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Abstract. A cyclic proof system, called CLKIDω, gives us another way
of representing inductive definitions and efficient proof search. The 2011
paper by Brotherston and Simpson showed that the provability of CLKIDω

includes the provability of Martin-Löf’s system of inductive definitions,
called LKID, and conjectured the equivalence. Since then, the equivalence
has been left an open question. This paper shows that CLKIDω and LKID

are indeed not equivalent. This paper considers a statement called 2-
Hydra in these two systems with the first-order language formed by 0, the
successor, the natural number predicate, and a binary predicate symbol
used to express 2-Hydra. This paper shows that the 2-Hydra statement
is provable in CLKIDω, but the statement is not provable in LKID, by
constructing some Henkin model where the statement is false.

1 Introduction

An inductive definition is a way to define a predicate by an expression which
may contain the predicate itself. The predicate is interpreted by the least fixed
point of the defining equation. Inductive definitions are important in computer
science, since they can define useful recursive data structures such as lists and
trees. Inductive definitions are important also in mathematical logic, since they
increase the proof theoretic strength. Martin-Löf’s system of inductive definitions
given in [10] is one of the most popular system of inductive definitions. This
system has production rules for an inductive predicate, and the production rule
determines the introduction rule and the elimination rule for the predicate.

Brotherston [3] and Simpson [6] proposed an alternative formalization of
inductive definitions, called a cyclic proof system. A proof, called a cyclic proof,
is defined by proof search, going upwardly in a proof figure. If we encounter
the same sequent (called a bud) as some sequent we already passed (called a
companion) we can stop. The induction rule is replaced by a case rule, for this
purpose. The soundness is guaranteed by some additional condition, called the
global trace condition, which guarantees the case rule decreases some measure
of a bud from that of the companion. In general, for proof search, a cyclic proof
system can find an induction formula in a more efficient way than Martin-Löf’s
system, since a cyclic proof system does not have to choose fixed induction



formula in advance. A cyclic proof system enables us efficient implementation of
theorem provers with inductive definitions[2, 4, 5, 7]. In particular, it works well
for theorem provers of separation logic.

Brotherston and Simpson [6] investigated Martin-Löf’s system LKID of induc-
tive definitions in classical logic for the first-order language, and the cyclic proof
system CLKIDω for the same language, showed the provability of CLKIDω includes
that of LKID, and conjectured the equivalence. Since then, the equivalence has
been left an open question. Simpson [11] submitted a proof of a particular case
of the conjecture, for the theory of Peano Arithmetic.

This paper shows CLKIDω and LKID are indeed not equivalent. To this aim,
we will consider the first-order language formed by 0, the successor s, the natural
number predicate N , and a binary predicate symbol p. We introduce a statement
we call 2-Hydra, which is a miniature version of the Hydra problem considered
by Laurence Kirby and Jeff Paris [9]: the proviso “2” means that we only have
two “heads”. We define some statement, called the 2-Hydra statement, and
shows that the 2-Hydra statement is provable in CLKIDω with the language, but
the statement is not provable in LKID with the language. The second result is
proved by constructing some model of CLKIDω where the statement is false.

For constructing the counter model M for the second result, we take both
the universe ofM and the interpretation of the predicate N to be Nat+Z, where
Nat is the set of natural numbers and Z is the set of integers, and some predicate
p which is a counter-example of 2-Hydra. We prove that M is a model of LKID
by using a set of partial bijections on M and a quantifier elimination result.

The quantifier elimination theorem for a theory of partial equivalence rela-
tions is new, as far as we know, and it may have some independent interest.

This model also shows that LKID is not conservative when we add inductive
predicates, namely, it is not the case that for any language L, the system of LKID
with language L and any additional inductive predicate is conservative over the
system of LKID with L.

Section §2 describes Brotherston-Simpson conjecture. Section §3 defines the
2-Hydra statement and proves the 2-Hydra statement in CLKIDω. Section §4
defines the counter modelM and the proof outline of it. Section §5 introduces a
family of partial bijections. Section §6 proves a quantifier elimination theorem for
a theory of partial bijections. Section §7 proves that the 2-Hydra statement is not
provable in LKID. Section §8 shows non-conservativity of LKID with additional
inductive predicates. We conclude in Section §9. Detailed proofs are in §A.

2 Brotherston-Simpson Conjecture

In this section we introduce Brotherston-Simpson Conjecture.

2.1 Martin-Löf ’s Inductive Definition System LKID

We briefly remind you of Martin-Löf’s inductive definition system LKID, defined
in detail in [6].
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The language of LKID is determined by a first-order language with inductive
predicate symbols. The logical system LKID is determined by production rules
for inductive predicate symbols. These production rules mean that the inductive
predicate denotes the least fixed point defined by these production rules.

We often abbreviate p(t), q(t, u) with pt, qtu. For example, for an inductive
predicate symbol N , the production rules may be written as

N0
Nx
Nsx

These production rules mean that N denotes the smallest set closed under 0 and
s, namely the set of natural numbers. We call this set of production rules ΦN .

The inference rules of LKID are standard inference rules in classical first-
order logic LK with the introduction rules and the elimination rules for inductive
predicates, determined by the production rules. These rules describe that the
predicate actually denotes the least fixed point. In particular, the elimination
rule describes the induction principle.

For example, the above production rules give the introduction rules

Γ ` N0, ∆

Γ ` Nx,∆
Γ ` Nsx,∆

and the elimination rule

Γ ` F0, ∆ Γ, Fx ` Fsx,∆ Γ, F t ` ∆
Γ,Nt ` ∆

This elimination rule describes mathematical induction principle restricted to N .
LKID is sound with respect to a class of models called Henkin models (Def. 2.10
of [6]). We omit the definition of Henkin models and we only use the following
property: if a first order structureM satisfies the induction schema for N , then
M is an Henkin model of LKID with the predicate N .

2.2 Cyclic Proof System CLKIDω

A cyclic proof system CLKIDω [6] is defined as a system obtained from LKID

by (1) replacing elimination rules by case rules, (2) allowing a bud as an open
assumption and requiring a companion for each bud, (3) requiring the global
trace condition.

The case rule is defined by unfolding the production rule in the antecedent.
For example, the case rule for N is

Γ, t = 0 ` ∆ Γ, t = sx,Nx ` ∆
Γ,Nt ` ∆

In a cyclic proof, we can have open assumptions, called buds, but it is re-
quired that each bud has some corresponding sequent of the same form, called
a companion, inside the proof figure.
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An example of a cyclic proof is

` N0
` Ns0
` Nss0

(a)Nx ` Nssx
Nx′ ` Nssx′

(subst)

Nx′ ` Nsssx′
(a)Nx ` Nssx

(case)

where the mark (a) denotes the bud-companion pair. Remark that the companion
(a) uses Nx, but the bud (a) uses Nx where x is x′, so their actual meanings
are different even though they are of the same form.

A pre-proof of CLKIDω is obtained by recursively replacing every bud by the
proof of its companion. A trace is a sequence of occurrences of an atom in a path
of the proof tree, possibly moving to a case-descendant when passing through
a case rule. Moving to a case-descendant is called a progress point of the trace
(Def. 5.4 [6]). The global trace condition says that for every infinite path there
is a trace with infinitely many progress points following some tail of the path
(Def. 5.5 [6]). The global trace condition guarantees the soundness of a cyclic
proof system for fixed-point models. CLKIDω is not known to be sound for Henkin
models, and this leaves the possibility of having an Henkin counter-model for a
theorem of CLKIDω.

2.3 Brotherston-Simpson Conjecture

LKID has been often used for formalizing inductive definitions, while CLKIDω is
another way for formalizing inductive definitions, and moreover CLKIDω is more
suitable for proof search. This raises the question of the relationship between
LKID and cyclic proofs: Brotherston and Simpson conjectured the equality for
each inductive definition. The left-to-right inclusion is proved in [3], Lemma 7.3.1
and in [6], Thm. 7.6. Brotherston-Simpson conjecture (the conjecture 7.7 in [6])
is that the provability LKID includes that of CLKIDω. Simpson [11] submitted a
proof of the conjecture in the case of Peano Arithmetic. The goal of this paper
is to prove that it is false in general.

3 2-Hydra Problem

3.1 Hydra Problem

The Hydra of Lerna was a mythological monster, popping two smaller heads
whenever you cut one. It was a swamp creature (its name means “water”) and
possibly was the swamp itself, whose heads are the swamp plants, with two
smaller plants growing whenever you cut one. The original Hydra was defeated
by fire, preventing heads to grow again. In the mathematical problem of Hydra,
we ask whether we may destroy an Hydra just by cutting heads.

