
A Full Continuous Model of Polymorphism

Franco Barbanera1 and Stefano Berardi2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Catania,

Viale A. Doria 6, 95125 Catania (Italy).barba@dmi.unict.it
2 Dipartimento di Informatica, Universitá degli studi di Torino,

Corso Svizzera 185, 10149 Torino (Italy).stefano@di.unito.it

Abstract. We introduce a model of the second-order lambda calculus. Such a model is a Scott domain whose

elements are themselves Scott domains, and in it polymorphic maps are interpreted by generic continous maps.

Keywords:Second-order lambda calculus, model, Scott domain, non-parametric.

1 Introduction

In this paper we define the Full model, a model of the second-order lambda calculus (λ2). In the

Full model, polymorphic maps are interpreted bygenericcontinuous maps, that is, maps really

depending on input types.

Some readers might argue that the interesting models of systemλ2 are the parametric ones,

where only constant or ”almost” constant polymorphic maps are considered. These models have

been often used in the literature for many different purposes, but would not be of help for the

implicit goal of the present paper, that is to provide a semantic basis for extensions of system

λ2 where one can define computations really depending on the ”type tag” of their input.

It is not difficult to imagine programming languages where both functional and imperative

features are present, and where it could be possible, and useful, to define polymorphic compu-

tations really depending on the ”type tag” of their input.

Suppose, for instance, to have an extension ofλ2 containing the traditional atomic types

Int, Char, Bool, Real, added to improve efficiency. We could have also the following primi-

tive polymorphic command,ToString : ∀α.(α → String), taking any typeα, any a : α,

and ”printing” it (returning a string out of it). Typically, this map would be defined by case,

calling a specific printing procedure forInt, another one forChar, Bool, Real, . . ., and print-

ing a warning message whenever one tries to print an element of a function type.ToString

is anessentially non-constant(hence non-parametric) polymorphic map; the same is true for

polymorphic order tests, polymorphic sorting maps, and so on. More involved examples would

arise if we mixed classes from object-oriented languages with second order lambda calculus.

Indeed, in object oriented languages, the application of a function to an argument may produce

different results according to the type of the input.

The intuition underlying the Full model . As a matter of fact our non-parametric model ofλ2

is not the first model in the literature which allows to model polymorphic maps really depending

on input types [1], [3], [6], [8]. However, we claim our Full model has a simpler definition.

The Full model consists of two Scott domains,Types andTerms. Types represents the

types ofλ2, andTerms the terms ofλ2. EachX ∈ Types (each ”type”) is itself a Scott domain,

and a subdomain ofTerms. The elementsx ∈ X will in turn interpret terms ofλ2 having type

X. Both terms and types are obtained as ”consistent” sets of atoms. We have two notions of

”consistency” on atoms, one used to build terms, which we call ”coherence”, and another one

used to build types, which we call ”homogeneity”. Two atoms are coherent if they may be two

pieces of the same datum; they are homogeneous if they are pieces of data having the same type.

Say, the atoms0 and1 are not coherent, because no integer datum can be, at the same time, both

0 and1. On the other hand,0 and1 are homogeneous, because they are both data of typeInt.

The model is obtained using an Engeler model construction twice, once to define the Scott

domainTypes, the other to define the Scott domainTerms. Some extra conditions are needed

in order for terms and types to match within the model. Interpretation of second order features

of λ2 then works as one would expect. Type constructors ofλ2 are interpreted as continous

mapsF : Types → Types. ”Polymorphic maps” associated to such anF are interpreted as

continuous mapsf : Types→ Terms such thatf(α) ∈ F (α) for all α ∈ Types. Quantification

overF is interpreted by a type∀α.F (α) ∈ Types, whose elements are exactlyall polymorphic

maps associated toF .

Our Full model includes, as we shall see through examples in section 4, non-constant maps

defined by cases over types. Again by an example, we shall show that it does not satisfy axiom

C (a weaker form of parametricity). Hence the Full model is provably not parametric.

Beta-Eta completenessThe Full model has also an unexpected and nice theoretical feature:

it equates two terms ofλ2 if and only if such terms areβη-convertible. In other words, the

Full model isβη-complete. The proof generalizes Friedmanβη-completeness proof of set-

theoretical model of first order lambda calculus and may be found in [5].

The paper is organised as follows. In Section 2 we recall the definition of the second-order

polymorphic lambda-calculus and of what is a model for it. Section 3 is devoted to the costruc-

tion of our Full model. In the conclusion (Section 4) we present and discuss some relevant

features of the Full model.

All the proofs of the paper, but the proof of the correctness of the Full model, will be given

in the Appendix A.

2 The calculus and its models

In this section, mostly in order to fix the notation, we quickly recall the definition of the second-

order polymorphic lambda-calculus (λ2) and of what is a model for it.

Thetypesof λ2 are formed according to the following grammar

σ ::= C | t | σ → σ | ∀t.σ

whereC ranges over a set ofType Constantsandt ranges over a set ofType Variables.

Theterms of λ2 are formed according to the following grammar

M ::= c | x | λx : σ.M | λt.M | (MM) | (Mσ)

wherec ranges over a set ofTerm Constantsandx ranges over a set ofTerm Variables.

By definingcontextsas sets of the formΓ = {x1 : σ1, . . . , xn : σn}, thetyping rules of λ2

can be presented as follows

(var) Γ . x : σ (x : σ ∈ Γ)

(cst) Γ . c : σ (c a constant of typeσ)

(→ I) Γ, x : τ . M : σ
Γ . λx : τ.M : τ → σ

(→ E) Γ . M : τ → σ Γ . N : τ
Γ . MN : σ

(∀I) Γ . M : σ
Γ . λt.M : ∀t.σ (t not free inΓ)

(∀E) Γ . M : ∀t.σ
Γ . Mτ : σ[τ/t]

Two notions of reductionare defined on terms ofλ2.

β-reduction:(λx : τ.M)N → M [N/x]

type-β-reduction:(λt.M)τ → M [τ/t]

We refer to the standard references, for instance [13], for the definition of the reduction

relation induced by the two notions of reduction above, for the definition of term- and type-

substitution inλ2 and for all usual notations and conventions.

We recall now two definitions, of structure and of model forλ2, as presented in [7] (see also

[13]). A λ2-applicative structure, or a structure forλ2, is a structure in which the connectives of

systemλ2 are interpreted by some operation in the model. This spells out as follows.

Definition 2.1 (λ2-applicative structures).A λ2-applicative structureA is a tuple

A = 〈U , Dom, {Appa,b,Appf}, I〉

where

– U = {TA, [TA → TA],→A, ∀A, IC} specifies a setTA (the “types” of the structure), a set

[TA → TA] of functions fromTA to TA, a binary operation→A on TA, a map∀A from

[TA → TA] to TA, and a mapIC from type constants toTA.

– Dom = {Doma | a ∈ TA} is a collection of sets indexed by the types of the structure.

– {Appa,b,Appf} is a collection of application maps, with oneAppa,b for every pair of

typesa, b ∈ TA and oneAppf for every functionf ∈ [TA → TA].

EachAppa,b must be a function

Appa,b : Doma→b → (Doma → Domb)

and eachAppf must be a function

Appf : Dom∀Af →
∏

a∈TA
Domf(a)

– I : Constants→ ⋃

a∈TA Doma assigns a value to each constant symbol, withI(c) ∈
Dom[[τ]] if c is a constant of typeτ . [[τ]] is the meaning ofτ as defined below.

