digital signature
|gen| 20 · |check| Generation of one RSA signature∣

∣check1

∣
∣ 115 · |check| Verification of one single aggr. sign.∣

∣check�

∣
∣ 57, 5 · |check| Verification of � aggr. signatures

|gen| 5.55 · |check| Generation of one aggr. sign.
aggr(�) (� − 1)/6.42 Aggregation of � signatures (� > 1)

t 0.8 Off-line peer’s rate
f 0.0, 0.05 Frauds rates

lim 10 numbers of coins in a limit certificate

signments, that is likely in the real world. The other distribution, namely FullChain,
models an optimistic scenario, where each coin is always reassigned until it achieves
the limit m, i.e., a0 = a1 = am−1 = 0 and am = C. Other distributions can be used
as well as in [8], but the significance of the results would not change and we did not
include other diagrams for the sake of brevity.

Table 2 shows the set of system parameters and the cost of the operations considered
in our analysis. The cost of each operation is normalized on the cost of an RSA signature
verification (|check|). These values are based on the comparison times estimated in
[12]. We can observe that the aggregate digital signature scheme looks much more
expensive than RSA, except for generation (|gen| < |gen|).

Moreover, broker’s performances are sensibly affected when peers involved in trans-
actions are off-line, and when frauds are detected. Let t be the off-line rate of a peer3,
f the fraud rate. Finally, let lim be the number of coins that a peer’s user can print by
herself when she owns a limit certificate.

5 Broker’s Load Analysis

The broker is engaged when any coin is subjected to the following actions: printing,
reassignment, and cashing. These actions affect the broker’s performance dependently
of the used coin management strategy. As a consequence, we use three functions, ωP ,
ωR, and ωCa, that respectively define the weights due to printing, reassigning or cashing
a coin.

We define the broker’s load LB in terms of these three actions:

LB = C ∗ ωP + (T − C) ∗ ωR + C ∗ ωCa (1)

IfC and T are, respectively, the number of coins printed and the number of transactions
occurred during the given time interval∆t, then (T−C) is the number of reassignments
performed during the time interval.

Definitions of ω functions change accordingly to three different coin management
aspects: (1) the minting strategy, (2) the reassignment strategy, (3) the adopted digi-
tal signature scheme. As introduced in Section 2, there are two different coin minting

3 As in [11], we suppose that a peer is off-line with a 0.8 probability.

60 D. Catalano, G. Ruffo, and R. Schifanella

strategies: the broker can mint a raw coin for a given peer X or can produce a limit
certificate for X . We will refer to these approaches respectively with keywords Raw
and Limit.

We classify reassignment strategies with labels Basic and Layer. In the Basic strat-
egy, each reassignment involves the owner of the coin according to the scheme based on
messages ρ and α′ (Table 1). If the owner is down, the broker receives the reassignment
request from the buyer and sends the reassigned coin αB to the engaged peers. He has
also the charge to contact the owner when he comes back on-line. If Layers are used
instead, the coin floats from node to node until the limit m on the number of layers is
reached or until a peer decides to cash it. After each hop, the coin grows in size and in
number of attached signatures4.

Finally, our evaluation considers two different digital signature schemes: RSA and
AS (Aggregate Signature).

5.1 Computational Analysis

In the following, we compare the cost of all the strategies, identifying each combina-
tion with the triplet [M,R, S], where M,R and S represents, respectively, the minting
strategy, the reassignment policy, and the signature scheme.