Laurence Kirby and Jeff Paris [9] formulated the Hydra problem as a state-
ment for mathematical trees. We are interested about making Hydra a problem
for natural numbers, representing the length of a head, and restricting to the
case when the number of heads is always 2. We call our statement 2-Hydra.
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3.2 2-Hydra Statement

In this subsection we give the 2-Hydra statement, which is a formula saying that
any 2-hydra eventually looses its two heads. This statement actually will give a
counterexample to Brotherston-Simpson conjecture.

Let ΣN be the signature {0, s,N, p} of a first order language, where 0, the
successor s, an inductive predicate N for natural numbers, and an ordinary
binary predicate symbol p. The logical system LKID(ΣN , ΦN ) is defined as the
system LKID with the signature ΣN and the production rules ΦN .

We consider a formal statement of 2-Hydra. The number of head is always 2.
Either both heads have positive length, you reduce the length of the first head
by 1 unit, and of the second head by 2 units (if possible), or there is a unique
head with positive length, you duplicate it and you reduce it by 1 and by 2
units (if possible). We may express H by the convergence of the following set of
transformations on n,m ∈ Nat: if n ≥ 1 and m ≥ 2 then (n,m) 7→ (n−1,m−2);
if n ≥ 2 then (n, 0) 7→ (n − 1, n − 2); if m ≥ 2 then (0,m) 7→ (m − 1,m − 2).
When no transformation applies we stop. We may define H by a formula in the
language ΣN : the intended meaning of p is the complement of the union of all
infinite sequences of transformations. From now on, we write A1, . . . , An → B
for A1 ∧ . . . ∧An → C and ∀x1, . . . , xn ∈ N. A for ∀x1. . . . . ∀xn. N(x1) ∧ . . . ∧
N(xn)→ A.

Definition 1 (2-Hydra Statement H). We define H = (Ha, Hb, Hc, Hd →
∀x, y ∈ N. p(x, y)), where Ha, Hb, Hc, Hd are:

(Ha) ∀x ∈ N. p(0, 0) ∧ p(s0, 0) ∧ p(x, s0),

(Hb) ∀x, y ∈ N. p(x, y)→ p(sx, ssy),

(Hc) ∀y ∈ N. p(sy, y)→ p(0, ssy),

(Hd) ∀x ∈ N. p(sx, x)→ p(ssx, 0).

For all n,m ∈ Nat there is a unique formula among Ha, Hb, Hc, Hd having
some instance inferring p(n,m). The assumption p(n′,m′) of such a formula, if
any assumption exists, satisfies max(n′,m′) < max(n,m). Thus, we may prove
H in PA by induction on max(n,m). We could define p as an inductive predicate:
however, we preferred having p just a predicate symbol, because in this way the
definition of a counter-model does not require to check the inductive rule for p.

We will prove that LKID(ΣN , ΦN )+(0, s)-axioms does not prove 2-Hydra. We
define the (0, s)-axioms as the axioms “0 is not successor” or ∀x ∈ N. sx 6= 0,
and “successor is injective”, or ∀x, y ∈ N. sx = sy → x = y. These axioms
cannot be proved in LKID(ΣN , ΦN ), because they fail, respectively, in the model
of LKID(ΣN , ΦN ) uniquely determined byM = NM = {0}, s0 = 0, in the model
uniquely determined by M = NM = {0, s0}, 0 6= s0 and ss0 = s0. Compared
with PA, in LKID(ΣN , ΦN ) + (0, s)-axioms we do not have a sum nor a product
on N , nor we have inductive predicate symbols for addition or multiplication.
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3.3 2-Hydra Statement in Cyclic-Proof System

In this section, we give a cyclic proof of the 2-Hydra statement.
We define the logical system CLKIDω(ΣN , ΦN ) as the system CLKIDω with

the signature ΣN and the production rules ΦN .

Theorem 1. The 2-Hydra statement H is provable in CLKIDω(ΣN , ΦN ).

Proof. Let the 2-Hydra axioms Ĥ be Ha, Hb, Hc, Hd defined in Definition 1.
For simplicity, we will write the use of 2-Hydra axioms by omitting (Cut),

(→ R), (∀ R), (Axiom), as in the following example.

Ĥ,Nsy′′, Ny′′ ` psy′′y′′

Ĥ,Nsy′′, Ny′′ ` p0ssy′′

We will also write a combination of (Case) and (=L) as one rule in the following
example.

Ĥ ` p00 Ĥ,Nx′ ` psx′0
Ĥ,Nx ` px0

Nx

For saving space, we omit writing Ĥ in every sequent int the next proof
figure. For example, Nx,Ny ` pxy actually denotes Ĥ,Nx,Ny ` pxy.

The following is a cyclic proof of Nx,Ny ` pxy.

` p00

N0 ` p10

(a)Nx,Ny ` pxy

Nsx′′, Nx′′ ` psx′′x′′

Nsx′′, Nx′′ ` pssx′′0

Nx′ ` psx′0

Nx ` px0
Nx

N0, Nx ` px1

(a)Nx,Ny ` pxy

Nsy′′, Ny′′ ` psy′′y′′

Nsy′′, Ny′′ ` p0ssy′′

(a)Nx,Ny ` pxy

Nx′, Ny′′ ` px′y′′

Nsy′′, Nx′, Ny′′ ` psx′ssy′′

Nsy′′, Nx,Ny′′ ` pxssy′′
Nx

Nx,Ny′ ` pxsy′

(a)Nx,Ny ` pxy
Ny

The global trace condition holds for the following reason (the detailed proof
is in §A). We have three possible choices for constructing an infinite path in the
proof: taking a bud of the left, middle, or right. For a given bud and z1, z2 ∈
{x, y}, we write z1 ; z2 for a progressing trace from Nz1 in the companion to
Nz2 in the bud. We write z1 ; z2, z3 for z1 ; z2 and z1 ; z3. For the left
bud, there are x ; x, y. For the middle bud, there are y ; x, y. For the left
bud, there are x ; x and y ; y. Hence, given an infinite path, there is some
tail of the path with an infinitely progressing trace, by cleverly choosing x and
y possibly alternatively. Hence the global trace condition holds. 2

4 A Structure M for the Language ΣN Falsifying
2-Hydra

In this section we define a structure M for the language ΣN , we prove that M
falsifies the 2-Hydra statement H, and we characterize the subsets of M which
satisfy the induction schema.
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4.1 Outline of Proof of Non-Provability

In Section 4, we define a counter model M. The most difficult point is to prove
that M satisfies Def. 2.10 of [6] for having an Henkin model of LKID +ΣN . We
will prove a sufficient condition for it, the induction schema for N .

On one hand, we prove that in our structureM all unary definable predicates
of M are sets whose measure is some dyadic rational number. This involves
proving a quantifier-elimination result (§6) for a theory of partial equivalence
relations (§5). This result is new, as far as we know: for an introduction to
quantifier-elimination we refer to [8], §3.1, §3.2). On the other hand, §4.3 shows
that a definable set of M with dyadic measure satisfies the induction schema.
Combining them, finally we will show thatM satisfies the induction schema for
N and according to Def. 2.10 of [6] is an Henkin model of LKID +ΣN .

4.2 Definition of the Structure M

Let Z be the set of relative integers. M is Nat + Z: we represent Nat + Z

by {(1, x) | x ∈ Nat} ∪ {(2, x) | x ∈ Z}. We first define the interpretations
0M, sM, NM. 0M is 0 in the component Nat and sM is the successor on Nat and
on Z. We choose NM = M: by construction, M satisfies the (0, s)-axioms. We
abbreviate x+ n = snM(x), ∞ for the 0 in the component Z, and ∞− n for the
relative integer −n in the component Z, for all n ∈ Nat. We define the following
subsets of M: Nat = {0M + n|n ∈ Nat} and Z− = {∞ − (n + 1)|n ∈ Nat} and
Z+0 = {∞+ n|n ∈ Nat}. The sets Nat, Z−, Z+0 are a partition of M.

In order to complete the definition ofM we have to choose the interpretation
pM of the binary predicate p. We first define π = {(n, 2n)|n ∈ Nat} ⊆ Nat×Nat.
π is the set of points of the straight line y = 2x whose coordinates are some pair
of natural numbers. We imagine π starting from the infinite, moving at each step
from some (sa, ssb) to (a, b), and ending in (0, 0). Given any (m1,m2) ∈M×M
we define (m1,m2)+π = {(m1+a,m2+b)|(a, b) ∈ π} and (m1,m2)−π = {(m1−
a,m2 − b)|(a, b) ∈ π}. We define three paths in M×M by π1 = (0M,∞) + π
and π2 = (∞, 0M) + π and π3 = (∞− 1,∞− 2) − π. Eventually, we set pM =
M2 \ (π1∪π2∪π3). As explained in the figure below, we may move forever along
π1 ∪ π2 ∪ π3 (in red) while “cutting heads” as follows: . . . 7→ (0M + 2,∞+ 4) 7→
(0M + 1,∞+ 2) 7→ (0M,∞) 7→ (∞− 1,∞− 2) 7→ (∞− 2,∞− 4) 7→ . . ..