A λ2-applicative structure isextensionalif everyAppa,b andAppf is one-to-one. A struc-

ture is a Henkin model, or simply a model, if the interpretation of the connectives ofλ2 is

compatible with the reductions ofλ2. Unfortunately, this simple idea requires some effort in

order to be precisely formalized.

Definition 2.2 (Henkin models).An extensionalλ2-applicative structureA is aHenkin model

if, for every termΓ . M : σ and everyη |= Γ , [[Γ . M : σ]]η, as defined below, exists.

– AnA-environment is a mapping

η : Variables→ (TA ∪
⋃

a∈TA
Doma)

such that for every type variablet and term variablex, we haveη(t) ∈ TA and η(x) ∈
⋃

a∈TA Doma. We shall denote byηp
v the mapping such thatηp

v(w) = η(w) for anyw 6= v,

andηp
v(v) = p

– The meaning[[σ]]η of a type expressionσ in environmentη is defined inductively as follows

• [[t]]η = η(t) (t type variable)

• [[C]]η = IC(C) (C type constant)

• [[τ → τ ′]] = [[τ]]η →A [[τ ′]]η
• [[∀t.σ]]η = ∀A(λλa ∈ TA.[[σ]]ηa

t
).

– If Γ is a context, thenη satisfiesΓ , writtenη |= Γ , if η(x) ∈ Dom[[σ]]η for everyx : σ ∈ Γ .

– The meaning of a termΓ . M : σ in environmentη |= Γ is defined by induction as follows:

• [[Γ . x : σ]]η = η(x)
• [[Γ . MN : τ]]η = Appa,b[[Γ . M : τ → τ ′]]η[[Γ . N : τ ′]]η

wherea = [[τ]]η andb = [[τ ′]]η
• [[Γ.λx : σ.M : σ → τ]]η = the uniquef ∈ Doma→b s.t., for alld ∈ Doma, Appa,bfd =

[[Γ, x : σ . M : τ]]ηd
x

wherea = [[σ]]η andb = [[τ]]η
• [[Γ . Mτ : σ[τ/t]]]η = Appf [[Γ . M : ∀t.σ]]η[[τ]]η,

wheref(a) = [[σ]]ηa
t

for all a ∈ TA

• [[Γ . λt.M : ∀t.σ]]η = the uniqueg ∈ Dom∀Af s.t., for alla ∈ TA,

Appfga = [[Γ . M : σ]]ηa
t

wheref(a) = [[σ]]ηa
t

for all a ∈ TA.

3 The Full model

We suppose the reader to be familiar with Engeler construction of a model of untyped lambda

calculus [2]. As we anticipated in the introduction, we will repeat Engeler construction twice,

one to define a Scott DomainTerms to interpret terms ofλ2, and the other to define a Scott

DomainTypes to interpret types ofλ2. Some extra conditions will be required to express re-

lationships betweenTerms andTypes. The construction will pass through three steps: the def-

inition of a set of atoms, with a constructor for so-called ”step-functions”, the definition of a

consistency notion on atoms, and the definition of an entailment relation between atoms.

First step: the definition of the setΩ of atoms. We introduce a setΩ of atoms. Terms and

types ofλ2 will be interpreted as subsets ofΩ satisfying a consistency condition: coherence in

the case of terms, homogeneity in the case of types.

We suppose fixed a family{Li}i of disjoint sets of atomic data. These could be, for instance,

L0 = {0, 1, 2, . . .} (integers),L1 = {true, false} (booleans),L2 = {a, b, c, . . .} (characters),

etc.

Ω is defined starting from{Li}i and then closing under two constructors,

(−,−), 〈−,−〉 : Pfin(Ω)×Ω → Ω

The constructor(−,−) will denote all step functions from the domainTerms of terms in the

model, toTerms itself. As usual, a step-function denoted(a, x) will map anyb ∈ Terms (any

consistent setb of atoms) includinga into the singleton{x}, and anything else into∅ (taken

to represent an ”indefinite” output). Each first order function ofλ2 will be built as a pointwise

union of step functions, and identified with the corresponding set of atoms. Let us consider an

example by assuming the integers to be among the atomic data.

The atom({n}, n) represents the step function mapping any element containingn into {n}
itself, and undefined elsewhere.

For any setX of atoms, the set of atomsidX = {({x}, x)|x ∈ X}, representing the point-

wise union of all step functions({x}, x), will be the identity onX.

In a similar way, the constructor〈−,−〉 will denote all step functions from the domain

Types of terms in the model, toTypes (or to Terms itself). Each type constructor, and each

polymorphic function ofλ2 will be built as pointwise union of step functions, and identi-

fied with the corresponding set of atoms. Continuing the example above, for anyn the atom

〈{n}, ({n}, n)〉 represents the step function mapping any type includingn (say, the type of

integer) into the (singleton of the) step function({n}, n), and undefined elsewhere. The set

of atomsid = {〈{x}, ({x}, x)〉|x atom}, representing the pointwise union of all step func-

tions 〈{x}, ({x}, x)〉, will be the polymophic identity. In fact, it will send any typeX into

idX = {({x}, x)|x ∈ X} i.e, into the identity onX.

Definition 3.1 (The setΩ). The setΩ is the smallest set satisfying:

1. Li ⊂ Ω, for eachi;
2. (a ⊂ Ω, a finite,x ∈ Ω) ⇒ (a, x), 〈a, x〉 ∈ Ω.

Second step: the definition of the consistency notion on atoms.In the construction of

our Full model we shall use only a particular subset ofΩ. Such a subsetConswill be defined

together with two binary ”consistency” relations onΩ: homogeneity(ho), andcoherence(co).

Conswill consists of the elements ofΩ which are both homogeneous and consistent with

themselves.

A set will be said to behomogeneous(coherent) if all of its elements are pairwisehomoge-

neous(coherent). As a matter of fact the notion of pairwise homogeneity (coherence) may have

different interpretation. We leave it unspecified for the time being; it will be formally defined

later on.

As we said, coherent sets will form a Scott domainTerms interpreting terms; homogeneous

sets will form a Scott domainTypes interpreting types, and will be themselves equipped with a

structure of Scott domain.

A set a will be said to behomogeneous(coherent) with a setb, a ho b(a co b) for short,

whenevera ∪ b is homogeneous(coherent).

As in the Engeler construction, the choice of the clauses forco , ho will be sometimes

forced in order to have a model, and will be sometimes arbitrary (depending on which notion

of type and polymorphic map we want to end up with). We first express (a possible choice of)

conditions onco , ho by words, then we will translate them into an inductive definition.

– We ask that eachLi be a flat domain of data. This means that each data typeLi will be an

homogeneous set, but two different atoms inLi will never be coherent, because they will

represent pairwise incompatible values for the same datum (say,0, 1 ∈ L0, ortrue, false ∈
L1).

– We ask that(a, x), (b, y) be coherent (two pieces of the same function) if they map coherent

inputs (pieces of the same input element) into coherent outputs (pieces of the same output

element).(a, x), (b, y) are homogeneous (pieces of the same function type) ifa, b are pieces

of the same input type, andx, y are pieces of the same output type.

