
CSLTA: an Expressive Logic for Continuous-Time Markov Chains �

Susanna Donatelli
Dipartimento di Informatica

Università di Torino
Italy

susi@di.unito.it

Serge Haddad
LAMSADE, CNRS &

Université Paris-Dauphine
France

haddad@lamsade.dauphine.fr

Jeremy Sproston
Dipartimento di Informatica

Università di Torino
Italy

sproston@di.unito.it

Abstract

The stochastic temporal logic CSL can be used to
describe formally properties of continuous-time Markov
chains, and has been extended with expressions over states
and actions to obtain the logic asCSL. However, proper-
ties referring to the probability of a finite sequence of timed
events (such as “with probability at least 0.75, the sys-
tem will be in state set A at time 5, then in state set B
at time 7, then in state set C at time 20”) cannot be ex-
pressed in either CSL or asCSL. With the aim of increas-
ing the expressive power of temporal logics for continuous-
time Markov chains, we introduce the logic CSLTA and its
model-checking algorithm. CSLTA extends CSL and asCSL
by allowing the specification of timed properties through a
deterministic one-clock timed automata.

1 Introduction

The complexity of hardware and software systems has
led to interest in automatic methods for increasing our con-
fidence that the functional and performance requirements
of such systems are satisfied. Stochastic systems can be
modelled as continuous-time Markov chains (CTMCs), or
in some higher-level language, such as stochastic Petri nets
(SPNs) or stochastic process algebra. Performance and de-
pendability requirements are then defined using state and/or
transition rewards or in terms of stochastic extensions of
temporal logic, such as CSL [3, 5] or asCSL [4]. Tempo-
ral logic based approaches are particularly useful when the
measure of interest depends on the execution path. Given
a formal description of the system and its requirements, we
can then execute a model-checking algorithm which estab-
lishes automatically whether the system model meets the
requirements expressed in CSL or asCSL.

In this paper, we propose a new stochastic temporal logic
which builds on CSL and asCSL, but which enriches the set

�Supported in part by ANR-06-SETI-002 project Checkbound and
EEC project Crutial.

of properties that can be defined and verified, and present its
associated model-checking algorithm. Let us first explain
the main motivations for introducing a new logic. Con-
sider a system whose stochastic behavior is described by
a CTMC whose states are partitioned into “system is work-
ing properly” (work-states), “system is working in degraded
mode” (degr-states), or “system is not working properly”
(fail-states). The CTMC can move from work to degr states
and to fail states (either directly or through degr states). A
classical dependability property requires the computation of
the probability of failing within the time interval I: these
probabilities can be easily computed using classical solu-
tion methods for CTMCs.

Instead, if we are interested in only those failures in
which the system fails within the time interval I, without
first entering the degraded mode, we have to compute the
probability of reaching a fail state within I, while pass-
ing only through work states. The stochastic temporal
logic CSL has temporal operators that allow a simple and
semantically-clear description of such a property using the
Until operator: P���work UI fail�.

The logic asCSL permits the specification of paths
in terms of state and action labels. For example,
P����work �Act��� �work� tr�� �fail�

p
�I�, is similar to the

CSL formula above, with the additional restriction that the
change from work-states to fail-states is due to action tr.

However, properties in which paths are specified by an
arbitrary number of time constraints, or by time constraints
which can be dependent on the behavior of the CTMC, can-
not be expressed in the model-checking analyses which we
are aware of. Consider the case in which we are interested
in the probability of the system exhibiting the following
behavior: the system goes from work states to degr states
within I, and then from degr states to fail states within I �.
With this property, we are therefore characterizing paths
not only in terms of states, but also in terms of two time
constraints. Furthermore, we can also consider the case in
which the time interval I � is not relative to the start of the
execution of the CTMC, but relative to the transition from

work states to degr states. A similar extension can be con-
sidered for paths defined also in terms of actions.

The proposal of this paper is to describe paths of inter-
est using a timed automaton [2] with a single clock: the
paths of the CTMC on which the probability is computed
will be those finite paths that “match” the specification of
the timed automaton. The timed automaton has state and
action labels, and deterministic behaviour. The resulting
logic is called CSLTA. We also present a model-checking
algorithm for CSLTA. Contrary to the previous approaches,
which perform ad hoc transformations of the CTMC be-
fore a transient or steady-state analysis, this algorithm gen-
erates a Markov regenerative process and then computes a
reachability probability on this process. Furthermore, we
prove that CSLTA subsumes both CSL and asCSL. Finally,
we prove that CSLTA is strictly more expressive than CSL:
this proof is completely different from the ones used for
similar results in non-stochastic models.

With regard to related work, performance metrics that
depend on paths have also been studied in [8, 14] In par-
ticular, the work in [14] uses automata for the specifica-
tion of the set of paths of interest of a CTMC: rewards,
which are usually associated with states or transitions of
the CTMC, are instead associated with locations and tran-
sitions of the automaton, thus providing a wide range of
performance measures based on states and/or events of the
CTMC. We also note that the logic CSLTA is similar to
the logic TECTL�� [7] from the non-probabilistic model-
checking literature. One-clock timed automata have been
studied in, for example, [13, 15]. Finally, we recall that the
original definition of CSL permitted the description of a se-
quence of timed Until formulae within a single probabilis-
tic operator P�� [3]: however, only decidability issues are
considered, while model-checking algorithms for CSL [5]
do not permit sequences of timed Until formulae.

The rest of the paper is organized as follows: Section 2
defines the syntax and semantics of CSLTA, illustrated with
the help of a number of small examples. Section 3 presents
the model-checking algorithm for CSLTA and gives an ex-
ample on a simple CTMC, while Section 4 shows that
CSLTA is strictly more expressive than CSL and asCSL.
Section 5 summarizes the paper and reports on future work.

2 Syntax and Semantics of CSLTA

��� Markov Chains and Timed Automata

We first introduce continuous-time Markov chains labelled
both by atomic propositions on states and by actions on
transitions. Let R�� (R��) be the set of non-negative (pos-
itive) reals, and letN be the set of natural numbers.