For example, the triplet [Limit, Basic, AS] identifies a system where the broker
mints limit certificates, no layers are allowed during reassignment, and messages are
signed under the aggregation scheme. Limit certificates represent an attempt to reduce
the broker’s load by way of allowing a peer to print a coin by himself. In fact, if C is the
number of coins that circulates in the system during∆t, and lim is the number of coins
that each peer can extract from a limit certificate, then each coin costs ωP = |gen| /lim.
Because layered coins are not allowed, the broker is involved during a reassignment
with probability t (i.e., when a peer is likely to be off-line). Hence, ωR is equal to the
computational cost of checking a reassignment request (

∣
∣check1

∣
∣) and of generating a

new assigned coin (|gen|).
Finally, ωCa is the sum of the costs of (1) aggregating C signatures (aggr(C)), (2)

verifying them (
∣
∣checkC

∣
∣), and (3) detecting of the misbehaving peer(s) in presence of a

fraud5. The last cost is particularly important, because we have two different scenarios:
when we have no frauds (f = 0), all the C different signatures are proved valid. But
if f > 0, the check will simply fail, without identifying the malicious signer(s). In
this case, the broker should verify all the signatures one by one, in order to detect
the misbehaving peer. For each assigned coin, ωCa is increased of a value equal to
f · 2 · ∣∣check1

∣
∣.

Table 3 shows all the computational costs of the ω functions, for different strategies.
As a final observation, observe that when layered coins are used, then ωR = 0,

because the broker is never involved during reassignments. On the other hand, when a

4 An hybrid strategy has been analyzed, too. In such a scenario, a peer tries to reassign the coin
by way of the owner, but, if the latter is down, the coin is layered instead. We observed that this
Hybrid strategy always outperforms the Layer one, even if they differ very slightly. Hence,
for the sake of simplicity, we did not show results on this third reassignment strategy.

5 Observe that the first two components of ωCa should be divided by the number of aggregated
coins (see Table 3) in order to flatten their contribution in formula (1).

A P2P Market Place Based on Aggregate Signatures 61

Table 3. Values of the weight functions in terms of cryptographic primitives

Strategy ωP ωR ωCa

[Raw, Basic, RSA] |gen| t(3 |check| + |gen|) 2 |check|
[Raw, Layer,RSA] |gen| 0 (2 + s) |check|
[Limit, Basic, RSA] |gen|

lim
t(3 |check| + |gen|) 2 |check|

[Limit, Layer,RSA] |gen|
lim

0 (2 + s) |check|
[Raw,Basic, AS] |gen| t(

∣
∣check1

∣
∣ + |gen|) aggr(C)+|checkC |

C
+ 2f

∣
∣check1

∣
∣

[Raw,Layer,AS] |gen| 0
aggr(C)+|checkC |

C
+ (2 + s)f

∣
∣check1

∣
∣

[Limit, Basic, AS] |gen|
lim

t(
∣
∣check1

∣
∣ + |gen|) aggr(C)+|checkC |

C
+ 2f

∣
∣check1

∣
∣

[Limit, Layer,AS] |gen|
lim

0
aggr(C)+|checkC |

C
+ (2 + s)f

∣
∣check1

∣
∣

coin is cashed, it contains many signatures as the number of layers, and ωCa is higher
than in the Basic reassignment strategy. In the estimation of ωCa, the number of layers
in a coin is given by coefficient s, i.e., the length of the reassignment chain of the
layered coin. In the next section, the size of layers (i.e., the value of s) is modeled using
the FullChain and Pareto distributions, as previously introduced.

5.2 Results

The scalability of our market place is strictly bound to the load of the broker: less this
central unit is overloaded, more the market place is resistant. As a consequence, we
want to identify the combination of coin management policies that stresses the broker
as less as possible. Hence, for comparing different strategies, we set T to a constant
value. A spatial analysis (i.e., bandwidth and storage consumption) is trivial: an RSA
signature is sized 128 bytes, against the 20 bytes needed under the AS scheme. As a
generalization of [8], the best strategy is [Limit, Layer,AS].

Computational analysis is not so straightforward, and we need an in depth analysis.
In order to make our results independent from a given platform, we normalized all the
costs at the value of an RSA verification cryptographic operation (

∣
∣check

∣
∣). Hence, the

number of check operations is displayed in the y axes in diagrams showed below (Fig-
ures 1 and 2). The x axes are instead devoted to the maximum number of reassignment
m. In Figure 1 we clearly see that a system adopting aggregate signatures outperforms,
even from a computational point of view, an equivalent framework that uses RSA sig-
natures. In fact, if we measure the system performance in terms of number of RSA
signature verifications, we observe that when we have no fraudulent peers, and even
when the rate of frauds is quite limited (f < 5%), the usage of aggregate signatures
appreciably improves the broker’s load. This is observed in all the schemes, except for
the [, Basic,] strategies with FullChain distribution. However, the Basic reassign-
ment strategy is failing w.r.t. Layer (confirming results in [8]). Observe that, whatever
distribution is adopted in the model, the best strategy is definitely [Limit, Layer,AS].