– We ask that〈a, x〉, 〈b, y〉 be coherent (two pieces of the same type polymorphic map) if they

map homogeneous inputs (pieces of the same input type) into coherent outputs (pieces of the

same output element).〈a, x〉, 〈b, y〉 are homogeneous (two pieces of the same polymorphic

map) if they map homogeneous inputs (pieces of the same input type) into homogeneous

outputs (pieces of the same output type).

In the informal definition above, we have implicitly assumed that two coherent or homo-

geneous elements are either both in someLi, or both of the form(a, x), or both of the form

〈a, x〉; that is, a type may contain only data, or only first order functions, or only polymorphic

functions.

If the reader takes now some time to formalize the choices of conditions expressed above,

(s)he will end up with the following definition.

Definition 3.2. (Cons, ho , co) We define the setCons⊆ Ω and the relationsho , co ⊆
Cons× Consby simultaneous induction as follows:

(ho 0) Li × Li ⊆ ho for anyi;
(co 0) p co p for anyp ∈ Li and anyi;

(Cons0) Li ⊆ Consfor anyi;

(ho 1) (a, x) ho (b, y) if (a, x), (b, y) ∈ Cons, a ho b andx ho y;

(co 1) (a, x) co (b, y) if (a, x), (b, y) ∈ Consand[a co b ⇒ x co y]
(Cons1) (a, x) ∈ Cons if x ∈ Consanda is a coherent and homogeneous subset ofCons

(ho 2) 〈a, x〉 ho 〈b, y〉 if 〈a, x〉, 〈b, y〉 ∈ Consand[a ho b ⇒ x ho y];
(co 2) 〈a, x〉 co 〈b, y〉 if 〈a, x〉, 〈b, y〉 ∈ Consand[a ho b ⇒ x co y]

(Cons2) 〈a, x〉 ∈ Cons if x ∈ Consanda is a homogeneous subset ofCons

Notice thatConsis neither homogeneous nor coherent. In fact it contains, for instance, the

two non-homogeneous elements0 and({0}, 0), and the two non-coherent elements({0}, 0) and

({0}, 1).

Remark 3.3.It is straightforward to see that the following holds:

- Any subset of an homogeneous (coherent) set is homogeneous (coherent).

- Any two subsets of an homogeneous (coherent) set are homogeneus (coherent) with each other.

We shall denote byCons|(()) andCons|〈〈〉〉 the subsets ofConswhose elements are all of the

form (a, x) and〈a, x〉.
Third (and last) step: the definition of entailments onCons. We introduce two entailment

relations onCons: c̀o and h̀o . Such relations are needed in order to get an extensional model

of λ2

The intuitive meaning ofa c̀o x is: x denotes a map smaller thana, or, equivalently,a

anda ∪ {x} represent the same function: Terms → Terms. We will check that the seta c̀o , of

all x such thata c̀o x, is the maximum set representing the same function asa. By bounding

ourselves to subsets ofConsof the forma c̀o , we will have just one denotation for each function.

Thus, two subsets associated to the same function: Terms→ Terms will be equal, and we will

get an extensional model ofλ2 (extensional on terms). In the same way,a h̀o x intuitively

means:a anda ∪ {x} represent the same function: Types → Types (or : Types → Terms).

By bounding ourselves to subsets ofConsclosed under̀ ho , we will get an extensional model

of λ2 (extensional on polymorphic maps).

Definition 3.4. (h̀o , c̀o)

(i) The relations̀ ho , c̀o⊆ Cons×Consare defined by simultaneous induction as follows. Let

x, y ∈ Cons, a, b ∈ Pfin(Cons). For anyX,Y ⊆ Cons, let X h̀o Y (X c̀o Y) be short for

∀y ∈ Y ∃x ∈ X. x h̀o y(x c̀o y).

x h̀o x for anyx ∈ (
⋃

i
Li ∪ Cons|(()))

x c̀o x for anyx ∈
⋃

i
Li

a h̀o b x h̀o y
〈b, x〉 h̀o 〈a, y〉

a c̀o b x c̀o y
(b, x) c̀o (a, y)

a h̀o b x c̀o y
〈b, x〉 c̀o 〈a, y〉

wherea, b ⊂ Cons, x, y ∈ Consanda h̀o b(a c̀o b) is short for∀y ∈ b∃x ∈ a. x h̀o

y(x c̀o y).

(ii) Leta,X ⊆ Cons, then
a h̀o =Def {x ∈ Cons| a h̀o x}
a c̀o =Def {x ∈ Cons| a c̀o x}
aX =Def a c̀o ∩X.

wherea h̀o x(a c̀o x) is short fora h̀o {x}(a c̀o {x})

GivenX ⊆ Conswe shall denote byP|ho (X) andP|co (X) the sets of, respectively, homo-

geneus and coherent subsets ofX. The superscript “fin” will denote the extra restriction tofinite

subsets ofX.

We are now ready to define the Scott domain interpreting types ofλ2 as the set of homoge-

neous subsets ofConsclosed with respect tòho . The Scott domain interpreting terms will be

instead defined as the set of coherent subsets ofConsclosed with respect tòco .

Definition 3.5.

Types =Def {a h̀o | a ∈ P|ho (Cons)}.

Terms =Def {a c̀o | a ∈ P|co (Cons)}.

Proposition 3.6. (i) (Types,⊆,
⋃

) is a Scott domain, with{a h̀o
0 | a0 ∈ Pfin

|ho (Cons)} as the set

of its compact elements.

(ii) (Terms,⊆,
⋃

) is a Scott domain, with{a c̀o
0 | a0 ∈ Pfin

|co (Cons)} as the set of its compact

elements.

As usual, given a domainD, [D → D] denotes the set of thecontinuousfunctions from

D to D. We may now introduce operation onTypes interpreting arrow and quantification over

types ofλ2.

Definition 3.7. (→⇒, Q)

We define→⇒: Types× Types→ Types andQ : [Types→ Types] → Types as follows.

LetX, Y ∈ Types and letF ∈ [Types→ Types].

X →⇒ Y =Def {(a, y) | a ∈ Pfin
|co (X), y ∈ Y }.

Q(F) =Def {〈a, y〉 | a ∈ Pfin
|ho (Cons), y ∈ F (a h̀o)}.

In the Appendix→⇒ andQ will be proved to be well-defined and continuous (Proposition

A.2). It is possible to associate a Scott domain to any element ofTypes, in such a way that

X →⇒ Y andQ(F) will be the set of continuous maps fromX to Y , and of ”polymorphic maps

associated toF ” (the mapsf : Types→ Terms such thatf(X) ∈ F (X) for all X ∈ Types).

The Scott domain associated toX consists of all traces toX of elements ofTerms closed

under c̀o .

Definition 3.8. LetX ∈ Types.

||X ||=Def {aX | a ∈ Terms}.

The closure under̀co in ||X || is required in order to have extensionality of the interpretation

(on terms). Remark that the ”elements” of||X || are not the atoms ofX, but thesets of atoms of

X (coherent and closed underc̀o in X).

Proposition 3.9. For any X ∈ Types, (|| X ||,⊆,
⋃

) is a Scott domain, with{aX
0 | a0 ∈

Pfin
|co (X)} as the set of its compact elements.

Definition 3.10. LetF ∈ [Types→ Types]. We define

[
∏

T∈Types
||F (T) ||] =Def {f ∈ [Types→ Terms] | f(X) ∈||F (X) || for X ∈ Types}.