Definition 2.1 (Action- and state-labelled Markov chain)
An action- and state-labelled continuous-time Markov chain
(ASMC) is a tuple M � hS�Act �AP � lab�Ri, where S is

p

s�p s�

q s�

p� qs�

�s�

R�s�� d� s��

R�s�� c� s��R�s�� c� s��

R�s�� e� s��

R�s�� a� s��

R�s� � b� s��

R�s�� a� s��

R�s�� b� s��

Figure 1. An ASMC

a finite set of states, Act is a finite set of action labels, AP
is a finite set of atomic propositions, lab � S � �AP is a
state labeling function, and R � S � Act � S � R�� is a
rate matrix. We require that for any state s there exists a
pair �a� s�� � Act � S withR�s� a� s�� � �.

Intuitively, rate matrix R describes the transitions that
can be made between states of the ASMC, on which
actions, and with which rate. A transition from state s to
state s�, performing action a, exists if R�s� a� s�� � �. A
transition from s to s� performing a and of sojourn time
� � R�� is denoted by s

a����� s�.

Definition 2.2 (Paths of M) A finite path of an
ASMC M is a finite sequence of transitions
� � s�

a�������� s�
a�������� � � � sn��

an����n���������� sn
where R�si� ai� si��� � � for i � �� � � � � n � �. An
infinite path of M is an infinite sequence of transitions
� � s�

a�������� s�
a�������� � � � where R�si� ai� si��� � � for

all i � � and such that
P

i�� �i ��.

Notation. Given s � S, let PathM�s� be the set of in-
finite paths s�

a� ������� s�
a�������� � � � such that s� � s.

Let PrMs be the probability measure on Path
M�s� de-

fined in the standard manner (for example, see [5, 4]). Let
� � s�

a�������� s�
a�������� � � � sn��

an����n���������� sn be a
finite path. Then j�j � n denotes the length of �, and
� ��� �

Pn��
i�� �i is the total duration of �. By conven-

tion, ��� � �. For an infinite path �, we let j�j � � and
� ��� ��.

As usual, we can describe an ASMC by a graph (see Fig-
ure 1). The vertices of this graph are its states whereas
the edges represent its transitions. The atomic propositions
(here p and q) that are satisfied in a state are indicated near
the corresponding node. Finally, the rate of a transition la-
bels the corresponding edge.

We now present a restricted variant of timed au-
tomata [2], which are used in CSLTA to describe properties

of ASMC paths. More precisely, in our context, timed au-
tomata are used as acceptors of finite ASMC paths. The
class of timed automata that we consider are determinis-
tic (i.e., given a path of an ASMC, there is at most one
path of the timed automaton which reads �), and have a
single clock. In the same manner as in classical anal-
ysis techniques for timed automata [2], we present our
timed automata using natural-numbered constants (rational-
numbered constants can also be considered through re-
scaling) We proceed to define deterministic (one-clock)
timed automata. As in asCSL, the symbol

p
denotes a

pseudo-action that is not included in the action set Act of
any ASMC (

p �� Act). We consider the clock variable x. A
valuation �x � R�� is interpreted as assigning a real-valued
value to x. A constraint is of the form � � x � � or � � x
where �� � � N,� 	 � and � stands for either � or 	. An
inner constraint is a constraint � � x � � such that � � �.
The set of inner constraints is denoted Inner. A boundary
constraint is a constraint � 	 x 	 � such that � � �; we
generally write boundary constraints as x � �. The set of
boundary constraints is denoted Boundary. Let � be a con-
straint and �x be a clock valuation. Then we write �x � � if
� is satisfied when �x is substituted for x in �.

A state proposition is a proposition which either holds,
or does not hold, in an ASMC state. For a set 	 of state
propositions, let j�� be its associated satisfaction relation:
hence we write M� s j�� 	 to denote that the state s
of the ASMC M satisfies 	. We omit M and write
s j�� 	 when clear from the context. We also consider
boolean expressions of state propositions: for example
s j�� 	�
 	� denotes that s satisfies 	� and 	�. Let B�	�
be the set of Boolean expressions over state propositions
of 	. We will make precise later in the paper the set of
state propositions 	 used in CSLTA. For the purposes of
the current explanation, the reader can consider the case in
which 	 � AP with s j�AP a if and only if a � lab�s�,
for a state s and a � AP .

Definition 2.3 (Deterministic Timed Automaton)
A deterministic timed automaton (DTA) A �
h	�Act� L�
� Init�Final ��i comprises:
� 	, a finite alphabet of state propositions;
� Act, a finite alphabet of actions;
� L, a finite set of locations;
�
 � L� B�	�, a location labelling function;
� Init , a subset of L called the initial locations;
� Final , a subset of L called the final locations;
� �� L � ��Inner � �Act� �Boundary � fpg�� �
f�� xg � L, a set of edges, where l

��A�r���� l� denotes
that �l� 	� A� r� l�� ��.

Furthermore A fulfills the following conditions.
Initial determinism: �l� l� � Init �
�l�

�l��� false.
Determinism on actions: �A�A� � Act s�t �A � A� ��
�� �l� l�� l�� � L� if l�� ��A�r���� l
 l�� ���A��r������� l� then either

�l�

�l��� false or 	
 	� � false.

Determinism on
p

: �l� l�� l�� � L� if l��
��
p
�r���� l

l��
���
p
�r������ l� then either
�l�

�l�� � false or

	
 	� � false.

No
p

-labelled loops: For all sequences l�
���A��r�������

l�
���A��r������� � � � ln�� �n�� �An���rn�������������� ln such that l� � ln,

there exists i 	 n such that Ai ��
p

.

Notation. Edges labelled by
p

are called boundary edges
while the other edges are called inner edges. Given an edge
e � �l� 	� A� r� l�� ��, let source�e� � l, guard�e� � 	,
action�e� � A, reset�e� � r, and target�e� � l�. We let
the valuation �x�x �� �� be equal to 0 and let the valuation
�x�� �� �� be equal to �x.

The semantics of DTA, expressed in terms of paths,
is standard [2], apart from the case of boundary edges,
which are urgent and have priority over other edges.
Urgency specifies that time cannot elapse if a bound-
ary edge is enabled, and is a feature of variant of timed
automata used in the tools UPPAAL [6] and KRONOS [16].