(∞,∞)(0,∞)

(∞, 0)

Nat

Z−

Z+0

Nat Z− Z+0

�
�

�
���

�
�
�

���

�
�
���

 head dupl.

 
h

ea
d

d
u

p
l.
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Lemma 1 (The 2-Hydra Lemma). H is false in M
M satisfies by construction the closure of N under 0 and s, and the (0, s)-

axioms. In order to prove that M is a model for LKID(ΣN , ΦN ) + (0, s)-axioms,
we have to prove that M satisfies Def. 2.10 of [6], Def. 2.10). Let H be the
set of definable predicates of M. A predicate P ⊆ Mn is definable in M if for
some formula A in the language ΣN plus constants denoting the elements ofM,
and with free variables in x1, . . . , xn, we have P = {(m1, . . . ,mn) ∈ Mn|M |=
A[m1/x1, . . . ,mn/xn]}. We write Hn for the subset of definable predicates of
arity n: we call H1 the set of definable sets of M. According to Def. 2.10 of [6],
we have to prove that M is the smallest pre-fixed point in H1 for the inductive
definition of N : a sufficient condition is to prove the induction schema, that all
X ∈ H1 which are closed under 0 and s are equal to M.

4.3 The Measure of the Subsets of M Closed Under 0 and s

In this subsection we define a sufficient condition for a predicate onM to satisfy
the induction schema, by using a finitely additive measure µ(X), defined on
some subsets X ⊆M. We will prove that all definable subsets ofM satisfy this
condition.

Definition 2 (Measure of a Subset ofM). For any X ⊆M we set: µ(X) =

limx→∞
card({0M+n,∞−n,∞+n∈M|n∈[0,x]}∩X)

3(x+1) whenever this limit exists.

For instance, µ(Nat) = 1/3 and if E = {0M, 0M+2, . . . ,∞−2,∞,∞+2, . . .},
then µ(E) = 1/2. We may now provide a sufficient condition for a predicate to
satisfy the induction rule.

Lemma 2 (Measure Lemma). If µ(P ) is a dyadic rational, then P satisfies
the induction schema.

An example: if P = Nat∪ Z+0 , then P is closed under 0, s and ∞− 1 6∈ P . P
does not satisfy the induction schema and µ(P ) = 2/3 is not dyadic.

5 A Set R of Partial Bijections on M
In this section we introduce some setR of partial bijections onM, whose domain
have measure some dyadic rational. In §6, 7 we will prove that all definable
predicates in M are a boolean combination of atomic formulas of the language
R, and that all definable sets in M are domains of bijections in R, therefore
all have measure some dyadic rational, and by Lemma 2 satisfy the induction
schema. We will conclude that M is an Henkin model of LKID +ΣN .

We say that a relation R is finite if there are finitely many pairs (x, y) ∈ R.
For any set X and any binary relations R,S we write: idX = {(x, x)|x ∈
X}, dom(R) = {x|∃y.(x, y) ∈ R}, codom(R) = {y|∃x.(x, y) ∈ R}, R−1 =
{(y, x)|(x, y) ∈ R}, R◦S = {(x, z)|∃y.((x, y) ∈ S) ∧ ((y, z) ∈ R)} and RdX =
{(x, y) ∈ R|x ∈ X}. Remark that we defined relation composition in the same
order as function composition: the reason is that we will only consider relations
which are partial bijections.
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5.1 The Set D of Subsets of M

In this subsection we propose a candidate D for the definable subsets of M.
For any sets I, J we define I⊂∼J as “(I \ J) is finite”: this means “I ⊆ J up

to finitely many elements. We define I ∼ J as I⊂∼J ∧ J⊂∼I: this means “I, J are
equal up to finitely many elements”. I ∼ J is equivalent to: (I \ J) ∪ (J \ I) is
finite.

For any r, s ∈ Q we introduce the formal notations 0M+r,∞+s: they denote
elements of M if and only if r ∈ Nat, s ∈ Z. For any z ∈ Z, r ∈ Q, we define the
set of formal notations M(2z, r) = {0M + (2z ∗ n + r),∞ + (2z ∗ w + r)|(n ∈
Nat) ∧ (w ∈ Z)}. We denote with B the set of all sets M(2z, r), for some z ∈ Z,
r ∈ Q.

We define D as the family of subsets ofM which are equivalent, up to finitely
many elements, to some finite union of sets in B.

Definition 3 (The Family D). D ∈ D if and only if D ∼ (B1 ∪ . . . ∪Bn) for
some B1, . . . , Bn ∈ B. We call D the dyadic family.

Since 2z > 0, all sets M(2z, r) are infinite. We have M(2z, r)⊂∼M if and only
if (2z ∗n+ r) ∈ Nat for all but finitely many n ∈ Nat and (2z ∗w+ r) ∈ Z for all
but finitely many w ∈ Z. We may check that this is equivalent to: z ∈ Nat and
r ∈ Z.

We prove that every set in D has measure some dyadic rational.

Lemma 3 (D-Lemma). Let a0, a ∈ Z and D ∈ D.

1. All finite subsets of M are in D.

2. For all a ≥ a0 there are 0 ≤ b1 < . . . < bi < 2a such that M(2a0 , b) =
(M(2a, b1) ∪ . . . ∪M(2a, bi)).

3. For some a0 and for all a ≥ a0 there are 0 ≤ b1, . . . , bi < 2a such that
D ∼ (M(2a, b1) ∪ . . . ∪M(2a, bi)).

4. µ(D) is some dyadic rational.

5. D is closed under ∼ and all boolean operations.

5.2 The Family R of Partial Bijections on M

In this subsection we define a family R of partial bijections on M with domain
in D. The elements of R up to finitely many elements are empty or are some
power of the complement of pM, restricted to some D ∈ D.

We define first some set F of straight lines. F is the set of maps φ : Q →
Q, defined by φ(x) = 2zx + r for some z ∈ Z and some r ∈ Q. F is closed
under inverse: if φ(x) = 2zx+ r, then φ−1(x) = 2−zx− r/2z. F is closed under
composition: if φi(x) = 2zix+ri for i = 1, 2, then φ2(φ1(x)) = 2z1+z2x+(2z2r1+
r2).

Let Q + Q = {(i, r)|i = 1, 2 ∧ r ∈ Q}. We extend φ : Q → Q to a map
:M→ Q + Q by φ((i, r)) = (i, φ(r)) (recall that each element of M is coded by
some pair (i, r)). For any D ⊆ M we define φ(D) = {φ(d)|d ∈ D} ⊆ Q + Q. We
provide a sufficient condition for having φ(D) ⊆M and φ(D) ∈ D.
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Lemma 4 (φ-Lemma). Let φ(x) = 2z1x+ r1 for some z1 ∈ Z and some r1 ∈ Q

and all x ∈ Q. Assume M(2z, r) ∈ B.

1. φ(M(2z, r)) ∈ B.

2. If D ∈ D and φ(D)⊂∼M then φ(D) ∈ D.

Proof. 1. We have φ(M(2z, r)) = M(2z+z1 , 2z1r + r1) ∈ B.

2. If D ∈ D then D ∼M(2a1 , b1) ∪ . . . ∪M(2ai , bi) for some a1, . . . , ai ∈ Z and
some b1, . . . , bi ∈ Q. Then φ(D) ∼ φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)), and
by point 1 above φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)) ∈ B. Thus, φ(D) ∈ D.

A partial bijection on M is a bijection between two subsets of M. We now
define a family R of partial bijections on M. For instance, one bijection in
R is defined by φ(x) = 4x, with domain M and codomain M(4, 0), mapping
0M + n 7→ 0M + 4n and ∞+ z 7→ ∞+ 4z.

Let φ ∈ F , φ(x) = 2zx+ r with z ∈ Z and r ∈ Q. We say that φ is even if z
even, and that φ is odd if z is odd. We divide infinite bijections in R between
“even” and “odd”. They will be restrictions of an even or odd power of the
relation Q = M2 \ pM, up to finitely many point. We will prove that the first
order definable predicates of M are the propositional formulas of R.

Definition 4 (Even Bijections). Let D,E ∈ D and φ ∈ F be even. R is an
even (D,E, φ)-bijection if D,E are infinite, R is a bijection between D,E, and
R is equal up to finitely many elements to the graph of φ restricted to D,E:
R ∼ {(x, y) ∈ D × E|y = φ(x)}. We denote the set of even bijections with R+.

Q is a partial bijection on M, and by definition Q maps 0M + n 7→ ∞+ 2n
and ∞+ n 7→ 0M + 2n, and Q is associated to the odd map φ(x) = 2x.