We consider the elements of[
∏

T∈Types ||F (T) ||] as ordered by pointwise inclusion.

It is now possible to prove that|| X →⇒ Y || and || Q(F) || are isomorphic, respectively, to

[|| X ||→|| Y ||] and [
∏

T∈Types || F (T) ||]. This means that we interpret our arrow and universally

quantified types with as rich a set of functions as possible. It will be routine to show that what

we have is indeed a model forλ2.

Proposition 3.11. LetX,Y ∈ Types andF ∈ [Types→ Types]. Then

(i) There exists an isomorphism pair((−)⇑, (−)⇓) such that

||X →⇒ Y ||' [||X ||→||Y ||].

(ii) There exists an isomorphism pair((−)⇑, (−)⇓) such that

||Q(F) ||' [
∏

T∈Types
||F (T) ||].

We can now define aλ2-applicative structure as follows. For simplicity sake we assume to

have one basic type “o” and no term constants.

– U = {Types, [Types→ Types],→⇒, Q, IC}
– DomX =||X || for X ∈ Types

– Appa,b = λλh ∈||a →⇒ b || .λλx ∈||a || .h⇑(x)
– Appf = λλk ∈||Q(f) || .λλx ∈ Types.k⇑(x)

– IC(o) = IN

It is easy to check that the one above is a well-defined, extensionalλ2-applicative structure.

Now we can show that what we have is indeed a Henkin Model.

Theorem 3.12 (Main Theorem).

Theλ2-applicative structure above defined is a Henkin Model.

Proof. We have to show that for every termΓ . M : σ and everyη |= Γ , there exists[[Γ . M :

σ]]η, as defined in Definition 2.2.

In order to do that we can prove a stronger statement by induction, namely that for everyx :

τ ∈ Γ andη |= Γ , the map

d ∈ [[τ]]η 7→ [[Γ . M : σ]]ηd
x

is a continuous function from[[τ]]η to [[σ]]η. By Proposition 3.11, our interpretations of the arrow

types and of the universally quantified types consist of all the continuous functions of the appro-

priate functionality. Then the inductive proof can be easily carried on almost in the same way

as the standard proof that the full continuous hierarchy is a model for the simply typed lambda

calculus (see [13] for a good presentation). Of course we first need to show that for every type

σ, [[σ]]η exists. This result can easily be achieved by showing that for every type variablet, the

map

X ∈ Types 7→ [[σ]]ηX
t

is a continuous function fromTypes to Types, and this can be done by means of a straightfor-

ward induction on the structure ofσ.

4 Comparison with a PER model

To conclude the paper we show some elementary properties of the Full model(including the

fact that it isnot parametric), and some examples of non-constant polymorphic maps. We shall

also state (without proving it) theβη-completeness property. Such property makes clear the

differences between our Full model and parametric models, for example Longo’sPER(P (ω)),

the Partial Equivalence Relation model over the lambda modelP (ω) [7]. We shall also briefly

discuss about the interpretation of integers in our model.

Proposition 4.1. (i) There is a continuous mapQ′ ∈ [Types → Types → Types] inverting

the quantifier mapQ, that is, such thatQ′(Q(F), X) = F (X).

(ii) There is a continuous mapP1,2 ∈ [Types→ Types×Types] inverting the arrow constructor

for non-empty domains, that is, such thatP1,2(→⇒ (X,Y)) = (X, Y) wheneverY is not

empty (it is associated to a non-empty set of atoms).

Proposition 4.2. The Full model is not parametric. In fact it does not satisfies the weaker ”ax-

iom C” of [11].

We shall recall the ”axiom C” in the proof of the above proposition in the Appendix.

Proposition 4.3. (i) There is a mapj : [Types → Types → Terms → Terms], such that

j(X,Y, x) = y ∈ Y wheneverx ∈ X, and j(X,X, x) = x (type recasting is the identity

whenX = Y).

(ii) If L0 is the set of integers, and the setsLi are pairwise disjoint, then there exists an element

test ∈ [Types → L0] which, given anyX ∈ Types, checks whetherX is a type of first

order functions, a type of polymorphic functions, or a subtype of someLi.

From a theoretical viewpoint, the most interesting (and unexpected) property of the Full

model is theβη-completeness.

Theorem 4.4. The Full model isβη-complete, that is the following hold

1. Two closed types denote the same element ofTypes if and only if they areα-convertible;

and

2. Two closed terms ofλ2 denote the same element ofTerms if and only if they areβη-

convertible.

We do not include the proof of the theorem in this paper: it may be found in [5]. We

will rather useβη-completeness to point out the difference between the Full model and the

PER(P (ω)) model ([7]), which is parametric.

Comparing the Full model and PER(P (ω)) . Let N = ∀α.(α → α) → (α → α) be

the version of Church integers defined withinλ2. There exist closed termsf, g : N → N

of λ2 which are non-convertible, yet equal in the modelPER(P (ω)). It is enough to takef, g

extensionally equal (f(n) =βη g(n) for all closed normaln : N), yet not convertible: sayf = Sl

(the left successor),g = Sr (the right successor)1. ThenSl, Sr are equal inPER(P (ω)), but

different (byβη-completeness) in the Full model. The reason is that, in the Full model,N is not

the ”right” interpretation of integers. Indeed, in the Full model,N = ∀α.(α → α) → (α → α)

consists of all polymorphic functionals sending a map overα into a map over the sameα. If we

have non- constant polymorphic maps, functionals inN are far more than just Church integers.

For some of such extra functionals,Sl, Sr : N → N will produce two different results. Thus

Sl, Sr are different in the Full model.
1 DefineSl = λn : N.λα.λf : (α → α).λx : α.n(α, f, f(x)) andSr = λn : N.λα.λf : (α → α).λx : α.f(n(α, f, x)).

We haveSl(n, α, f, x) = fn(f(x)) = f (1+n)(x), while Sl(n, α, f, x) = f(fn(x)) = f (n+1)(x). Sl andSr are exten-

sionally equal over terms representing integers. InPER(P (ω)) every element in the interpretation ofN is equal to some

integer, and the model is extensional. It follows thatSl, Sr are equal inPER(P (ω)).

Interpreting integers in the Full model. One may think that a “good” model ofλ2 should

equateSl, Sr, and, thefore, that our Full model is not a ”good” model. As a matter of fact also

the Full model does equateSl, Sr, but we need to choose the “right” interpretation of integers. In

the Full model, such “right” interpretation of integers is not the interpretation ofN , but the flat

domainL0 = {0, 1, 2, . . .}. Then we could add toλ2 some fresh constantsInt, 0, 1, +, ∗, . . .
denotingL0 and some primitive operations over it. In the Full model, we have (as expected)

extensional equality over terms of typeInt → Int, not justβη-convertibility. For instance,

take any mapsl, sr, corresponding to the left and right successor, but over the typeInt. We

could definesl = (λx : Int.1 + x), sr = (λx : Int.x + 1). sl, sr are equated in the Full

model (we can check that they have the same trace). In fact, the typeInt → Int is not in the

original λ2, thus theβη-completeness result does not apply to it. Completeness of Full model

only applies to “pure” typed lambda terms, not to lambda terms containg extra constants like

Int, +,

5 Conclusions

It has been known since the very beginning that types in a polymorphic lambda calculus may be

consistently interpreted as domain descriptions: say,id : ∀X.X → X means that for each set

or ”type” X, id(X) is, in the model, a map from the set or ”type”X to itself. This is the only

use of types in any model known up to now: a type input determines the type of the output, not

the output itself. Such restriction to polymorphic maps is known as parametricity.