Definition 2.4 (Configurations and control switches of A)
A configuration of a DTAA is a pair �l� �x�, where l � L and

�x is a valuation. There is a control switch �l� �x�
��e�� �l�� �x��

of A corresponding to the passage of
 � R�� time units
elapse from configuration �l� �x�, after which the edge e ��
is taken to configuration �l�� �x��, if the following conditions
are satisfied:
Standard requirements: source�e� � l, �x
 � guard�e�,
target�e� � l�, and �x� � �x�reset�e� �� ��;
Boundary edges are urgent: for all � 	
� �
, there
does not exist an edge e� �� such that source�e�� � l,
�x
� � guard�e��, and action�e�� �

p
;

Boundary edges have priority: for all edges e� �� such
that e �� e�, if source�e�� � l and �x
 � guard�e��, then
action�e�� �� p

.

Definition 2.5 (Paths of A) A finite path of a DTA A
is a finite sequence of control switches �l�� �x��

���e�����
�l�� �x��

���e����� � � � �ln��� �xn���
�n���en��������� �ln� �xn�.

An infinite path of a DTA A is an infinite sequence of

control switches �l�� �x��
���e����� �l�� �x��

���e����� � � � .

We now give an intuitive explanation of how a path
� � s�

a�������� s�
a� ������� � � � of an ASMCM can be used as

input to a DTA A. The key idea is that A performs control
switches according to the states and actions that it “read-
s” along �. Recalling that the value of clocks in timed au-
tomata increase at the same rate as real-time, as time elapses
in M, then the value of the clock x of A also changes ac-
cordingly. Control switches corresponding to inner edges
of A are triggered by transitions of M, whereas control

switches of boundary edges of A are taken autonomously,
without a corresponding transition of M.

The DTA A begins in a configuration �l�� �� with lo-
cation l� � Init such that the initial state s� of � satis-
fies the expression
�l�� over state propositions (formally,
s� j��
�l��). Note that, by initial determinism, there is at
most one l � Init such that s� satisfies
�l�. If s� does not
satisfy
�l� for all l � Init , then A rejects �.

Given the existence of l� � Init such that s� satisfies

�l��, the DTA A then moves from �l�� �� to another con-
figuration depending on the first transition s�

a�������� s� of
�. First we consider the case in which there are no outgo-
ing boundary edges from l�. If there exists a control switch
�l�� ��

���e����� �l�� �x�� such that a� � action�e�� and s� sat-
isfies
�l��, then this control switch is taken. Note that,
by determinism on actions, there exists at most one control
switch satisfying these conditions. If no such control switch
exists, then A rejects �.

Now we consider the case in which there exists at least
one boundary edge from l�. Consider the control switch

�l�� ��
����e

�
����� �l��� �x���, where action�e��� �

p
, which (by ur-

gency of boundary edges) corresponds to the earliest bound-
ary edge available by letting time elapse from �l�� ��. If

�� � ��, then this control switch is available only after M
has performed the transition s�

a�������� s�; hence, the DTA
“reads” the ASMC transition before the boundary edge is
available, and this case is similar to the case in which there
are no boundary edges from l� in the previous paragraph. If,
however,
�� 	 ��, the DTA takes the control switch before
“reading” the ASMC transition. Note that, in this case, the
remaining time before the transition of M must be “read”
byA is �� �
��, rather than � . This has implications for de-
ciding whether a boundary edge can be taken from �l��� �x

�
��,

or whether the transition of M must be “read” before any
boundary edge is enabled for choice.

UnlessA has already rejected �, the path ofA generated
by � then continues from �l�� �x�� or �l��� �x���. Finally, if
the path of A generated by � reaches a configuration with
a location in Final , then the run of A generated by � is
accepted. If, however, the path of A generated by � does
not reach such a configuration, then � is rejected. Hence,
there are two ways in which A can reject �: if there does
not exist an control switch corresponding to the “reading”
of a transition of �, or if a final location is never reached.
Examples of DTA: Next and Until. Let �� and �� be state
propositions in the alphabet 	 of the DTA that we consider.
In Figure 2 we illustrate a DTA, using the usual conventions
(i.e., nodes represent locations, and edges represent transi-
tions labelled with their guards, actions sets, and the set of
clocks to be reset to 0, respectively). Initial locations are
denoted by an incoming arrow with no source, and final lo-
cations are denoted by a double border. The DTAAX �������

l� l�
� � x � ��Act � �

��

Figure 2. The DTA AX �������

l�

l� l�
x � ��Act � �

x � ��
p
� �

x � ��Act � �

x � ��
p
��

x � ��Act ��

��

�� ���� ��

Figure 3. The DTA A��U �������

in Figure 2 specifies behaviours in which the first transition
must be taken to a state satisfying �� after at least � time
units, but not after � time units, and corresponds to the Next
path formula X ������� of CSL [5]. The action of the tran-
sition is not important; this fact is represented by the action
set Act on the edge of the DTA.

We can use the DTA A��U �������
of Figure 3 to repre-

sent the property of eventually reaching a state satisfying
�� at some instant between � and � time units, remaining
within states satisfying �� before that point (the timed
Until path property ��U ������� of CSL [5]). In contrast to
the previous example, this DTA uses boundary edges which
witness that the time interval ��� �� has been entered. In this
way, we distinguish between the time interval ��� ��, where
the truth value of �� is irrelevant, and the time interval
��� ��, where the truth value of �� becomes relevant.

Path acceptance. We now describe formally the conditions
for the acceptance of an ASMC path by a DTA.

Definition 2.6 Let M be an ASMC, and let A be a DTA.
The infinite path �M � s�

a�������� s�
a�������� � � � of M is

accepted byA if there exists:
1. a finite path �A � �l�� �x��

�� �e����� �l�� �x��
���e�����

� � � �lm��� �xm���
�m���em���������� �lm� �xm� of A,

2. an index n � N,
3. a time � 	 �n, and
4. a function � � f�� � � � �mg � f�� � � � � ng which maps

indices of �A to indices of �M,
such that the following conditions are satisfied:
� l� � Init, �x� � �, ���� � � and
�� 	 i 	 m� li � Final� i � m;

� �� 	 i 	 m, s�	i
 j��
�li�;

� �� 	 i 	 m, if ei is an inner edge
then ��i �� � ��i� �
 a�	i
 � action�ei�
else ��i �� � ��i�;

� �� 	 i � n,
P

jj�	j
�i
j � ��	i
;

� Pjj�	j
�n
j � � .