Definition 5 (Odd Bijections). Let φ ∈ F be odd. An odd (D,E, φ)-bijection
is any bijection R between some infinite D,E ∈ D, such that, up to finitely many
points, R maps: (1) ∞− n− 1 7→ ∞+ φ(−n− 1), (2) 0M + n 7→ ∞+ φ(n) and
∞+ n 7→ 0M + φ(n). We denote the set of odd bijections with R−.

Q is an example of odd bijection. Let φ ∈ F be even and D,E ∈ D. A
(D,E, φ)-even bijection may alternatively be defined as any bijection between
D,E such that, up to finitely many points: (1) ∞−n− 1 7→ ∞+φ(−n− 1), (2)
0M + n 7→ 0M + φ(n) and ∞+ n 7→ ∞+ φ(n).

We define R0 as the set of all bijections between finite sets D,E ∈ D. Even-
tually, we define a family R of partial bijections by R = R+ ∪R0 ∪R−.

If R ∈ R+∪R−, associated to the map φ ∈ F with domain D and codomain
E, then we may prove that E ∼ φ(D). R and D satisfy the following closure
properties.

Lemma 5 (Partial bijections). Assume that R,S ∈ R and D ∈ D.

1. idD ∈ R
2. If D ∈ D then R(D) ∈ D
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3. R◦S ∈ R.

4. R−1 ∈ R
5. D is closed under complement.

R is closed under intersection.

Lemma 6 (Closure Under Intersection). Assume that R,S ∈ R are asso-
ciated to φ, ψ ∈ F .

1. If φ = ψ then R ∩ S ∈ R
2. If φ 6= ψ then R ∩ S ∈ R
3. R is closed under intersections.

4. For all R ∈ R there is some D ∈ D such that R ∩ idM = idD.

Our goal is to prove that every first-order definable subset of M is in D.
Since the sets definable in the language of R include those definable in M, it is
enough to prove that any first-order definable set in language of R is in D. To
this aim, we need a quantifier-elimination result for the language of R.

6 A Quantifier Elimination Result for Partial Bijections

In this section we prove a quantifier elimination result for a theory of partial
equivalence relation, which is the abstract counterpart of the families R and
D introduced in the previous section. This is a simple, self-contained result
introducing a model-theoretical tool of some interest.

Theorem 2 (Quantifier Elimination for Partial Bijections).
Let U be a set and R a set of partial bijections on U . Assume that all finite

partial bijections on U are in R, that D = {dom(R)|R ∈ R} is closed under
complement, and that for all R,S ∈ R, D ∈ D we have idU , R

−1, R◦S ∈ R and
R ∩ S,RdD ∈ R. Let U be the structure with universe U , one constant denoting
each element of U , and one predicate symbol denoting each R ∈ R. Then:

1. The theory of U has quantifier-elimination.

2. Any set definable in U is in D and is R(x, x) for some R ∈ R.

In order to give a flavor of our quantifier elimination procedure, we give an
example: detailed proofs are in §A.

∃x4(R1x1x4 ∧R2x2x4 ∧ ¬Rx3x4)

is equivalent to
∃x4(R1,4x1x4 ∧R2,4x2x4 ∧ ¬Rx3x4)

where D4 = codom(R1) ∩ codom(R2), D1 = R−11 (D4), D2 = R−12 (D4), and
R1,4 = R1 ∩ (D1×D4), R2,4 = R2 ∩ (D2×D4). Note domain restriction here. It
is equivalent to

∃x4(R1,4x1x4 ∧R2,4x2x4 ∧R1,2x1x2 ∧ ¬Rx3x4)

11



where R1,2 = R−12,4◦R1,4. Note composition of relations here. It is equivalent to

∃x4(R1,4x1x4 ∧R2,4x2x4 ∧R1,2x1x2 ∧ ¬R′x3x2)

where R′ = R−12,4◦R. Note partial bijections here. It is equivalent to

∃x4(R1,4x1x4 ∧R2,4x2x4) ∧R1,2x1x2 ∧ ¬R′x3x2

Using the properties of partial bijections, finally this is equivalent to

R1,2x1x2 ∧ ¬R′x3x2.

In the proof we identify each constant symbol with the element c ∈ U it
denotes, and each predicate symbol with the relation R ∈ R it denotes. We
prove quantifier elimination for U as defined in [8], §3.1, §3.2, namely that each
formula A with possibly free variables in the language U ∪R is equivalent in U
to some formula B in the same language but without quantifiers. We will in fact
prove a little more, namely that B may be chosen without constants.

We derive some closure properties for R. For any D ∈ D we have idD =
(idMdD) ∈ R. We will abbreviate idD(x, x) with (x ∈ D). D is closed under
intersection, because if D,E ∈ D then idD, idE ∈ R, hence idD∩E = (idD ∩
idE) ∈ R and D∩E ∈ D. D includesM = dom(idM) and it is closed under com-
plement, therefore D is closed under all boolean operations. For all x ∈ M the
partial bijection id{x} is finite and by assumption it is in R: thus, all singletons
of M are in D. Assume R ∈ R and D ∈ D: then codom(R) = dom(R−1) ∈ D
and R(D) = (RdD)(D) = codom(RdD) ∈ D. If R ∈ R and D,E ∈ D, then
R ∩ (D × E) ∈ R follows from R ∩ (D × E) = (((RdD)−1)dE)−1.

In the next statement, recall that we defined the relation composition in the
same order as function composition.

Lemma 7 (Composition and Product). Let R,S be any relation and
D,E, F be any sets. Assume R(D)∩S−1(F ) ⊆ E. Then composition and Carte-
sian product commute: (S ∩ (E × F ))◦(R ∩ (D × E)) = (S◦R) ∩ (D × F )

6.1 A Notion of Normal Form for the Language R

Let n > 0 be any positive integer. Assume R ∈ R and i, j ∈ {1, . . . , n}. We call
any formula R(xi, xj) a positive (R, n)-atom and any formula ¬R(xi, xj) a nega-
tive (R, n)-atom. A (R, n)-atom is either a positive or a negative (R, n)-atom. A
(R, n)-propositional formula is any formula obtained from positive (R, n)-atoms
by repeatedly applying disjunction and negation. Any (R, n)-propositional for-
mula has free variables in x0, . . . , xn−1. We denote by An the set of (R, n)-
propositional formula, and by Hn the set of n-ary predicates definable in U .

Our goal is to prove that for all n ∈ Nat, any first-order predicate P of R
is definable by some A ∈ An, and if n = 1 then P ∈ D. We have to prove that
formulas of An are closed under existential.

12



This is the plan of the proof. We will define a notion of (R, n)-normal form
for formulas of An, and prove that every A ∈ An has some (R, n)-normal form.
Then we will prove that if A ∈ An is in (R, n)-normal form, then ∃xn.A (with
possibly free variables) may be expressed in An−1 in one of the following ways:
either as some finite disjunction A[c1/x1] ∨ . . . ∨ A[ck/xn] for some constants
c1, . . . , ck ∈ U , or by the formula B ∈ An−1, obtained from A by erasing all
(R, n)-atoms including xn.

Assume n > 0 is any positive integer. Let G be any binary relation on
{1, . . . , n}. A (G, n)-family is any family F = {Ri,j(xi, xj)|(i, j) ∈ G} of pos-
itive (R, n)-atoms such that dom(Ri,j) = dom(Ri,k) for all i, j, k = 1, . . . , n. F
is a symmetric family if G is a symmetric relation, and for all (i, j) ∈ G we
have Ri,j = R−1i,j . F is a equivalence family if G is an equivalence relation, and
for all i = 1, . . . , n we have Ri,i = idDi

for some Di, for all (i, j) ∈ G we
have Ri,j = R−1i,j , for all (i, j), (j, k) ∈ G we have Rj,k◦Ri,j = Ri,k. In this case
Di = dom(Ri,j) for all i, j = 1, . . . , n and we call D1, . . . , Dn the domains of the
family.

A (G, n)-symmetric conjunction is any conjunction of a (G, n)-symmetric fam-
ily. A (G, n)-equivalence conjunction is any conjunction of a (G, n)-equivalence
family.

We recall some basic graph theory. We call an indirect, simple graph
on {1, . . . , n} just a graph, and we represent it by any irreflexive and sym-
metric relation G on {1, . . . , n}. A simple cycle in G is any sequence σ =
{(i0, i1), (i1, i2), . . . (im−1, im), (im, i0)} ⊆ G of pairwise distinct i0, . . . , im with
m ≥ 2. G is acyclic if G has no simple cycle. A path is any sequence π =
{(i0, i1), (i1, i2), . . . (im−1, im)} with pairwise distinct i1, . . . , im, with possibly
m = 0. The connection relation on G is: “there is some path from i to j” In
any acyclic graph G the path from i to j if it exists then it is unique. Given any
equivalence relation P, there is some minimal graph G ⊆ P among those such
that P is the smallest equivalence relation including G. All these minimal graphs
are acyclic.