In this paper, we have shown that also a different interpretation is possible: types may be

consistently intepreted as ”information-tags”, which are part of the term, and may be used in a

definition by cases of a map. Here is an example of a map looking to the type-tag of the input to

compute the output. Using the mapsQ′, P1,2, j andtest of proposition 4.1,4.3, we may define a

map

Newton: Real→ ∀X.(X → (Real + String))

”Newton” takes a realx, a typeX, an objectf : X, and returns the result of applying, if

possible (iff : Real → Real → . . . → Real) the result of Newton algorithm tox : Real

and tof . In the casef has not a type with the right shape, ”Newton” returns some string

complaining it. We may write down the map ”Newton” using (fixed point and) thetest map to

test the shape of the typeX, thenQ′,¶ to ”disassembly”X, in order to check ifX has the shape

Real→ Real→ . . . → Real.

We have thus shown that there exist a mathematical interpretation making sense of an use

of typing, which could not be described in a model with only parametric polymorphic maps.

A Appendix: Proofs

We begin this appendix with the proof that→⇒ and Q (Definition 3.7) are well-defined and

continuous. For such a proof we first need the following lemma.

Lemma A.1.

(i) h̀o and c̀o are reflexive and transitive.

(ii) (a c̀o) c̀o = a c̀o ; (a h̀o) h̀o = a h̀o

(iii) x ho y, x h̀o x′, y h̀o y′ ⇒ x′ ho y′.
(iv) x co y, x c̀o x′, y c̀o y′ ⇒ x′ co y′.
(v) If a ⊆ Consis homogeneus(coherent) thena h̀o (a c̀o) is homogeneus(coherent).

Proof. (i) Easy, by simultaneous induction on the definitions ofh̀o and c̀o .

(ii) Immediate by (i).

(iii) We proceed by induction on the proof ofx h̀o x′.

– Base cases.

Trivial, since, by definition of̀ ho and ho , it follows thatx ≡ x′ andy ≡ y′.
– Inductive case:x ≡ 〈c, z〉, x′ ≡ 〈c′, z′〉 with c′ h̀o c andz h̀o z′.

By definition of h̀o and ho we obtain thaty ≡ 〈d, t〉, y′ ≡ 〈d′, t′〉 with d′ h̀o d and

t h̀o t′, moreoverc ho d ⇒ z ho t. What we have to prove is〈c′, z′〉 ho 〈d′, t′〉, that is , by

definition of ho , c′ ho d′ ⇒ z′ ho t′. Let us assumec′ ho d′ in order to showz′ ho t′. Since

c′ h̀o c andd′ h̀o d, for any u ∈ c and v ∈ d there existu′ ∈ c′ and v′ ∈ d′ such

thatu′ h̀o u andv′ h̀o v. Moreover,u′ ho v′ becausec′ ho d′. Then it is possible to apply

the induction hypothesis onu′ ho v′, u′ h̀o u andv′ h̀o v, obtainingu ho v for for any

u ∈ c andv ∈ d. This means thatc ho d. From c ho d we can now obtainz ho t by using

our hypothesisc ho d ⇒ z ho t. By recalling thatz h̀o z′ andt h̀o t′, we can apply the

induction hypothesis onz ho t, z h̀o z′ andt h̀o t′, obtainingz′ ho t′.

(iv) We proceed by induction on the proof ofx cox′.

– Base case.

Trivial, since, by definition of̀ co and co , x′ ≡ x ≡ y ≡ y′.
– First inductive case:x ≡ (c, z), x′ ≡ (c′, z′), with c co c′ andz co z′.

We can proceed as done in the induction case of the proof of (ii). It is enough to exchange

the role of() and〈〉, and of h̀o and c̀o .

– Second inductive case:x ≡ 〈c, z〉, x ≡ 〈c′, z′〉, with c′ h̀o c andz c̀o z′.

By definition of c̀o and co it necessarily follows thaty ≡ 〈d, t〉, y′ ≡ 〈d′, t′〉 with c′ h̀o c,

d′ h̀o d, z c̀o z′ and t c̀o t′, moreoverc ho d ⇒ z co t. What we have to prove is

〈c′, z′〉 co 〈d′, t′〉, that is , by definition ofco , c′ ho d′ ⇒ z′ co t′. Let us assumec′ ho d′ in

order to derivez′ co t′. By (ii) it is possible to inferc ho d. Since we know thatc co d ⇒
z co t, we can infer alsoz co t. By applying the induction hypothesis onz co t, z c̀o z′ and

t c̀o t′, we obtainz′ co t′.

(v) Easy by (ii) and (iii).

Proposition A.2.

(i) →⇒ andQ are well-defined.

(ii) →⇒ andQ are continuous.

Proof. (i)(→⇒). We have to show thatX →⇒ Y ⊆ Consand thatX →⇒ Y is homogeneous and

closed w.r.t̀ ho . Let (a, y), (a′, y′) ∈ X →⇒ Y . SinceX ∈ Types, X is homogeneous. Then also

a anda′ are homogeneous, being subsets of an homogeneous set. Sincea anda′ are coherent

as well andy, y′ ∈ Cons, by definition ofConsit follows that(a, y), (a′, y′) ∈ Cons. Moreover,

(a, y) ho (a′, y′) becausea ho a′ andy ho y′ (a anda′ are subsets of an homogeneous set, and

y andy′ are elements of an homogeneous set.) Sinceh̀o restricted toX →⇒ Y is the identity

relation, it follows immediately thatX →⇒ Y is closed w.r.t.̀ ho .

(i)(Q). We have to show thatQ(F) ⊆ Consand thatQ(F) is homogeneous and closed forh̀o .

Let 〈a, y〉, 〈a′, y′〉 ∈ Q(F). Q(F) ⊆ Consby definition. In order to prove that〈a, y〉 ho 〈a′, y′〉,
let assumea ho a′. By Remark 3.3,a ∪ a′ is homogeneous. From the monotonicity ofF (F

being continuous) we infer thaty, y′ ∈ F ((a ∪ a′) h̀o), and hencey ho y′. this means that

a ho a′ ⇒ y ho y′, that is, by definition ofho , 〈a, y〉 ho 〈a′, y′〉. To show the closure ofQ(F)

with respect tò ho , let us assume〈a, y〉 ∈ Q(F) and〈a, y〉 h̀o 〈a′, y′〉, that isa′ h̀o a and

y h̀o y′. By definition,y ∈ F (a h̀o). Now, sincea h̀o ⊆ a′ h̀o andF is monotone, we have

alsoy ∈ F (a′ h̀o). But F (a′ h̀o) is in Types, hence closed w.r.t̀ho , and theny′ ∈ F (a′ h̀o). We

obtain what we wished, that is〈a′, y′〉 ∈ Q(F), by noticing that, by Lemma A.1(iii),a h̀o a′

implies thata′ is homogeneous, beinga homogeneous.