The first condition specifies that �A must start from an
initial location and end in a final location. The second con-
dition requires that the state propositions must satisfy the
corresponding locations in the sequence. The third condi-
tion specifies that � can map different (but consecutive) in-
dices of �A to the same index of �M, provided that the DTA
edges corresponding to these indices are boundary edges.
It also requires that a transition of the ASMC in � can be
matched by a traversal of an inner edge provided that the
action of the transition is included in the action set of the
edge. The fourth condition requires that the sum of dura-
tions in �A corresponding to a particular index i of � is �i.
The fifth point applies the reasoning of the fourth point to
the case in which the path �A features boundary edges di-
rectly before reaching a final state.

It should be clear, due to our requirements for DTA, that
given an ASMCM and a DTA A, there is at most one path
of A that accepts a given path of M. Accordingly, if s is
a state of M we let AccPathM�s�A� be the set of infinite
paths of M starting from s that are accepted by A.
Examples of path acceptance. In Figure 4, we present two
examples of the way in which a path of the ASMC M of
Figure 1 can be accepted by the DTA ApU �����q. We write
eij to refer to the edge of ApU �����q from location li to loca-
tion lj , and we use dotted lines to represent the � function.
Note that if we have more than one dotted line from a state
si, then the DTA performs a

p
. Example 1 of Figure 4 has

� � � and � � � and depicts a case in which q does not
hold at time �, but becomes true at time �, which belongs
to ��� ��; therefore the DTA reaches l� through l�. Exam-
ple 2 of Figure 4 has � � � and � � � and depicts a case in
which q already holds before �; therefore the DTA reaches
l� directly from l�.

We now describe briefly some examples of paths of M
which are rejected by ApU �����q. If the first transition of M
is s�

a����� s�, then the associated path ofApU �����q will con-

sist of the single control switch �l�� ��
e�������� �l�� ��: after

the value of the clock x exceeds �, it will not be possible
to take further control switches. If on the other hand the
path of M is s�

a����� s�
c��	����� s�, then the associated

path of ApU �����q will consist of the single control switch

�l�� ��
e�������� �l�� ��, after which it will not be possible to

take any further control switches: the state s� is not labelled
by p, boundary edges are available only at time �, and yet

the transition s�
c��	����� s� occurs before time �.

Example 1: � � � and � � �

s� a��
����

s� c��
����

s� �� � � �

�l�� ��
e����
������

�l�� ��
e����
������

�l����
e����
������

�l�� 	�

Example 2: assume � � �
s� a��

����
s� d��

����
s� c��

����
s
 �� � � �

�l�� ��
e����
������

�l�� ��
e����
������

�l��	� e�����
������

�l�� ��

Figure 4. Examples of paths

��� CSLTA

Given the definition of DTA, we can now present formally
the syntax of CSLTA. Note that the syntax of CSLTA is
essentially identical to that of CSL or asCSL [3, 5, 4], apart
from the fact that properties of paths are specified using
DTA (instead of being specified by timed temporal logic
operators as, for example, in CSL).

Definition 2.7 (Syntax of CSLTA) Let � � ��� �� be a
real number, and let �� f	� �����g be a comparison
operator. The syntax of CSLTA is defined by:

� ��� p j �� j �
� j S����� j P���A���� � � � ��n��

where p � AP , � � ��� �� is a real number,
�� f	� �����g is a comparison operator, and
A���� � � � ��n� is a DTA with a finite alphabet 	 of
state propositions such that 	 � f��� � � � ��ng and
��� � � � ��n are CSLTA formulas.

Note that CSLTA is a CTL�-like language with nest-
ing of path and state formulae [9]; in particular, the
state propositions of a DTA are state formulae of CSLTA.
For example, we can write a CSLTA formula such as
P��	�ApU �����P����	AX �����q

� (which corresponds to the

CSL formula P��	�pU �����P��	��X �����q��).
Intuitively, the state s satisfies the formulaS����� if and

only if, starting the execution of the ASMC from s, in the
steady-state the probability val that � is true fulfills val �
�. The state s satisfies the formula P���A� if and only if
the probability val that the execution of A triggered by a
random path of the ASMC from s is successful (i.e., stops
in a final location) fulfills val � �.

We proceed to define the semantics of CSLTA in terms
of the satisfaction relation j�. Intuitively, for a given
CSLTA formula � and state s of M, we writeM� s j� � to
denote that � is satisfied in state s. We write �s� �� for the
steady-state distribution of M starting from state s.

Definition 2.8 (Semantics of CSLTA) The satisfaction
relation j� for CSLTA is defined as follows:

M� s j� p � p � lab�s�
M� s j� �� � M� s �j� �
M� s j� ��
�� � M� s j� �� andM� s j� ��

M� s j� S����� � P
s��� �s� s

�� � �
M� s j� P���A���� � � � ��n��

� PrMs �AccPathM�s�A���� � � � ��n��� � � �

3 Model checking for CSLTA

As usual with CTL�-like languages [9], in order to eval-
uate the satisfaction of a formula � over an ASMC M,
we proceed by a bottom-up evaluation of the subformu-
las occurring in � over all the states of M, labelling ac-
cordingly the states with the subformulas that they satisfy.
Let �� be such a subformula. If �� is either an atomic
proposition p, �� or �
 ��, then the evaluation is per-
formed by a straightforward application of Definition 2.8.
If �� � S�����, then first one computes the steady-state
of M w.r.t. to every state s. We then compute the steady-
state probability of the subset of states that fulfill � and
compare it with � in order to check whether s satisfies
��. Finally, if �� � P���A�, for each state s, we com-
pute the probability of AccPathM�s�A� (the set of paths
of M accepted by A), and we compare it to � in or-
der to check whether s satisfies ��. The computation of
PrMs �AccPathM�s�A�� is the topic of the remainder of
this section. We use s� to denote the state for which we
compute PrMs� �AccPath

M�s��A��, and let l� � Init be the
location of A for which s� j��
�l�� (if no such location
exists then PrMs� �AccPath

M�s��A�� � �.