Definition 6 ((R, n)-Normal Forms). C = C1 ∧ C2 is a (R, n)-normal con-
junction if C1 is some conjunction of positive (R, n)-atoms, C2 is some conjunc-
tion of negative (R, n)-atoms, and for some equivalence relation P

1. C1 is some (P, n)-equivalence conjunction

2. for any ¬S(xi, xj) in C2 we have i < j

3. if [n]P 6= {n} then xn does not occur in C2

Any A ∈ An is an (R, n)-normal form if A is some disjunction of (R, n)-normal
conjunctions.

We first prove that any (G, n)-symmetric conjunction, with G some acyclic
graph, is equivalent to some (P, n)-equivalence conjunction, where P is the re-
flexive and transitive closure of G.
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Lemma 8 (Transitive Closure Lemma). Let n > 0 be any positive integer.
Assume G is any acyclic graph on {1, . . . , n} and A = ∧i,j∈GRi,j(xi, xj) is any
(G, n)-symmetric conjunction. Let P be the reflexive, symmetric and transitive
closure of G. Then A is equivalent to some unique (P, n)-equivalence conjunction
B whose family of atoms extends the family of atoms of A.

Now we prove that the (P, n)-equivalence conjunctions are closed under con-
junction with a positive (R, n)-atom R(xi, xj). For all i = 1, . . . , n, we denote
with [i]P the equivalence class of i in P.

Lemma 9 (Partition Lemma). Assume A = ∧i,j∈PRi,j(xi, xj) is any (P, n)-
equivalence conjunction, and i, j ∈ {1, . . . , n}. Assume D ∈ D and R ∈ R.

1. A ∧ (xi ∈ D) is equivalent to some (P, n)-equivalence conjunction

2. Assume [i]P = [j]P . Then A ∧ R(xi, xj) is equivalent to some (P, n)-
equivalence conjunction

3. Assume [i]P 6= [j]P and dom(R) = dom(Ri,i) and and codom(R) = dom(Rj,j).
Then A ∧R(xi, xj) is equivalent to some (P, n)-equivalence conjunction

4. Any A ∧R(xi, xj) is equivalent to some (P, n)-equivalence conjunction

6.2 A Quantifier Elimination Result for R

Now we prove a quantifier-elimination result for the language with symbols the
binary predicates in R, using Lemma 6 and Lemma 9.

Lemma 10 (Quantifier Elimination for R). Let n > 0 be any positive inte-
ger.

1. Any finite conjunction of positive (R, n)-atoms has some (P, n)-equivalence
form.

2. Any finite conjunction of positive and negative (R, n)-atoms has some (P, n)-
equivalence form.

3. If A is some finite conjunction of positive and negative (R, n)-atoms, then
∃xn.A is equivalent to some B ∈ An−1.

4. If A ∈ An, then ∃xn.A is equivalent to some B ∈ An−1.

We may now finish the proof of Theorem 2.

7 Main Theorem

Let R, D as in §5. From the properties of the partial bijections in R and from
the quantifier elimination result (§6) we derive our main result.

Theorem 3 (Counterexample to Brotherston-Simpson Conjecture).
Let H be the formula defined in Definition 1. Then H has a proof in
CLKIDω(ΣN , ΦN ), and no proof in LKID(ΣN , ΦN ) + (0, s)-axioms.
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Proof. The proof in CLKIDω is shown in Theorem 1. The non-provability in
LKID is shown as follows. Any atomic formulas in M is in R. By definition, R
contains all finite bijections and is closed under restriction to any set D ∈ D.
Thus, by Lemma 6, R satisfies all hypothesis of Theorem 2. We deduce that
all definable sets of M are in D. By Lemma 3 point 4, all sets in D have a
dyadic measure, and by Lemma 2 satisfy the induction schema. According to
Def. 2.10 of [6], this is a sufficient condition for M being an Henkin model of
LKID(ΣN , ΦN ). M satisfies the (0, S)-axioms by construction. M falsifies H by
Lemma 1. 2

8 Non-Conservativity of Martin-Löf’s Inductive
Definition System

This section shows non-conservativity of LKID with respect to additional induc-
tive predicates, by giving a counterexample.

We assume the inductive predicate ≤ and the production rules for it:

x ≤ x
x ≤ y
x ≤ sy

We call the set of these production rules Φ≤. Let 0-axiom be ∀x ∈ N. sx 6= 0.
In LKID(ΣN + {≤}, ΦN + Φ≤), we can show any number ≤ 0 is only 0.

Lemma 11. 0-axiom, Nx,Ny, x ≤ y ` y = 0→ x = 0

The proof is in §A.
The next theorem shows 2-Hydra is provable in LKID with ≤.

Theorem 4. 0-axiom ` H is provable in LKID(ΣN + {≤}, ΦN + Φ≤).

We may show ∀n. (n ≥ x ∧ n ≥ y→ p(x, y)) by induction on n. The proof is
given in §A in case.

In the standard model, the truth of formula does not change when we extend
the model with inductive predicates that do not appear in the formula. On the
other hand, this is not the case for provability in Martin-Löf’s inductive definition
system LKID. Namely, a system may change the provability of a formula even
when we add inductive predicates that do not appear in the formula. Namely,
for a given system, the system with additional inductive predicates may not be
conservative over the original system. Theorems 3 and 4 give such an example:
the sequent 0-axiom ` H is in the language of LKID but it is not provable in
LKID, while it is provable in LKID extended with ≤.

9 Conclusion

We proved in Thm. 3 that CLKIDω, the formal system of cyclic proofs ([6])
proves strictly more that LKID, Martin-Löf formal system of inductive definitions
with classical logic. This settles an open question given in [6]. Our proof also
shows that if we add more inductive predicates to LKID we may obtain a non-
conservative extension (Thm. 4).
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Appendix

A Proofs of the Results of the Paper

In this section we include an example of quantifier elimination and all remaining
proofs with the same method we use to prove this result in general.

An Example of Quantifier Elimination. Assume R1, R2, R ∈ R and
∃x4.A is the existential formula in the language R defined by A = (R1x1x4 ∧
R2x2x4 ∧ ¬Rx3x4). We produce some equivalent quantifier-free formula in the
same language.

1. The first step is to replace R1, R2 by some R1,4, R2,4 with equal codomain.
Let D4 = codom(R1) ∩ codom(R2): then A implies that x4 ∈ D4. Let D1 =
R−11 (D4) and D2 = R−12 (D4): then A implies that x1 ∈ D1 and x2 ∈ D2. If
we define R1,4 = R1 ∩ (D1×D4) and R2,4 = R2 ∩ (D2×D4), then A implies
that R1,4x1, x4 and R2,4x2x4. Since R1,4 ⊆ R1 and R2,4 ⊆ R2, we obtain
that

A⇔ (R1,4x1x4 ∧R2,4x2x4 ∧ ¬Rx3x4)

2. The next step is closing the relations with arguments in {x1, x2, x4} by com-
position. We set R1,2 = R−12,4◦R1,4: then

A⇔ (R1,4x1x4 ∧R2,4x2x4 ∧R1,2x1x2 ∧ ¬Rx3x4)

By construction we have R2,4◦R1,2 = R2,4◦R−12,4◦R1,4 = R1,4 and
dom(R1,2) = D1 and codom(R1,2) = D2.

3. The third step is removing the occurrences of x4 in negative atoms. Let
R′ = R−12,4◦R. Set B = R1,4x1x4 ∧ R2,4x2x4 ∧ R1,2x1x2. Assume B. Then
Rx3x4 implies R′x3x2, and R′x3x2 implies R2,4x2x and Rx3x for some x.
Since R2,4 is a partial bijection and B implies R2,4x2x4, we deduce x = x4
and Rx3x. We proved that B implies Rx3x4 ⇔ R′x3x2: thus,

A⇔ (R1,4x1x4 ∧R2,4x2x4 ∧R1,2x1x2 ∧ ¬R′x3x2)

4. Let

C = (R1,2x1x) ∧ ¬R′x3x2)

be the formula obtained by erasing all remaining atoms including x4. The last
step is proving that ∃x4.A⇔ C. If we assume C, we deduce R1,2x1x2, hence
x1 ∈ D1 and x2 ∈ D2. Thus, for some x, x′ we have R1,4x1x∧R2,4x2x

′. From
{x} = R1,4({x1}) = R2,4(R1,2({x1}) = R2,4({x2}) = {x′} we get x = x′. We
conclude ∃x.A[x/x4]. Conversely, if we assume A we prove C, and since x4
is not in C, we conclude ∃x4.A⇒ C.

Proof (Lemma 1 (the 2-Hydra Lemma)). We have to prove that all (x, y) 6∈ pM
satisfy a,b,c,d.
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1. Assume (x, y) ∈ π1 ∪ π2 and there is some point (x′, y′)π1 ∪ π2 before (x, y)
in π1 ∪ π2. Then x = sa ∈ M and y = ssb ∈ M: we only have to check
condition (b). By definition of π, the point (x′, y′) = (a, b) is in π1 ∪ π2.