(ii)(→⇒)→⇒ is trivially monotone. LetX =
⋃

i∈I Xi where{Xi}i∈I is directed. ThenX →⇒ Y =

{(a, y) | a ∈ P|co (
⋃

i∈I Xi), a finite , y ∈ Y }. If a is finite, the fact that the l.u.b. of two elements

of {Xi}i∈I is their union (which is still in{Xi}i∈I) implies that froma ∈ P|co (
⋃

i∈I Xi) we can

infer that there existsk ∈ I such thata ∈ P|co (Xk). Hence(
⋃

i∈I Xi) →⇒ Y = {(a, y) | a ∈
P|co (

⋃

i∈I Xi), a finite , y ∈ Y } =
⋃

i∈I{(a, y) | a ∈ P|co (Xi), a finite , y ∈ Y } =
⋃

i∈I(Xi →⇒
Y).

Let nowY =
⋃

i∈I Yi where{Yi}i∈I is directed. It is immediate to check thatX →⇒ ⋃

i∈I Yi =
⋃

i∈I(X →⇒ Yi).

(ii)(Q) Q is trivially monotone. LetF =
⊔

i∈I Fi where{Fi}i∈I is directed in[Types→ Types].

Q(
⊔

i∈I Fi) = {〈a, y〉 | a ∈ P|ho (Cons), a finite , y ∈ (
⊔

i∈I Fi)(a h̀o)} = {〈a, y〉 | a ∈
P|ho (Cons), a finite , y ∈ ⋃

i∈I(Fi(a h̀o))} =
⋃

i∈I{〈a, y〉 | a ∈ P|ho (Cons), a finite , y ∈ Fi(a h̀o)} =
⋃

i∈I Q(Fi).

We provide now the proofs that(Types,⊆,
⋃

), (Terms,⊆,
⋃

) and (|| X ||,⊆,
⋃

) are Scott

domains.

Proof of Proposition 3.6 We only consider the case ofTypes, the case ofTerms being similar.

Let⊥Types = ∅(≡ ∅ h̀o). Let{Yi}i∈I be a directed subset ofTypes. If two elements ofTypes

have a common upper bound then they are homogeneous with each other. This, togheter with the

fact that the union of sets closed w.r.t.h̀o is still closed w.r.t.̀ ho , implies that
⋃

i∈I Yi ∈ Types.

It is immediate to see that
⋃

i∈I Yi is the least upper bound of{Yi}i∈I . Hence(Types,⊆,
⋃

) is

complete.

By definition ofTypes, givenY ∈ Types, a h̀o
0 ⊆ Y for anya0 which is a finite subset ofY .

Therefore, given a directed{Yi}i∈I and a finite homogeneous subseta0 of Y =
⋃

i∈I Yi, there

exists a finite set of indexesJ ⊆ I such thata h̀o
0 ⊆ ⋃

j∈J Yj. Now, since
⋃

j∈J Yj ∈ {Yi}i∈I , the

set of the compact elements ofTypes is {a h̀o
0 | a0 ∈ Pfin

|ho (Cons)}.
Now it is easy to check thatTypes is algebraic and bounded complete.

Proof of Proposition 3.9 ⊥||X|| = ∅(≡ ∅X). Let {ai}i∈I be a directed subset of|| X ||. If two

elements of|| X || have a common upper bound then they are coherent with each other. This,

togheter with the fact that the union of sets closed w.r.t. the restriction ofh̀o to X is still closed

w.r.t. the restriction of̀ ho to X, implies that
⋃

i∈I ai ∈||X ||. It is immediate to see that
⋃

i∈I ai is

the least upper bound of{ai}i∈I . Hence(||X ||,⊆,
⋃

) is complete.

By definition of||X ||, givena ∈||X ||, aX
0 ⊆ a for anya0 which is a finite subset ofa. Therefore,

given a directed set{ai}i∈I and a finite coherent subseta0 of X, with a0 ⊆ a =
⋃

i∈I ai, there

exists a finite set of indexesJ ⊆ I such thata h̀o
0 ⊆ ⋃

j∈J aj. Now, since
⋃

j∈J aj ∈ {ai}i∈I , the

set of the compact elements of||X || is {aX
0 | a0 ∈ Pfin

|co (X)}.
Now it is easy to check that||X || is algebraic and bounded complete.

Proof of Proposition 3.11 Let us start proving Item (i) of Proposition 3.11.

In order to show that||X →⇒ Y ||' [||X ||→||Y ||] we define two functions,(−)⇓ and(−)⇑. We then

will show that they are well-defined and that form an isomorphism pair.

Definition A.3. LetX,Y ∈ Types.

(i) We define(−)⇓ : [||X ||→||Y ||] →||X →⇒ Y || as follows:

Letf ∈ [||X ||→||Y ||]

f⇓ =Def {(a, y) | a ∈ Pfin
|co (X), y ∈ f(aX)}.

(ii) We define(−)⇑ :||X →⇒ Y ||→ [||X ||→||Y ||] as follows:

LetA ∈||X →⇒ Y ||, a ∈||X ||

A⇑(a) =Def {y | (a0, y) ∈ A, a0 ⊆ a, a0finite}

Proposition A.4. (−)⇓ and(−)⇑ are well-defined.

Proof. Let us begin with(−)⇓.

– f⇓ is a coherent subset ofX →⇒ Y .

Let (a, y), (a′, y′) ∈ f⇓. By definition of co , we have to prove thata co a′ ⇒ y co y′. Let

us assumea co a′. It is immediate to see thata ∪ a′ is a finite coherent subset ofX and that

aX , (a′)X ⊆ (a ∪ a′)X . By definition off⇓, y ∈ f(aX) andy′ ∈ f((a′)X) and hence, by

monotonicity off (f being continuous),y, y′ ∈ f((a ∪ a′)X) ∈||Y ||. Thus, by definition of

||−|| we obtainy co y′.

– f⇓ is closed with respect to the restriction ofc̀o to X →⇒ Y .

Let (a, y) ∈ f⇓, (a′, y′) ∈ X →⇒ Y and(a, y) c̀o (a′, y′). By definition ofX →⇒ Y we

have thata′ ∈ Pfin
|co (X), then, in order to show that(a′, y′) ∈ f⇓, we need to show that

y′ ∈ f((a′)X). To prove this fact, let us notice that, from(a, y) c̀o (a′, y′) it follows that

a′ c̀o a. This means thataX ⊆ (a′)X . By the definition off⇓, we havey ∈ f(aX). Then,

by the monotonicity off , y ∈ f((a′)X). We can now infery′ ∈ f((a′)X) from the fact that

f((a′)X) ∈||Y ||. In fact ||Y || is closed with respect to the restriction ofc̀o to Y by definition,

and from(a, y) c̀o (a′, y′) it follows y c̀o y′.

Now, let us proceed with(−)⇑.

– A⇑ maps||X || into ||Y ||
It is enough to show, fora ∈||X ||, A⇑(a) to be a coherent subset ofY closed with respect to

the restriction of̀ co to Y . A⇑(a) ⊆ Y is immediate by definition. To show the coherence of

A⇑(a), let y, y′ ∈ A⇑(a). By definition, there exist(a0, y), (a′0, y
′) ∈ A such thata0, a′0 ⊆ a.

