Some examples.

  Assume the Conic is:

    
a_11x^2 + a_12xy + a_22y^2 + a_13x + a_23y + a_33 = 0
    

  
Then the program is starting by the command:

       Conic[
a_11x^2 + a_12xy + a_22y^2 + a_13x + a_23y + a_33]
    

   The variables of the Conic must be x, y. Besides, x, y must not be assigned to a value, otherwise the execution stops.

First example of ellipse: reducing 4 + x - x^2 + y + x y - y^2 = 0 to the canonical form.

In[48]:=

Conic[4 + x - x^2 + y + x y - y^2]

\n 1. The Original Conic \n

4 + x - x^2 + y + x y - y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  (      1  ) , det(A) = 3/4                        ...           -1   2                         1                        -                        2    -1

\t The Conic is an Ellipse. \n

\t Eigenvalues of A: \n

{-3/2, -1/2}

\t Eigenvectors of A: \n

{{-1, 1}, {1, 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 45., ,  degrees: \n}]

{x (x - y)/2^(1/2), y (x + y)/2^(1/2)}

\t Equation of the rotated conic: \n

4 + 2^(1/2) x - x^2/2 - (3 y^2)/2 = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 1.41421, ,  units \n}]

{x2^(1/2) + x, yy}

\t Canonical form (after rotating and translating): \n

1/2 (10 - x^2 - 3 y^2)  = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_101.gif]

Out[48]=

⁃Graphics⁃

Second example of ellipse: reducing the vertical ellipse -4+4x^2 + y^2 = 0.

In[49]:=

Conic[-4 + 4x^2 + y^2]

\n 1. The Original Conic \n

-4 + 4 x^2 + y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  ( -4   0  ) , det(A) = 4                         0    -1

\t The Conic is an Ellipse. \n

\t Eigenvalues of A: \n

{-4, -1}

\t Eigenvectors of A: \n

{{1, 0}, {0, 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 90., ,  degrees: \n}]

{x -y, yx}

\t Equation of the rotated conic: \n

4 - x^2 - 4 y^2 = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 0., ,  units \n}]

{xx, yy}

\t Canonical form (after rotating and translating): \n

4 - x^2 - 4 y^2 = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_125.gif]

Out[49]=

⁃Graphics⁃

First example of parabola: reducing -10 + x + x^2 - y + 2 x y + y^2 = 0 to the canonical form.

In[50]:=

Conic[-10 + x + x^2 - y + 2 x y + y^2]

\n 1. The Original Conic \n

-10 + x + x^2 - y + 2 x y + y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  ( 1   1 ) , det(A) = 0                         1   1

\t The Conic is a Parabola. \n

\t Eigenvalues of A: \n

{2, 0}

\t Eigenvectors of A: \n

{{1, 1}, {-1, 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 135., ,  degrees: \n}]

{x -(x + y)/2^(1/2), y (x - y)/2^(1/2)}

\t Equation of the rotated conic: \n

-2^(1/2) x + 2 (-5 + y^2)  = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 7.07107, ,  units \n}]

{x -5 2^(1/2) + x, yy}

\t Canonical form (after rotating and translating): \n

-2^(1/2) x + 2 y^2 = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_149.gif]

Out[50]=

⁃Graphics⁃

Second example of parabola: reducing the horizontal parabola x - y^2 = 0.

In[51]:=

Conic[x - y^2]

\n 1. The Original Conic \n

x - y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  ( 0   0 ) , det(A) = 0                         0   1

\t The Conic is a Parabola. \n

\t Eigenvalues of A: \n

{1, 0}

\t Eigenvectors of A: \n

{{0, 1}, {1, 0}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 0., ,  degrees: \n}]

{xx, yy}

\t Equation of the rotated conic: \n

-x + y^2 = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 0., ,  units \n}]

{xx, yy}

\t Canonical form (after rotating and translating): \n

-x + y^2 = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_173.gif]

Out[51]=

⁃Graphics⁃

First example of hyperbola: reducing -1 - x - x^2 - y - x y + y^2 = 0 to the canonical form.