The “synchronized” stochastic process M�A. The com-
putation of PrMs� �AccPath

M�s��A�� requires the defini-
tion of a stochastic process M�A that describes the joint
evolution ofM andA. At some instant of its execution, this
process may be in one of three situations. (1) At some previ-
ous instant,A has not be able to mimic the execution ofM
and thus this process is in the absorbing state � whatever
are the subsequent transitions of M. (2) At some previous
instant, A has reached a final location by following the ex-
ecution of M and thus this process is in the absorbing state
� whatever are the subsequent transitions of M. (3) Oth-
erwise the process is in some state of M associated with a
finite timed execution of A not ending in a final location.

States of M� A. If at some instant the execution of M
is neither rejected nor accepted, we observe that, for the
future behaviour of the process M� A, only the current
location of the path in the TA and the value of clock x
are relevant. This yields the following state description:
N �t� � �s�t�� l�t�� �x�t��, where s�t� is the state of M at
time t � R��, l�t� is a location of A at time t, and �x�t�
is the value of the clock at time t. However, in M � A
we consider only tangible states, i.e., states which do

not trigger a boundary edge. Therefore we introduce the
following definition (which is sound because there are no
loops of

p
transitions inA).

Definition 3.1 Let �s� l� v� � S � L � R��. Then
closure�s� l� �x� is defined as follows: if l � Final then
closure�s� l� �x� � �; if l �� Final and there is a bound-

ary edge l
��
p
�r���� l� with �x � 	 and s j��
�l�� then

closure�s� l� �x� � closure�s� l�� �x�r �� ���; otherwise
closure�s� l� �x� � �s� l� �x�.
The set of states of the process M�A is a subset of f��
�g f�s� l� �x� j closure�s� l� �x� � �s� l� �x�� s j��
�l�g.

Behaviour of M�A. Let C � fc�� ���� cmg be the set of
constants used in the clock constraints of A enlarged with
0, ordered as follows: � � c� � c� � � � � � cm. We define
next�ci� � ci�� for all i � m and next�cm� ��.

Let �s� l� �x� be a state such that �x � �ci� next�ci�� for
some i 	 m. Then the process M� A can evolve from
�s� l� �x� due to the ASMC M changing its state by a tran-
sition s

a����� s� before the next timing constant next�ci� is
reached, i.e., �x � � next�ci�. If this transition of M can-
not be mimicked by A then the stochastic process makes a
transition to�. Otherwise, there is an edge �l� 	� A� r� l�� in
A with a � A, which mimics this transition. In this case,
M�A reaches the new state closure�s�� l�� �v� ��r �� ���
(closure is needed since boundary transitions may be then
triggered in zero time and/orA may reach a final state).

We also note that, if �x � �ci� next�ci�� for some i � m,
the process M� A can evolve from �s� l� �x� due to time
next�ci� � �x elapsing (i.e., the next timing constant is
reached) before M changes state. Then the new state is
closure�s� l� next�ci��.

It is straightforward to show that each path of M� A
leading to� corresponds to a single path inM accepted by
A, and vice versa. Furthermore, PrMs� �AccPath

M�s��A��
can be computed as the probability of reaching� in process
M�A from �s�� l�� ��. In the remainder of this section we
explain how this probability can be computed.

M�A is a Markov Renewal Process. We can rewrite a
state of M�A in terms of the last clock constant reached,
as follows: N �t� � �s�t�� l�t�� c�t�� �x�t�� c�t�� where c�t�
is the largest c � C such that c 	 �x�t�

We now show that M � A is a Markov renewal pro-
cess (MRP). For the definition of MRP and Markov re-
newal sequences, see, for example, [11]. Consider a se-
quence fTk� k � �� �� �� � � �g of strictly increasing tim-
ing instants in the evolution of M � A, with N �tk� �
�sk� lk� c�Tk�� �xk � c�Tk��. The timing instants are defined
as follows: (1) T� � �, (2) if �xk � cm then Tk�� is the first
time after Tk that an event occurs, (3) if �xk � cm then Tk��
is the next time at which the next constant in C is reached
or the clock x is reset to 0. Let Yk � N �T�

k � be the state
right after all the events as time Tk.

Theorem 3.2 �Y� T � � f�Yk� Tk�� k � �� �� �� � � �g is a
Markov renewal sequence and N �t� is an MRP.
The proof of Theorem 3.2 is straightforward given the def-
inition of MRP (see [11]), because, due to the definition
of Tk, we have that Yk � �s�T�

k �� l�T�
k �� c�Tk�� where

c�Tk� � C is the value of the clock at Tk, and the joint
distribution of Yk�� and Tk�� � Tk only depends on Yk.
Therefore �Y� T � is a Markov renewal sequence. Moreover
N �t� is a MRP because N �Tk
�, � 	
 	 Tk�� � Tk�
only depends on Yk.

It is well-known that Y � fYk� k � �� �� �� � � �g is a
DTMC (the embedded DTMC of the MRP). In general the
solution of an MRP requires the definition of the global and
local kernel matrices (see [11]). The computation of the
probabilityof reaching the absorbing state� from the initial
state can be performed on the DTMC Pi�j which expresses
the probability that, if i is the state at regeneration instant �,
then j is the state at the next regeneration instant T� (that is,
Pij � PrfY� � jjY� � ig).

Tangible Reachability Graph of M�A. We next define
a data structure that supports the definition of the DTMC
and the computation of its transition probabilities. This data
structure is called Tangible Reachability Graph (TRG), and
is inspired by the identically-named graph of Determinis-
tic SPNs [1], in which the elapsing of time between two
consecutive timing constants c and next�c� is interpreted as
a deterministic “transition” of duration next�c� � c. Note
that in our case a deterministic “transition” can only be pre-
empted by a transition ofM�A that includes a clock reset.

The nodes of the TRG take the form of elements of
�S � L � C� f���g. The arcs between nodes of the
TRG are defined by the following four rules:
[M]: a simple Markovian move, in which the ASMC M
moves “according to” the DTA A and there is no clock re-

set. Formally, there exists the arc �s� l� c�
M	a�e
����� �s�� l�� c�

if (1) R�s� a� s�� � �, (2) e � �l� 	� A� �� l�� is an in-
ner edge of A such that �c� next�c�� � 	, a � A and
s� j��
�l��, and (3) l� �� Final . Furthermore, there ex-

ists the arc �s� l� c�
M	a�e
����� � if the conditions (1) and (2)

above are satisfied, and l� � Final .
[M res]: as for a simple Markovian move, but with a clock
reset that can start an evolution of A over boundary tran-

sitions. Formally, there exists the arc �s� l� c�
M res	a�e
��������

closure�s�� l�� �� if (1) R�s� a� s�� � � and (2) e �
�l� 	� A� x� l�� is an inner edge of A such that �c� next�c�� �
	, a � A and s� j��
�l��.
[M KO]: a Markovian move that is not accepted by A.