It then followsa0 co a′0 because, by definition of|| - ||, a is coherent. It is now possible to

infer y co y′ from the definition ofco since(a0, y) co (a′0, y
′). In order to show the closure

of A⇑(a) with respect to the restriction of̀co to Y , let us assumey ∈ A⇑(a), y′ ∈ Y and

y c̀o y′. By definition there exists(a0, y) ∈ A. Sincea0 c̀o a0, from y c̀o y′ we can

infer (a0, y) c̀o (a0, y′). This means that(a0, y′) ∈ A, sinceA is closed with respect to the

restriction of c̀o to X →⇒ Y , and(a0, y′) ∈ X →⇒ Y . Theny′ ∈ A⇑(a) by definition of

A⇑(a).

– A⇑ is continuous.

It is straightforward to check thatA⇑ is monotone. Let{ai}i∈I be a directed set in|| X ||
anda =

⋃

i∈I ai.
⋃

i∈I A⇑(ai) ⊆ A⇑(a) by monotonicity. To prove the inverse relation, let

y ∈ A⇑(a). This means that there exists(a0, y) ∈ A with a0 ⊆ a. Then there existsk ∈ I

such thata0 ⊆ (a0)X ⊆ ak ⊆ a, becausea =
⋃

i∈I ai and(a0)X is a compact element of

||X ||. This means, by definition ofA⇑, thaty ∈ A⇑(ak) and hencey ∈ ⋃

i∈I A⇑(ai).

Now we have to show that(−)⇓ and(−)⇑ form an isomorphism pair. In order to do that we

need a couple of technical lemmas.

By definition of Scott domain it is straightforward to check the following property.

Proposition A.5. Let D1 andD2 be two Scott domains such that the elements ofD2 are sets

with the set theoretical union as l.u.b. operator. Then, givenf ∈ [D1 → D2], d ∈ D1 and

y ∈ f(d), there exists a compact elementd0 such thatd0 v d andy ∈ f(d0).

Corollary A.6.

(i) Letf ∈ [||X ||→||Y ||], a ∈||X || andy ∈ f(a). Then there existsa0 finite such thata0 ⊆ a and

y ∈ f(aX
0).

(ii) LetF ∈ [Types → Types], f ∈ [
∏

T∈Types ||F (T) ||], Y ∈ Types andy ∈ f(Y). Then there

existsa0 finite such thata0 ⊆ Y andy ∈ f(a h̀o
0).

(iii) LetF ∈ [Types→ Types], Y ∈ Types andy ∈ F (Y). Then there existsa0 finite such that

a0 ⊆ Y andy ∈ F (a h̀o
0).

Lemma A.7. (i) LetA ∈||X →⇒ Y || anda ∈ Pfin
|co (X).

Then((a0, y) ∈ A, a0 ⊆ aX) ⇒ (a, y) ∈ A.

(ii) LetA ∈||Q(F) || anda ∈ Pfin
|ho (Cons).

Then (〈a0, y〉 ∈ A, a0 ⊆ a h̀o) ⇒ 〈a, y〉 ∈ A.

Proof. (i) SinceaX is closed with respect to the restriction ofc̀o to X, we have thata0 ⊆ aX

implies a c̀o a0. Then, by definition of̀ co , (a0, y) c̀o (a, y). This means that(a, y) ∈ A,

sinceA is closed with respect to the restriction ofc̀o to X →⇒ Y .

and hence, by definition of Scott domain, there existsa0 finite, (ii) Sincea h̀o is closed with re-

spect̀ ho , we have thata0 ⊆ a h̀o impliesa h̀o a0. Then, by definition of̀ co , 〈a0, y〉 c̀o 〈a, y〉.
This means that〈a, y〉 ∈ A, sinceA is closed with respect to the restriction ofc̀o to Q(F).

Proposition A.8.

(i) ((−)⇓)⇑ = Id[||X||→||Y||].

(ii) ((−)⇑)⇓ = Id||X→⇒Y||.

(iii) Letf, g ∈ [||X ||→||Y ||]. f v g ⇔ f⇓ v g⇓.

Proof. (i) Let f ∈ [||X ||→||Y ||] anda ∈||X ||.
(f⇓)⇑(a) =

{y | (a0, y) ∈ {(b, x) | b ∈ Pfin
|co (X), x ∈ f(bX)}, a0 ⊆ a} =

{y | y ∈ f(aX
0), a0 ⊆ a, a0 finite} = f(a) By Corollary A.6(i)

(ii) Let A ∈||X →⇒ Y ||.
(A⇑)⇓ =

{(a, y) | a ∈ Pfin
|co (X), y ∈ {y′ | (a′0, y′) ∈ A, a′0 ⊆ aX}} =

{(a, y) | a ∈ Pfin
|co (X), a′0 ⊆ aX , (a′0, y) ∈ A} = A By Lemma A.7(i)

(iii)(⇒) In order to showf⇓ ⊆ g⇓, let (a, y) such thata ∈ Pfin
|co (X) andy ∈ f(aX). Sincef v g,

we have thatf(aX) ⊆ g(aX) and hencey ∈ g(aX), that is(a, y) ∈ g⇓.

(⇐) Towards a contradiction, let us assumef 6v g. This means that there exista ∈|| X || and

y ∈ f(a) such thaty 6∈ g(a). By Corollary A.6(i), there existsa0 ⊆ a finite such that(a0, y) ∈
f⇓.By the assumptionf⇓ ⊆ g⇓, (a0, y) ∈ g⇓, and hencey ∈ g(aX

0). By monotonicity,y ∈ g(a),

contradiction.

Corollary A.9 (Proposition 3.11(i)).

||X →⇒ Y ||' [||X ||→||Y ||].

We can now pass to the proof of Item (ii) of Proposition 3.11 that is of the fact that||Q(F) |
|' [

∏

T∈Types ||F (T) ||].
Let us start by defining two functions,(−)⇓ and(−)⇑. Then we shall see that they are well-

defined and that indeed they form an isomorphism pair.

Definition A.10. (i) We define(−)⇓ : [
∏

T∈Types ||F (T) ||] →||Q(F) || as follows:

Letf ∈ [
∏

T∈Types ||F (T) ||]

f⇓ =Def {〈a, y〉 | a ∈ Pfin
|ho (Cons), y ∈ f(a h̀o)}.

(ii) We define(−)⇑ : ||Q(F) ||→ [
∏

T∈Types ||F (T) ||] as follows:

LetA ∈||Q(F) ||, Y ∈ Types

A⇑(Y) =Def {y | 〈a0, y〉 ∈ A, a0 finite , a0 ⊆ Y }.

Proposition A.11. (−)⇓ and(−)⇑ are well defined.

Proof. Let us begin with(−)⇓.

– f⇓ is coherent.

Let 〈a, y〉, 〈a′, y′〉 ∈ f⇓. We need to show thata ho a′ ⇒ y co y′. Let us assumea ho a′.

Thena ∪ a′ ∈ Pfin
|ho (Cons). Moreover,a h̀o , (a′) h̀o ⊆ (a ∪ a′) h̀o . By monotonicity, from

y ∈ f(a h̀o) andy ∈ f((a′) h̀o) we can infery, y′ ∈ f((a ∪ a′) h̀o). We obtainy co y′ by

definition of||−||, sincef((a ∪ a′) h̀o) ∈||F ((a ∪ a′) h̀o) ||.
– f⇓ is closed w.r.t. the restriction of̀co to Q(F).