2. Assume (x, y) ∈ π1∪π2 and (x, y) is the first point of π1 or of π2: then (x, y) =
(0M,∞) or (x, y) = (∞, 0M) and we only have to check (c), respectively,
(d). If (x, y) = (0M,∞) ∈ π1 it is enough to prove (∞− 1,∞− 2) 6∈ pM.
If (x, y) = (∞, 0M) ∈ π2 it is enough to prove (∞ − 1,∞ − 2) 6∈ pM.
(∞− 1,∞− 2) ∈6∈ pM follows from (∞− 1,∞− 2) ∈ π3 ⊆M2 \ pM

3. Assume (x, y) ∈ π3 = (∞−1,∞−1)−π. Then x = sa ∈M and y = ssb ∈M
and we only have to check condition (b). By assumption, if (x, y) ∈ π3 =
(∞− 1,∞− 1)− π then the next point in π3 is some (x− 1, y − 2) ∈ π3, as
wished.

Proof (Lemma 2 (Measure)). Assume that P is closed under 0, s (hence P ⊇
Nat) and there is some a ∈M\P . From P ⊇ Nat we deduce that a 6∈ Nat: for any
such a we have a =∞+ z for some z ∈ Z. Let Sa = {a, a− 1, a− 2, a− 3, . . .}:
by the contrapositive of closure under s, we deduce that Sa ⊆ M \ P . Thus,
M \ P =

⋃
{Sa|a ∈ M \ P}. If there is a maximum a ∈ M \ P we conclude

thatM\P = Sa = {. . . , a− 3, a− 2, a− 1, a}, while if there is no maximum for
M\P thenM\P = Z. In the first case we have µ(M\P ) = 1/3, in the second
one we have µ(M\ P ) = 2/3. Thus, if P is a counter-example to induction rule
for N then µ(P ) = 1/3, 2/3 and µ(P ) is not a dyadic rational.

Proof (Lemma 3 (D-Lemma)).

1. ∅ is a finite union, therefore D includes all D ∼ ∅: that is, D includes all
finite subsets of M.

2. By repeatedly applying the equation M(2a, b) = M(2a, b + 2a) we may as-
sume that 0 ≤ b < 2a. Then we repeatedly apply the equation M(2a, b) =
M(2a+1, b) ∪M(2a+1, b+ 2a).

3. By induction on n and point 2 above we may prove our thesis for any D ∼
(B1 ∪ . . . ∪Bn).

4. From point 3 above there are a and 0 ≤ b1 < . . . < bi < 2a in Nat such that
D ∼ (M(2a, b1) ∪ . . . ∪M(2a, bi)). If M(2a, b)⊂∼M then a ∈ Nat, b ∈ Z and
µ(M(2a, b) ∩M) = 1/2a. Since 0 ≤ b1 < . . . < bi < 2a for some i ≤ 2a,
the sets M(2a, b1), . . . ,M(2a, bi) are pairwise disjoint. From µ(D) additive,
we deduce that µ(D) = i/2a ≤ 1 is some dyadic rational. By Lemma 2, D
satisfies induction rule for N .

5. By construction, D is closed under ∼ and under union. Thus, we have to
prove that if D ∈ D then (M\D) ∈ D. By point 3 above there are a and 0 ≤
b1 < . . . < bi < 2a in Nat such that D ∼ (M(2a, b1)∪. . .∪M(2a, bi)). Assume
that [0, 2a[\{b1, . . . , bi} = {c1, . . . , cj}: then (M\D) ∼ (M\M(2a, b1)∪ . . .∪
M(2a, bi)) = (M(2a, c1)∪ . . .∪M(2a, cj)) ∈ D. By closure of D under ∼, we
conclude that (M\D) ∈ D.

Proof (Lemma 4 (φ-Lemma)).
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1. We have φ(M(2z, r)) = M(2z+z1 , 2z1 ∗ r + r1) ∈ B.

2. If D ∈ D then D ∼M(2a1 , b1) ∪ . . . ∪M(2ai , bi) for some a1, . . . , ai ∈ Z and
some b1, . . . , bi ∈ Q. Then φ(D) ∼ φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)), and
by point 1 above φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)) ∈ B. Thus, φ(D) ∈ D.

Proof (Lemma 5 (Partial Bijections)).

1. Assume D is finite. Then idD is, therefore idD ∈ R0 ⊆ R. Assume D is
infinite. Then idD is some even (D,D, id)-bijection.

2. If R is finite then R(D) is finite, hence R(D)D. If R is a (A,B, φ)-bijection,
then by φ(D) ∼ R(D) ⊆ D ⊆M we deduce φ(D)⊂∼M. By Lemma 4.2, from
D ∈ D and φ(D)⊂∼M we deduce φ(D) ∈ D, hence R(D) ∈ D by ∼-closure
of D by 3.5.

3. If R◦S is finite then R◦S ∈ R0 ⊆ R.
Assume R◦S is infinite. Then both R and S are infinite, R is some (A,B, φ)-
bijection and S is some (C,D,ψ)-bijection, for some φ, ψ ∈ F . Then φ(n) ≥ 0
and φ(−n−1) < 0 for all but finitely many n ∈ Nat. If R is an even bijection,
then, up to finitely many elements R maps Nat in Z+0 , Z+0 in Nat, and Z− in
Z−. The same holds for ψ and S. Thus, R◦S ∈ R is even if both are even
or both are odd, and it is odd if one is odd and one is even, and it is some
(φ−1(B ∩C), ψ(B ∩C), ψ◦φ)-bijection. Here we use the fact that B,C ∈ D,
φ−1 ∈ F and φ−1(B ∩C) ⊆ A ⊆M imply B ∩C ∈ D by closure of D under
intersection, then φ−1(B∩C) ∈ D by Lemma 4.2. In the same way we prove
that ψ(B ∩ C) ∈ D.

4. Assume R is finite. Then R−1 is finite, hence R−1 ∈ R. Assume that R is
some (D,E, φ)-bijection. Then R− is even or odd according what is R, and
it some (E,D, φ−1)-bijection.

5. We have D = dom(R) ∈ D by definition of R, and E = M \ D ∈ D by
Lemma 3.5. We take S = idE .

Proof (Lemma 6 (Closure Under Intersection)). Assume R,S ∈ R are associated
to φ, ψ ∈ F .

1. Assume φ = ψ. Then R,S are both even or both odd, and by definition for all
but finitely many a ∈ dom(R)∩ dom(S) we have R(a) = φ(a) = ψ(a) = S(a),
hence dom(R∩ S) ∼ dom(R)∩ dom(S) ∈ D. We deduce that dom(R∩ S) ∈ D,
therefore R ∩ S is a partial bijection of domain in D and associated to φ

2. Assume φ 6= ψ. Then R is defined from φ with at most three cases, and S
from ψ with at most three cases. Since φ, ψ are different straight lines, for
each case there is at most one pair a, b ∈ M, such that φ(a) = ψ(a) = b,
therefore there are at most three pairs (a, b) such that φ(a) = ψ(a) = b. Up
to finitely many elements, any (a, b) ∈ R∩S satisfies φ(a) = φ(a) = b. Thus,
R ∩ S is finite, hence it is in R0.

3. Assume R′, S′ ∈ R. If R′ or S′ are finite then R′∩S′ is finite, hence in R0. If
both R′ and S′ are infinite, we deduce R′∩S′ ∈ R by point 1 or 2, according
if R′, S′ are associated to the same map φ ∈ F or not.
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4. By idM ∈ R and point 3 above the we have R ∩ idM ∈ R, therefore
D = dom(R ∩∆) ∈ D by definition of R. From R ∩ idM ⊆ idM we deduce
that R ∩ idM = idD.

Proof (Lemma 7 (Composition and Product)). Assume that (x, z) ∈ (S ∩ (E ×
F ))◦(R ∩ (D × E)). Then x ∈ D, z ∈ F , and for some y ∈ E we have R(x, y),
S(y, z). We conclude that (x, z) ∈ (S◦R) ∩ (D × F ).

Assume that (x, z) ∈ (S◦R) ∩ (D × F ). Then x ∈ D, z ∈ F , and for some
y we have R(x, y), S(y, z). From x ∈ D and R(x, y) we deduce that y ∈ R(D);
from z ∈ F and S(y, z) we deduce that y ∈ S−1(F ). By y ∈ R(D), y ∈ S−1(F )
and our assumption we obtain that y ∈ E. Thus, (x, y) ∈ (R ∩ (D × E)) and
(y, z) ∈ (S ∩ (E × F )). We conclude that (x, z) ∈ (S ∩ (E × F ))◦(R ∩ (D×E)).