Formally, there exists the arc �s� l� c�
M KO	a
�������� if there

exists s� � S such that R�s� a� s�� � � and there does
not exist an inner edge e � �l� 	� A� r� l�� of A such that
�c� next�c�� � 	, a � A and s� j��
�l��.
[D]: let time elapse. Formally, there exists the arc

s�

p

s�

�pR�s�� a� s��

R�s�� a� s��

R�s�� b� s��

l�

p

l�

true

l�

true

x � ��fag��
I

x � ��fag�x
III

x � ��
p
� �

IV

x � ��fbg��
II

s� � �s�� l�� ��

s� � �s�� l�� ��

� s� � �s�� l�� �� �

s� � �s�� l����

s� � �s�� l����

s� � �s�� l����

M�a� I�
M�b� II�

MKO�a�
D

M�b� II�

M res�a� III�

D

D

D

M�a� I�

M�a� I�

M�a� I�

M�b� II�

Figure 5. An ASMC M, a DTA A, and their
TRG

�s� l� c�
D�� closure�s� l� next�c�� if c � cm.

Note that there is a single arc from a node �s� l� c� due to
a transition �s� a� s�� in the ASMC, because of the assump-
tion of determinism of A, and that there is at most one D
arc from a node.

We now define TRS as the set of nodes reachable from
the set of states �s� l� ��, for all s � S and l � Init , with
s j��
�l�, applying the reachability expressed by the four
rules above (note that we all considering all states s � S
since satisfaction need to be checked on all states of M).
Then the TRG ofM�A is defined as the graph over TRS
where the arcs are described as above.

Observe that, if �s� l� c� is a node of the TRG, then any
�s� l� c
� with � 	
 	 next�c� � c is a state of the
MRP N �t�, and that a D-arc to a node �s� l� c� means that
upon event D the state ofM�A is exactly �s� l� c�, while if
the same state is entered through an M-arc, the state of the
process can be �s� l� c
� for any � �
 � next�c�.

The upper part of Figure 5 shows an ASMC M and a
DTAA. DTA edges have been tagged with roman numerals
to cross-reference them in the TRG ofM�A shown in the
lower part.

To compute the probability of reaching �, we need
to identify in the TRG the states of the DTMC and the
associated transition probabilities.

Definition 3.3 Let s � TRS . Then s is a state of the DTMC
embedded into the MRP �Y� T � if either: (1) s can be en-
tered by an arc labelled D or M res, (2) s � �s� l� c� with
l � Init and c � � (initial states), (3) s � �, or (4) s ��.
Note that not all states of the TRG are states of the DTMC:
indeed in the example of Figure 5 state s� is not a state of the
DTMC (there is no renewal pointTk such that Y �Tk� � s�).

To compute the probabilities of the DTMC, we need
to define, for each state �s� l� c� � TRS n f���g of the
DTMC, how the process M�A can evolve before reach-
ing the next regeneration point. This (transient) behaviour
is driven by the subordinated CTMC C	s�l�c
 that describes
the evolution of the process from �s� l� c� until a successive
state of M�A is reached, either due to a state change in
M, due to the clock having reached next�c�, or due to the
clock being reset.

The states of the subordinated CTMC C	s�l�c
 can be
computed from �s� l� c� by taking in the TRG the transitive
closure over arcs of type M, possibly followed by a
M res-arc or a M KO-arc. For simplicity we separate the
cases c �� � and c � �. If c �� �, then:
� �s� l� c� � C	s�l�c
;
� �s�� l�� c� � C	s�l�c
 if there exists a path in the TRG

from �s� l� c� to �s�� l�� c� of arcs all of type M;
� � � C	s�l�c
 if there exists a path in the TRG from
�s� l� c� to � in which all the arcs are of type M, or
which ends in an M res-arc and for which all other
arcs (if any) are of type M;

� �s�� l�� �� � C	s�l�c
 if there exists a (possible empty)
path in the TRG from �s� l� c� to �s��� l��� c� of arcs all
of type M, and an arc from �s��� l��� c� to �s�� l�� �� of
type M res.

� �� C	s�l�c
 if there exists a (possible empty) path in
the TRG from �s� l� c� to �s��� l��� c� of arcs all of type
M, and a M KO arc from �s��� l��� c� to �s�� l�� ���

When c � �we need to distinguish in the CTMC C	s�l��
 the
state �s� l� ��Reset, entered upon a clock reset, from the state
�s� l� �� entered through a Markovian transition: indeed we
need to compute for C	s�l��
 the probability of being in the
various states of C	s�l��
 at the next regeneration point, given
that C	s�l��
 starts in �s� l� ��, and therefore we need to distin-
guish the two cases. Observe that when c � � it is never the
case that �s� l� c� can be entered through a non-Markovian
transition. Note that in the TRG a M res transition corre-
sponds in DSPNs to the case of an exponential transition
that preempts a deterministic transition and then immedi-
ately re-enables it, which, as explained in [11], requires a
duplication of the states of the subordinated CTMC.

The rates of the CTMC C	s�l�c
 can be computed directly
from the rates of the transitions of M that cause the change
of state in the TRG. The states of the subordinated CTMC
C	s�l�c
 are of the form �s�� l�� c�� for s� � S, l� � L and

c� � f�� cg, or � or �. The transition probabilities of the
DTMC P	s�l�c
	s��l��c�
 are computed in C	s�l�c
 (with one
subordinated CTMC per each row of P) as follows. If
c � cm then P	s�l�c
�	s��l��next	c

 is the probability of being
at time next�c��c in state �s�� l�� c�; furthermore P	s��l��c
�j,
with j � f�s�� l�� ������g, is the probability of being in j
at time next�c� � c. However, if c � cm, then we compute
on C	s�l�cm
 the probability to reach each absorbing state,
i.e., �, � or some �s�� l�� �� (which has been reached by an
inner edge with a clock reset).