In[52]:=

Conic[-1 - x - x^2 - y - x y + y^2]

\n 1. The Original Conic \n

-1 - x - x^2 - y - x y + y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  (       1 ) , det(A) =  -5/4                      ...         -1    2                          1                        --                         2   1

\t The Conic is an Hyperbola. \n

\t Eigenvalues of A: \n

{-5^(1/2)/2, 5^(1/2)/2}

\t Eigenvectors of A: \n

{{2 + 5^(1/2), 1}, {2 - 5^(1/2), 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 103.283, ,  degrees: \n}]

{x -(1/2 - 1/5^(1/2))^(1/2) x - (1/2 + 1/5^(1/2))^(1/2) y, y (1/2 + 1/5^(1/2))^(1/2) x - (1/2 - 1/5^(1/2))^(1/2) y}

\t Equation of the rotated conic: \n

-1 - (1 - 1/5^(1/2))^(1/2) x + (5^(1/2) x^2)/2 + (1 + 1/5^(1/2))^(1/2) y - (5^(1/2) y^2)/2 = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 0.632456, ,  units \n}]

{x (5 - 5^(1/2))^(1/2)/5 + x, y (5 + 5^(1/2))^(1/2)/5 + y}

\t Canonical form (after rotating and translating): \n

1/10 (-8 + 5 5^(1/2) x^2 - 5 5^(1/2) y^2)  = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_197.gif]

Out[52]=

⁃Graphics⁃

Second example of hyperbola: reducing the vertical hyperbola +4+x^2 - y^2 = 0.

In[53]:=

Conic[+4 + x^2 - y^2]

\n 1. The Original Conic \n

4 + x^2 - y^2 = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  ( -1   0  ) , det(A) =  -1                         0    1

\t The Conic is an Hyperbola. \n

\t Eigenvalues of A: \n

{-1, 1}

\t Eigenvectors of A: \n

{{1, 0}, {0, 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 90., ,  degrees: \n}]

{x -y, yx}

\t Equation of the rotated conic: \n

-4 + x^2 - y^2 = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 0., ,  units \n}]

{xx, yy}

\t Canonical form (after rotating and translating): \n

-4 + x^2 - y^2 = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_221.gif]

Out[53]=

⁃Graphics⁃

A degenerated Conic.

In[54]:=

Conic[(x - 2y - 3) (x + 3y - 5)]

\n 1. The Original Conic \n

(-3 + x - 2 y) (-5 + x + 3 y)  = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  (       1 ) , det(A) =  -25/4                     ...         -1    2                          1                        --                         2   6

\t The Conic is an Hyperbola. \n

\t Eigenvalues of A: \n

{5/2 (1 + 2^(1/2)), 5/2 (1 - 2^(1/2))}

\t Eigenvectors of A: \n

{{7 - 5 2^(1/2), 1}, {7 + 5 2^(1/2), 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 4.06505, ,  degrees: \n}]

{x1/10 ((50 + 35 2^(1/2))^(1/2) x - (50 - 35 2^(1/2))^(1/2) y), y1/10 ((50 - 35 2^(1/2))^(1/2) x + (50 + 35 2^(1/2))^(1/2) y)}

\t Equation of the rotated conic: \n

1/2 (-30 + x ((130 + 85 2^(1/2))^(1/2) - 5 (-1 + 2^(1/2)) x) - (130 - 85 2^(1/2))^(1/2) y + 5 (1 + 2^(1/2)) y^2)  = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 3.82099, ,  units \n}]

{x (73/10 + 103/(10 2^(1/2)))^(1/2) + x, y7/(1460 + 1030 2^(1/2))^(1/2) + y}

\t Canonical form (after rotating and translating): \n

1/2 (-5 (-1 + 2^(1/2)) x^2 + 5 (1 + 2^(1/2)) y^2)  = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_244.gif]

Out[54]=

⁃Graphics⁃

Another degenerated Conic.

In[55]:=

Conic[(x - y) (x - y + 1)]

\n 1. The Original Conic \n

(x - y) (1 + x - y)  = 0

\t Symmetric matrix A out of degree 2 coefficients: \n

A =  ( 1    -1 ) , det(A) = 0                         -1   1

\t The Conic is a Parabola. \n

\t Eigenvalues of A: \n

{2, 0}

\t Eigenvectors of A: \n

{{-1, 1}, {1, 1}}

\n 2. Rotating the Conic \n

RowBox[{\t We apply the rotation of , , 45., ,  degrees: \n}]

{x (x - y)/2^(1/2), y (x + y)/2^(1/2)}

\t Equation of the rotated conic: \n

y (-2^(1/2) + 2 y)  = 0

\n 3.  Translating the Conic: the canonical form \n

RowBox[{\t We apply the translation of , , 0.353553, ,  units \n}]

{xx, y1/(2 2^(1/2)) + y}

\t Canonical form (after rotating and translating): \n

-1/4 + 2 y^2 = 0

\n 4. Grafico delle Coniche \n\t 1. Original Conic\t 2. Rotated Conic\t 3. The Canonical Form

[Graphics:../HTMLFiles/index_267.gif]

Out[55]=

⁃Graphics⁃


Created by Mathematica  (August 4, 2004)