As expected, if the fraud rate grows (e.g., f = 5% in the diagrams of Figure 2), ag-
gregate signatures deteriorates broker’s performance. Anyhow, we can reasonably sup-
pose that the rate of committed frauds will always be very limited, because of the low

62 D. Catalano, G. Ruffo, and R. Schifanella

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Raw,Basic,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Limit,Basic,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Raw,Layer,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Limit,Layer,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

Fig. 1. Computational analysis of different strategies: fraud rate f = 0%

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Limit,Basic,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16

|c
he

ck
|

m

[Limit,Layer,RSA/AS] Strategies

FullChain-RSA
FullChain-AS
Pareto-RSA
Pareto-AS

Fig. 2. Computational analysis of different strategies: fraud rate f = 5%

value of the used currency: frauds are detactable and not profitable. In the real world,
we can support the adoption of aggregate signatures to verify group of many signatures
all at once after a periodical interval of time. Moreover, to enforce results of this study,
the reader should observe that we adopted a heavy pessimistic estimation on the perfor-
mance of cryptographic operations under an AS scheme. An efficient implementation
of check� would raise up the efficiency threshold based on f .

A P2P Market Place Based on Aggregate Signatures 63

6 Conclusion

We evaluated the usage of an aggregate signature scheme in the PPay micro-payment
system. We proved that aggregate signatures outperform RSA in terms of broker com-
putational and spatial resources consumption. In particular, we showed that the broker’s
load scales well even if frauds are committed. Future work will focus on a deep analysis,
taking advantage of simulators and a prototype implementation.

Acknowledgments

This work has been partially financially supported by the Italian FIRB 2001 project
number RBNE01WEJT “Web MiNDS”.

References

1. R. Dingledine, M.J.F., D.Molnar: Peer-To-Peer: Harnessing the Power of Disruptive Tech-
nologies, Chapter 16. O’Reilly (2001)

2. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday (2000)
3. Cohen., B.: Incentives build robustness in bittorrent. In: Proc. of the 1st Workshop on the

Economics of Peer-to-Peer Systems. (2003)
4. eMule project: (http://www.emule-project.ne)
5. Yang, B., Garcia-Molina, H.: Ppay: micropayments for peer-to-peer systems. In: Proc. of

the 10th ACM CCS, ACM Press (2003)
6. Catalano, D., Ruffo, G.: A fair micro-payment scheme for profit sharing in a p2p network.

In: Proc. of HOT-P2P 04, IEEE Press (2004)
7. D. Boneh, C. Gentry, B.L., Shacham, H.: Aggregate and verifiably encrypted signatures from

bilinear maps. In: Eurocrypt ’03, LNCS 2656, Springer-Verlag. (2003) 416–432
8. Ruffo, G., Schifanella, R.: Scalability evaluation of a peer-to-peer market place based on

micro payments. In: Proc. of HOT-P2P 05, IEEE Press (2005)
9. D. Boneh, B.L., Shacham, H.: Short signatures from the weil pairing. In: Asiacrypt ’01,

LNCS 2248, Springer-Verlag. (2001) 514–532
10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Crypto ’01,

LNCS 2139, Springer-Verlag. (2001) 213–229
11. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measure-

ment, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proc. of SOSP ’03,
ACM Press (2003)

12. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryptosys-
tems. J. Cryptology 17 (2004)

	Introduction
	An Overview of PPay
	Fraud Detection Using Aggregate Signatures
	Aggregate Signatures

	Modeling Transferable Coins
	Broker's Load Analysis
	Computational Analysis
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