Note that there are two peculiarities of the embedded
DTMC. First, we can re-enter the same state due to a clock
reset. This has no effect on the computation. Second, the
transition matrix can be substochastic, because for some
DTMC states there is a non-null probability to never reach
another state of the MRP. Again, this is not problematic, be-
cause the reachability probability computation with a sub-
stochastic matrix is identical as with a stochastic transition
matrix.

4 Expressiveness of CSLTA

In this section we study the relationship between CSLTA,
CSL [5], and asCSL [4]. Formulae interpreted on ASMCs
are described as being equivalent if, for any ASMC, the
same states of the ASMC satisfy the formulae. Formally, we
say that �� (of the logic Log�, with the satisfaction relation
j�Log�

) is equivalent to �� (of the logic Log�, with the sat-
isfaction relation j�Log�

), if, for any ASMCM, and for any
state s of M, we have: M� sj�Log�

�� �M� sj�Log�
��.

The following two propositions show that CSLTA is
strictly more expressive than CSL.

Proposition 4.1 For any formula � of CSL there is a
formula �� of CSLTA equivalent to �. Furthermore the size
of �� is linear with respect to the size of �.

Proof sketch. The semantics of constructors for state
formulas are identical for CSL and CSLTA; therefore it suf-
fices to prove that any path formula of CSL is equivalent to
some path formula of CSLTA. The two DTA AX ������ and
A��U �������

(see Figure 2 and Figure 3, respectively) have
already been presented in Section 2, and encode the Next
formula �X ������� and the Until formula ���U ��������
of CSL, respectively. The assertion on formula sizes is
straightforward. �
Proposition 4.2 There is a formula of CSLTA for which
there is no equivalent CSL formula.

The proof of Proposition 4.2 follows a scheme that is
different from proofs of similar results on expressiveness of
temporal logics for transition systems. We first define the
left-hand delimiter h for intervals, where h denotes either � or
�. Similarly, the right-hand delimiter i denotes either � or �.
Consider the family of ASMCs M��� ��� of Figure 6 (left),
for � � �� �� � �. Let � be a formula of CSL or CSLTA (for

s�

s�

s� s�q

	

���

�

�� 	� ��

	 	

l�

l�

l�

true

true

q

true�Act� �

true�Act� �

Figure 6. A family of Markov chains M��� ���
and a DTA A of CSLTA

simplicity, we write j� to denote the satisfaction relation of
both CSL and CSLTA). Then ����s� � f��� ��� � ��� ��� j
M��� ���� s j� �g. For any � � � � �, let �
 � P�
�A�,
where A is the DTA depicted in Figure 6 (right). It follows
that ��
 ��s�� � f��� ��� � ��� ��� j � � �� � �g.

Lemma 4.3 Let � be a formula of CSL. Then:

1. �i � f�� �g� ����si� is either ��� ��� or �;

2. ����s�� is a finite union of rectangles of the form
��� ��� ha� bi;

3. ����s�� is a finite union of (open, closed, or mixed)
rectangles of ��� ���.

Proof. Assertion (1). When starting from s� or s�, the sat-
isfaction of � does not depend on p or ��. Therefore asser-
tion (1) is satisfied trivially.

Assertion (2). We prove assertion (2) by induction on
the size of the formula. Let � be a formula of CSL. If �
is an atomic proposition, then ����s�� is either ��� ��� or �.
If � � ���, then ����s�� � ��� ��� n �����s��, and thus
����s�� is a finite union of rectangles of the form ��� �� �
ha� bi. If � � ��
���, then ����s�� � �����s��� ������s��,
and thus ����s�� is a finite union of rectangles of the form
��� ��� ha� bi.

Consider the case in which � � S������. The steady-
state distribution ofM��� ��� starting from s� is such that
�s�� s�� � �� and �s�� s�� � ����. Now we distinguish
different cases depending on whether s� j� �� and s� j� ��.
If both states satisfy ��, then ����s�� � ��� ���; if neither
satisfies �� then ����s�� � �; if s� j� �� and s� �j� �� then
����s�� � ��� �� � ��� ��; if s� �j� �� and s� j� �� then
����s�� � ��� �� � ��� �� ��. The cases of � � S������,
with�� f	� ���g, follow similarly.

If� � P���X ��������we distinguishdifferent cases de-
pending on whether s� j� �� and s� j� ��. All the cases are
handled similarly, and we only consider that in which s� j�
�� and s� �j� ��: Then �����s�� � f��� ��� � ��� ��� j
�e���e�� � ��� � �g � ��� ��� � �

e���e�� � ��, which is of

the required form. The cases of � � P���X ��������, with
�� f	� ���g, follow similarly.

If� � P�����U ���������, we make a case analysis w.r.t.
to the rectangles where the satisfaction of�� and��� by s� is
invariant (that is, we consider rectangles of the partition of
��� ��� induced by the rectangles of �����s�� and ������s��).
Our aim is to obtain ����s�� by replacing each such rectan-
gle with a set of rectangles in which � is satisfied.

Given such a rectangle R � ��� ��� for which
M��� ���� s� j� ��� for all ��� ��� � R, then
M��� ���� s� j� � for all ��� ��� � R. Hence R is included
in ����s��. Conversely, if M��� ���� s� j� ���
 ���� for
all ��� ��� � R, then M��� ���� s� �j� � for all ��� ��� � R.
Hence no rectangle contained in R is included in ����s��.

Now consider a rectangle R for which, for all ��� ��� �
R, we have M��� ���� s� j� ��
 ����. Assume that
M��� ���� s� j� ��� andM��� ���� s� �j� ��� (the other cases
are handled similarly). Then we obtain f��� ��� � R j
M��� ���� s� j� �g � f��� ��� � R j ���e������e�� �
�g � f��� ��� � R j �� � ��e��

��e�� g. Thus we include in

����s�� the rectangleR � ���� ��� ���e
��

��e�� � ���.

The cases of � � P�����U ���������, �� f	� ���g,
follow similarly.

Assertion (3). We now prove assertion (3) by induction
on the size of the formulas. Let � be a formula of CSL.
The cases in which � is an atomic proposition, � � ���,
� � ��
 ��� and � � S������ are proved exactly as
for assertion (2) (the steady-state distribution of M��� ���
starting from s� is the same as that starting from s�).