Proof (Lemma 8 (Transitive Closure)). By definition, there are D1, . . . , Dn ∈ D
such that dom(Ri,j) = Di for all (i, j) ∈ G. Assume (i, j) ∈ P. Then there is
some path πi,j = {(i0, i1), . . . , (im−1, im)} from i = i0 to j = im in G. πi,j is
unique, because from two different paths we would define a simple cycle. We
define Si,j = Rim,im−1

◦ . . . ◦Ri1,i0 , with Si,j = idDi
if i = j: Si,j belongs to any

(P, n)-equivalence conjunction, if we prove that it is some (P, n)-equivalence
conjunction we have uniqueness. Let B = ∧i,j∈PSi,j(xi, xj). By construction,
for all (i, j) ∈ G we have πi,j = {(i, j)} (the unique path from i to j is {(i, j)}),
therefore Si,j = Ri,j . Thus, B implies A. Conversely, if Si,j = Rin,in−1◦ . . . ◦Ri1,i0

with i = i0, j = im, then Si,j(xi, xj) is implied by Rim,im−1(xim , xim−1) ∧ . . . ∧
Ri1,i0(xi1 , xi0). Thus, B is equivalent to A and Si,i = idDi

. By construction,
dom(Si,j) = Di. By induction on the length of the path between j, k in G we may
prove that Sj,k◦Si,j = Si,k. We conclude that B is the unique (P, n)-equivalence
conjunction including all atoms of A.

Proof (Lemma 9 (Partition Lemma)). By assumption on A, there are
D1, . . . , Dn ∈ D such that Dj = dom(Rj,k) for all (j, k) ∈ P.

1. Fix any i = 1, . . . , n, and any D ∈ D, any j ∈ [i]P . Let D′j = Ri,j(D) ⊆ Dj :
we have D′j ∈ D by assumption on R. For all (j, k) ∈ P we define R′j,k =
Rj,k ∩ (D′j ×D′k) if j, k ∈ [i]P , and R′j,k = Rj,k otherwise. We define A′ as
the conjunction of R′j,k(xj , xk) for all (j, k) ∈ P.
Claim: A ∧ (xi ∈ D) ⇔ A′. Assume A ∧ (xi ∈ D). Assume (j, k) ∈ P in
order to prove R′j,k(xj , xk). From xi ∈ D and Ri,h(xi, xh) for all h ∈ [i]P , we
deduce xh ∈ Ri,h(D) = D′h. Thus, if j, k ∈ [i]P we have (xj , xk) ∈ D′j ×D′k,
and by Rj,k(xj , xk) we conclude R′j,k(xj , xk). If j, k 6∈ [i]P then R′j,k = Rj,k,
and by Rj,k(xj , xk) again we conclude R′j,k(xj , xk). Assume A′. Then for all
(j, k) ∈ P we conclude Rj,k(xj , xk) by R′j,k ⊆ Rj,k.
We have D′i = Ri,i(D) = idDi

(D) = D ∩ Di, therefore for all (j, k) ∈ [i]P
we have Rj,k(D′j) = Rj,k(Ri,j(D)) = Ri,k(D) = D′k.
We have to prove that A′ is an (P, n)-equivalence conjunction. Assume
(j, k), (k, h) ∈ P.
(1) If j, k ∈ [i]P we have dom(R′j,k) = D′j because Rj,k(D′j) = D′k. If j, k 6∈

[i]P we have dom(R′j,k) = dom(Rj,k) = Dj .

20



(2) If j ∈ [i]P then R′j,j = Rj,j ∩ (D′j ×D′j) = idDj
∩ ∩(D′j ×D′j) = idD′j .

If j 6∈ [i]P then R′j,j = Rj,j = idDj
.

(3) If j, k ∈ [i]P then R′k,j = Rk,j ∩ (D′k ×D′j) = R−1j,k ∩ (D′k ×D′j) = (Rj,k ∩
(D′j ×D′k))−1 = R′

−1
j,k. If j, k 6∈ [i]P then R′k,j = Rk,j = R−1j,k = R′−1j,k .

(4) If j, k, h ∈ [i]P we have R′k,h◦R′j,k = Rk,h ∩ (D′k ×D′h)◦Rj,k ∩ (D′j ×D′k)

= (by Lemma 7 and D′k = Rj,k(D′j), D
′
k = Rh,k(D′h) = R−1k,h(D′h)) =

(Rk,h◦Rj,k) ∩ (D′j ×D′h) = Rj,h ∩ (D′j ×D′h) = R′j,h. If j, k, h 6∈ [i]P we
have R′k,h◦R′j,k = Rk,h◦Rj,k = Rj,h = R′j,h.

2. Let R′ = Ri,j ∩ R and D = dom(R′). Then R′ ∈ R, DD and R′ = Ri,jdD:
any partial equivalence included in Ri,j is determined by its domain. Thus,
Ri,j(xi, xj) ∧ R(xi, xj) is equivalent to Ri,j(xi, xj) ∧ (xi ∈ D). The thesis
follows by point 1 above.

3. Fix any two disjoint equivalence classes [i]P , [j]P and some bijection R ∈ R
from Di to Dj . Let G be any minimal (hence acyclic) graph such that the
smallest equivalence relation including G is P. Assume B is the conjunction
of atoms Ra,b(xa, xb) for all (a, b) ∈ G: the family of atoms of B is included
in the family of atoms of A. By Lemma 8 there is a unique (P, n)-equivalence
conjunction A′ whose family of atoms extend the family of atoms of B, and
A′ ⇔ B. Thus, A′ = A, and A is equivalent to B. Let G′ = G ∪ {(i, j)}:
G′ is an acyclic graph by (i, j) 6∈ P. B ∧ R(xi, xj), is a (G′, n)-symmetric
conjunction. By Lemma 8 and G′ acyclic we deduce that B ∧ R(xi, xj) is
equivalent some (P ′, n)-equivalence conjunction C, with P ′ = the smallest
equivalence relation including G′. Thus, A ∧ R(xi, xj) is equivalent to C.
Remark that P ′ defines partition obtained from the partition of P by merging
the two equivalence classes [i]P , [j]P .

4. If [i]P = [j]P the thesis follows from point 2 above. Assume that [i]P 6= [j]P .
A ∧ R(xi, xj) is equivalent to A ∧ R(xi, xj) ∧ (xi ∈ Di) ∧ (xj ∈ Dj). By
assumption we have R′ = R ∩ (Di ×Dj) ∈ R, therefore D′i = dom(R′) ∈ D,
D′j = codom(R′) ∈ D and A∧R(xi, xj)∧(xi ∈ Di)∧(xj ∈ Dj) is equivalent to
A∧R′(xi, xj). If we apply twice point 1, we obtain some (R, n)-equivalence
conjunction A′ equivalent to A, with Di, Dj replaced respectively by D′i,
D′j . Then the thesis follows by point 3 above.

Proof (Lemma 10 (Quantifier Elimination Lemma)).

1. Assume A is any finite conjunction of positive (R, n)-atoms. We prove that
A is equivalent to some (P, n)-equivalence conjunction by induction on the
number of the positive atoms R(xi, xj) in A.

(1) Assume that A is the empty conjunction, hence the always true n-ary
predicate. We take the partition P of {1, . . . , n} with equivalence classes
of one element: {1}, . . . , {n}. As Ri,i we take the equality relation id :
U → U . Let B be the conjunction of all xi = xi. B is a conjunction of
positive (R, n)-atoms, and B is some (R, n)-equivalence conjunction by
construction. B is always true, hence B is equivalent to A.
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(2) Assume that A is some equivalence conjunction of positive (R, n)-atoms
and R(xi, xj) is any positive (R, n)-atom. Our thesis is that A∧R(xi, xj)
is equivalent to some equivalence conjunction B of positive (R, n)-atoms.
This follows by Lemma 9.4.

2. Assume A = C1∧C2, with C1 any finite conjunction of positive (R, n)-atoms
and C2 any finite conjunction of negative (R, n)-atoms.

We first remove all negative atoms of the form ¬S(xi, xi), for all i = 1, . . . , n.
Indeed, by Lemma 6.4 this atom is equivalent to ¬D(x) for some D ∈ D,
hence to E(x) for some E ∈ D by closure of D under complement. Then we
replace all atoms ¬S(xi, xj) with i > j with ¬S−1(xj , xi), where have j < i.
We obtain some C ′2 ⇔ C2, with C ′2 conjunction of negative (R, n)-atoms of
the form ¬S(xi, xj), for some S, some i < j.

By the previous point we may replace C1 with some equivalence conjunction
C ′1 of positive (R, n)-atoms.