If � � P���X ��������, we make a case analysis w.r.t.
to the rectangles in which the satisfaction of �� by s� and
s� is invariant (that is, we consider rectangles of the par-
tition of ��� ��� induced by the rectangles of �����s�� and
�����s��). As above, we obtain ����s�� by replacing each
such rectangle with a set of rectangles in which � is satis-
fied. We only consider one such case (the other cases are
handled similarly). Consider a rectangle R � ��� ��� for
which, for all ��� ��� � R, we have M��� ���� s� j� �� and
M��� ���� s� �j� �� Then f��� ��� � R j M��� ���� s� j�
�g � f��� ��� � R j �e���� � e����� � � � �g. Let
f��� � �e���� � e����� � �. Note that the derivative
of f changes its sign only a finite number of times inside
��� �� (in fact in R). Therefore ��� �� may be decomposed
into a finite number of consecutive intervals where inside
an interval f is monotonic. As a consequence ��� �� may
be partitioned into a finite number of consecutive intervals
(different from the previous ones) where alternatively f is
greater or equal than � or strictly smaller than �. The inter-
vals for which f is greater than or equal to � induce a finite
number of rectangles of the form ha� bi � ��� ��, which are
included ����s��. The cases of � � P���X ��������, with
�� f	� ���g, follow similarly.

If� � P�����U ���������, we make a case analysis w.r.t.
to the rectangles where the satisfaction of �� and ��� by s�
and by s� is invariant (that is, we consider rectangles of the
partition of ��� ��� induced by the rectangles of �����s��,
�����s��, ������s�� and ������s��). Again, we obtain ����s��
by replacing each such rectangle with a set of rectangles in
which � is satisfied.

We handle only one case, noting that the other cases are
handled similarly. Consider the rectangle R � ��� ��� such
that, for i � f�� �g, we have M��� ���� si j� ��
 ����
M��� ���� s� j� ���
��� and M��� ���� s� j� ���
����.
The key observation here is that, inside any such rectangle,
the loop around s� is irrelevant due to the nature of the Until
operator U . Then we have f��� ��� � R j M��� ���� s� j�
�g � f��� ��� � R j �e����� ��� � e����� ���� �
�� � �g � f��� ��� � R j �� � �

e���	����
�e���	����
g
(the first formula has been obtained by applying an Erlang
distribution). Then we include the rectangle R � ���� �� �
� �
e���	����
�e���	����
 � ��� in ����s��.

The cases of � � P�����U ���������, �� f	� ���g,
follow similarly. �

Because ��
 ��s�� � f��� ��� j p � �� � �g cannot be
expressed as a finite union of rectangles, Lemma 4.3 es-
tablishes that �
 is not equivalent to any formula of CSL.
Lemma 4.4 then gives a direct proof of Proposition 4.2. Ob-
serve also that the proof can be adapted easily to build a
formula of asCSL not equivalent to any formula of CSL.

Lemma 4.4 For each � � � � �, the CSLTA formula �
 is
not equivalent to any formula of CSL.

Proposition 4.5 states that CSLTA is as least as expressive
as asCSL. The proof of the proposition is omitted for rea-
sons of space. We also conjecture that there exists a CSLTA

formula for which no equivalent asCSL formula exists.

Proposition 4.5 For any formula� of asCSL there is a for-
mula �� of CSLTA equivalent to �.

5 Conclusion

In this paper we have defined a new stochastic tempo-
ral logic CSLTA, based on timed automata, which we pro-
pose as a good trade-off between adding flexibility to prop-
erty specification and limiting the explosion of complexity
in analysis. With regard to the specification of properties,
the most significant extension is the possibility of specify-
ing an arbitrary number of timing constraints along an ex-
ecution path which may also depend on the history of the
process. More precisely, CSLTA subsumes both CSL and
asCSL. Furthermore, the evaluation process is handled in
an uniform way via Markov regenerative processes rather
than by ad hoc transformations as previously.

Further work can consider an implementation of the pro-
posed method (possibly exploiting existing DSPN tools),

and the extension of CSLTA to allow for rewards [12]. We
also plan to compare the DTA approach with the automata-
based approach of Obal and Sanders [14].

References

[1] M. Ajmone Marsan and G. Chiola. On Petri nets with de-
terministic and exponentially distributed firing times. In
Proc. ICATPN’86, volume 266 of LNCS, pages 132–145.
Springer, 1986.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-
checking continuous time Markov chains. ACM Transac-
tions on Computational Logic, 1(1):162–170, 2000.

[4] C. Baier, L. Cloth, B. Haverkort, M. Kuntz, and M. Siegle.
Model checking action- and state-labelled Markov chains.
In Proc. DSN’04, pages 701–710. IEEE, 2004.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen.
Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

[6] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pet-
tersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In Proc.
QEST’06, pages 125–126. IEEE, 2006.

[7] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model-checking
for extended timed temporal logics. In Proc. FTRTFT’96,
volume 1134 of LNCS, pages 306–325. Springer, 1996.

[8] G. Clark and J. Hillston. Towards automatic derivation of
performance measures from PEPA models. In Proceedings
of the UK Performance Engineering Workshop, 1996.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.

[10] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not
never” revisited: On branching versus linear time temporal
logic. Journal of the ACM, 33(1):151–178, 1986.

[11] R. German. Performance Analysis of Communication Sys-
tems with Non-Markovian Stochastic Petri Nets. Wiley,
2000.

[12] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and
C. Baier. Model checking performability properties. In Proc.
DSN’02, pages 103–112. IEEE, 2002.

[13] F. Laroussinie, N. Markey, and P. Schnoebelen. Model
checking timed automata with one or two clocks. In
Proc. CONCUR’04, volume 3170 of LNCS, pages 387–401.
Springer, 2004.

[14] W. D. Obal II and W. H. Sanders. State-space support for
path-based reward variables. Performance Evaluation, 35(3-
4):233–251, 1999.

[15] J. Ouaknine and J. Worrell. On the language inclusion prob-
lem for timed automata: Closing a decidability gap. In Proc.
LICS’04, pages 54–63. IEEE, 2004.

[16] S. Yovine. KRONOS: A verification tool for real-time sys-
tems. Software Tools for Technology Transfer, 1(1-2):123–
133, 1997.