Assume that there is some a 6= n such that a ∈ [n]P . We claim that for all
R ∈ R, i ≤ n if R′ = Rn,a◦R then we have C ′1 ⇒ (R(xi, xa) ⇔ R′(xi, xn)).
Indeed, C ′1 ⇒ Rn,a(xn, xa), therefore C ′1 ⇒ (R(xi, xa) ⇒ R′(xi, xn)). As-
sume R′(xi, xn): then for some z ∈ U we have Rn,a(xn, z) ∧ R(xi, z). From
C ′1 ⇒ Rn,a(xn, xa) and Rn,a partial bijection we deduce z = xa, therefore
C ′1 ⇒ R′(xi, xn)⇒ Rn,a(xn, xa). Thus, we may replace each ¬R(xi, xn) for
i < n with some equivalent condition ¬R′(xi, xa) where R′ = Rn,a◦R. We
obtain an equivalent formula C1 ∧ C ′′2 in which xn occurs in no negative
atom.

3. By point 2 above we may assume that A is some (R, n)-normal conjunction.
In particular, there is some equivalence relation P on {1, . . . , n} such that
the positive atoms of A form some (P, n)-equivalence conjunction. Let Dj =
dom(Ri,i) for i = 1, . . . , n. If Dn is equal to some finite set {a1, . . . , ak} ⊆
U , then ∃xn.A is equivalent to some propositional formula A[a1/x] ∨ . . . ∨
A[ak/x]. Assume Dn is infinite. We distinguish two cases, according if [n]P =
{n} or [n]P 6= {n}. In both cases we prove that ∃xn. . . . acts as an “eraser”,
removing all (R, n)-atoms in which xn occurs.

Assume that [n]P = {n}. Then Rn,n = idDn
. There are finitely many con-

ditions ¬R(xi, xn) for i < n. All R are bijection, therefore each condition
¬R(xi, xn) discards a single value of xn, given xi. We assumed that there are
infinitely many values of xn in Dn, therefore at least one verifies all requests
¬R(xi, xn). Thus, ∃xn.A is equivalent to B, with B obtained by removing
all (R, n)-atoms including xn.

Assume that [n]P 6= {n}. Then xn occurs in no negative (R, n)-atom in A.
Assume that B is obtained by removing all (necessarily positive) (R, n)-
atoms Rj,n(xj , xn) including xn, with j ∈ [n]P , j 6= n. We prove that
∃xn.A ⇔ B. From A ⇒ B we and xn not in B we deduce ∃xn.A ⇒ B.
We prove the opposite implication. Assume B and fix any k ∈ [n]P ,
k 6= n. Since B ⇒ xk ∈ Dk, there is a (unique) x such that Rk,n(xk, x)
is true. For any j ∈ [n]P , j 6= n we have Rj,n = Rk,n◦Rj,k, therefore
Rj,n({xj}) = Rk,n(Rj,k({xk}) = (by B ⇒ Rj,k(xj , xk)) Rk,n({xk}) = {x}.
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We conclude that B ⇒ Rj,n(xj , x) for all j ∈ [n]P , j 6= n. We deduce
B ⇒ A[x/xn], then B ⇒ ∃xn.A.

4. By the disjunctive normal form theorem, A is equivalent to A1 ∨ . . . ∨ Ak,
for some A1, . . . , Ak which are conjunctions of positive and negative (R, n)-
atoms. Thus, ∃xn.A is equivalent to ∃xn.A1∨ . . .∨∃xn.Ak. By point 3 above,
each ∃xn.Ai is equivalent to some Bi ∈ An−1. Thus, A is equivalent to some
B1 ∨ . . . ∨Bk ∈ An−1.

Proof (Theorem 2 (Quantifier Elimination for Partial Equivalences)).

1. Every quantifier-free formula of U ∪R is equivalent to some formula in some
An. Indeed, we may replace the predicate = by idM, then any R(c, d) by
the boolean formulas true or false, and any formula R(x, d), S(c, y) by either
true or false or some (R, n)-atoms of the form: x ∈ {c′}, y ∈ {d′}. Assume
A is any formula of the language U ∪ R with free variables x1, . . . , xn. By
induction on A, using the previous remark and Lemma 10.4 for an existential,
we prove that A is equivalent to some B ∈ An.

2. Assume R(x1, x1) is any positive (R, 1)-atom. Then R∩idM ∈ R by idM ∈
R and closure under intersection, therefore {m ∈ U|R(m,m)} = dom(R ∩
∆) ∈ D. By point 1, any formula A in the language U ∪R with at most x1
free is some boolean combination of positive (R, 1)-atoms, therefore it is in
D by closure of D under intersection and complement.

Proof (Theorem 3).

Let U = (M,R). We start proving the Claim: all atomic formulas of M are
equivalent to some atomic formula of U . Proof of the Claim The atomic formulas
of M have predicate symbol = or q. Those with symbol = have the forms: (i)
x+ n = y +m or (ii) x+ n = x+m or (iii) x+ n = b or (iv) a = y +m or (v)
a = b, for some n,m ∈ Nat and some a, b ∈M. They may be expressed with: (i)
y = φ(x), with φ(x) = 20 ∗x+ (n−m), (ii) with x = x if n = m and with false

if n 6= m, (iii) with some x = b′ or some a′ = y, or false. Those with symbol
p have the form p(x+ n, y +m) or p(x+ n, b) or p(a, y +m) or p(a, b) for some
n,m ∈ Nat and some a, b ∈ M. They may be expressed with the odd bijection
q, negated and composed with φ(x) = x+ (n−m), or with x = b′ or a′ = y, or
with false.

We have to prove that any prefixed point inH1 of the definition of N includes
the interpretation of N : this is to say, any set in H1 closed under 0 and s is equal
toM. By induction on the predicate we may prove that all first order predicates
of M are definable in U : in the case of an atomic predicate we use the Claim,
otherwise the induction hypothesis. By Theorem 2.2 all definable sets of M are
in D, therefore H1 ⊆ D. By Lemma 3.4, all sets in D have a dyadic measure,
and by Lemma 2 if they are closed under 0 and s they are equal to M. Thus,
all definable sets ofM closed under 0 and s are equal toM, and by Def. 2.10 of
[6], M is an Henkin model of LKID(ΣN , ΦN ). M satisfies the (0, S)-axioms by
construction. M falsifies H by Lemma 1.
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Proof (Lemma 11). The proof is by induction on the definition of x ≤ y. If x
is y then x = 0 → x = 0, if y is S(z) and the property holds for x, z then we
trivially have S(z) = 0→ x = 0 by 0-axiom.

Proof (Theorem 1 (H Has a Cyclic Proof)). The global trace condition holds
for any infinite path π in the cyclic proof of §3.3. We may explicitly describe
an infinite trace in π, as follows. We have three possible choices for constructing
the infinite path π in the proof: taking a bud of the left, middle, or right. For
a given bud and z1, z2 ∈ {x, y}, we write z1 ; z2 for a progressing trace from
Nz1 in the companion to Nz2 in the bud. We write z1 ; z2, z3 for z1 ; z2 and
z1 ; z3. For the left bud, there are x ; x, y. For the middle bud, there are
y ; x, y. For the left bud, there are x ; x and y ; y. If the left bud does not
appear in a path, there is a progressing trace y ; y ; y ; . . .. If the middle
bud does not appear in a path, there is a progressing trace x; x; x; . . ..

Assume both of the left and middle buds appear infinitely in a path. Start
from the first left or middle bud and repeat infinitely one of following operations,
according to the current bud. Take x ; x for the left buds except the last bud
before the middle bud comes. Take x ; y for the last bud. Take y ; y for the
middle buds except the last bud before the left bud comes. Take y ; x for the
last bud.

In all cases, take x ; x or y ; y for the right bud depending the previous
trace.

Given an infinite path, there is some tail of the path that satisfies one of
these three cases. Hence the global trace condition holds.

Proof (Proof of Theorem 4). We will prove the equivalent sequent Ĥ,Nx,Ny `
p(x, y). We will show ∀n. (n ≥ x∧n ≥ y→p(x, y)) by induction on n. The proof
in §A.

For simplicity, we write (1),(2),(3), and (4) for 2-Hydra axioms
Ha, Hb, Hc, Hd respectively. Case 1: n = 0. Then x = y = 0 by Lemma 11,
hence p(x, y) by (1).

Case 2: n = sn′.
Sub-case 2.1: y = 0. Sub-sub-case 2.1.1. x = 0 or x = s0. By (1). Sub-sub-

case 2.1.2. x = ssx′′. Then p(S(x′′), x′′) by induction hypothesis, hence p(x, 0)
by (3).

Sub-case 2.2. y = s0. By (2).
Sub-case 2.3. y = ssy′′. Sub-sub-case 2.3.1. x = 0. Then p(S(y′′), y′′) by IH,

hence p(0, y) by (4). Sub-sub-case 2.3.2. x = sx′. Then p(x′, y′′) by IH, hence
p(x, y) by (2).

By principal induction on x and secondary induction on y we may prove that
∃n.(n ≥ x) ∧ (n ≥ y). From this statement and the previous one we conclude
our thesis.
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