Let 〈a, y〉 ∈ f⇓, 〈a, y〉 c̀o 〈a′, y′〉 with 〈a′, y′〉 ∈ Q(F). By definition of c̀o , a′ h̀o

a. Hencea h̀o ⊆ (a′) h̀o . By monotonicity and the fact thaty ∈ f(a h̀o), we obtainy ∈
f((a′) h̀o), that is〈a′, y′〉 ∈ f⇓.

Now, let us proceed with(−)⇑.

– A⇑(Y) is a coherent subset ofF (Y).

• A⇑(Y) ⊆ F (Y).

Let y ∈ A⇑(Y). This means that for a certaina0 finite,a0 ⊆ Y and〈a0, y〉 ∈ A ⊆ Q(F).

By definition ofQ we havea0 ∈ Pfin
|ho (Cons) andy ∈ F ((a0) h̀o). y ∈ F (Y) is now a

consequence of the monotonicity ofF , becausea0 ⊆ Y implies (a0) h̀o ⊆ F (Y h̀o) =

F (Y).

• A⇑(Y) is coherent.

Let y, y′ ∈ A⇑(Y). Then there exista0, a′0 ⊆ Y finite such that〈a0, y〉, 〈a′0, y′〉 ∈ A.

Since A is coherent,〈a0, y〉 co 〈a′0, y′〉 and hence, by definition ofco , a0 ho a′0 ⇒
y co y′. Is in now possible to infery co y′ since, beinga0 anda′0 subsets of an homo-

geneous set,a0 ho a′0.

– A⇑(Y) is closed with respect to the restriction ofc̀o to F (Y).

Let y ∈ A⇑(Y), y′ ∈ F (Y) andy c̀o y′. By definition there existsa0 ⊆ Y finite such

that 〈a0, y〉 ∈ A. By Corollary A.6(iii) y′ ∈ F (Y) implies that there existsa′0 ⊆ Y finite

such thaty′ ∈ F ((a′0) h̀o). By monotonicity we gety′ ∈ F ((a0 ∪ a′0) h̀o). This means that

〈a0 ∪ a′0, y
′〉 ∈ Q(F). Now, by definition of̀ ho , a0 ∪ a′0 h̀o a0. Then, sincey c̀o y′, we get

〈a0, y〉 c̀o 〈a0 ∪ a′0, y
′〉 by definition of c̀o . SinceA is closed with respect to the restriction

of c̀o to Q(F), we obtain that〈a0 ∪ a′0, y
′〉 ∈ A and, by definition ofA⇑(Y), y′ ∈ A⇑(Y).

– A⇑ is continuous.

It is straightforward to check thatA⇑ is monotone.

Let {Yi}i∈I be a directed set inTypes andY =
⋃

i∈I Yi.
⋃

i∈I A⇑(Yi) ⊆ A⇑(Y) by mono-

tonicity. To prove the inverse relation, lety ∈ A⇑(Y). This means that there exists〈a0, y〉 ∈
A with a0 ⊆ Y . Then there existsk ∈ I such thata0 ⊆ (a0)Q(F) ⊆ Yk ⊆ Y , since

Y =
⋃

i∈I Yi and(a0)Q(F) is a compact element of||Q(F) ||. This means, by definition ofA⇑,

thaty ∈ A⇑(Yk) and hencey ∈ ⋃

i∈I A⇑(Yi).

Proposition A.12.

(i) ((−)⇓)⇑ = Id[
∏

T∈Types||F (T)||].

(ii) ((−)⇑)⇓ = Id||Q(F)||.

(iii) Letf, g ∈ [
∏

T∈Types ||F (T) ||]. f v g ⇔ f⇓ v g⇓.

Proof. (i) Let f ∈ [
∏

T∈Types ||F (T) ||] andY ∈ Types.

(f⇓)⇑(Y) =

{y | 〈a0, y〉 ∈ {〈b, x〉 | b ∈ Pfin
|ho (Cons), x ∈ f(b h̀o)}, a0 ⊆ Y } =

{y | y ∈ f((a0) h̀o), a0 finite , a0 ⊆ Y } = f(Y) By Corollary A.6(ii)

(ii) Let A ∈||Q(F) ||.
(A⇑)⇓ =

{〈a, y〉 | a ∈ Pfin
|ho (Cons), y ∈ {y′ | 〈a′0, y′〉 ∈ A, a′0 ⊆ a h̀o }} =

{〈a, y〉 | a ∈ Pfin
|ho (Cons), 〈a′0, y〉 ∈ A, a′0 ⊆ a h̀o } = A By Lemma A.7(ii) =

(iii) (⇒) In order to showf⇓ v g⇓, let 〈a, y〉 be such thata ∈ Pfin
|ho (Cons) andy ∈ f(a h̀o).

Sincef v g, we have thatf(a h̀o) ⊆ g(a h̀o) and hencey ∈ g(a h̀o), that is〈a, y〉 ∈ g⇓.

(⇐) Toward a contradiction, let us assumef 6v g. This means that there existY ∈ Types

andy ∈ f(Y) such thaty 6∈ g(Y). By Corollary A.6(ii), there existsa0 ⊆ Y finite such that

〈a0, y〉 ∈ f⇓. By the assumptionf⇓ v g⇓, 〈a0, y〉 ∈ g⇓, and hencey ∈ g(a h̀o
0). It follows that,

by monotonicity,y ∈ g(Y), contradiction.

Corollary A.13 (Proposition 3.11(ii)).

||Q(F) ||' [
∏

T∈Types
||F (T) ||].

We can now pass to the proofs of the properties of our model stated in the Conclusions

section.

Proof of Proposition 4.1 (i) Let X, Y ∈ Types. We define

Q′(X)(Y) =Def {y | ∃d ⊆ Y s.t. 〈d, y〉 ∈ X}.

Let us first show thatQ′ is well defined.

– Q′(X)(Y) is homogeneous.

Let y, y′ ∈ Q′(X)(Y). By definition there existsd, d′ ⊆ Y such that〈d, y〉, 〈d′, y′〉 ∈
X. By the homogeneity ofY we infer d ho d′, whereas the homogeneity ofX implies

〈d, y〉 ho 〈d′, y′〉. Then, by definition ofho , d ho d′ ⇒ y ho y′, and hence we can derive

y ho y′.

– Q′(X)(Y) is closed with respect tòho .

Let y ∈ Q′(X)(Y) with y h̀o y′. By definition, there existsd ⊆ Y such that〈d, y〉 ∈ X. by

definition of ho we have that〈d, y〉 h̀o 〈d, y′〉. SinceX is closed with respect tòho , we

have also that〈d, y′〉 ∈ X, and hencey′ ∈ Q′(X)(Y) by definition ofQ′.

It is easy to check thatQ′ is continuous.

We can now prove(Q, Q′) to be a retraction pair for[Types→ Types] / Types.

Let F ∈ [Types→ Types]. By definition ofQ′ andQ we have

Q′(Q(F))(Y) =

{y | ∃d ⊆ Y s.t. 〈d, y〉 ∈ {〈a, y′〉 | a ∈ Pfin
|ho (Cons), y′ ∈ F (a h̀o)}} =

{y | ∃d ⊆ Y s.t. d finite, y ∈ F (d h̀o)} = F (Y) By Corollary A.6(iii)

(ii) Let X ∈ Types. We define

P1,2 =Def (P1(X), P2(X))

where

P1(X) =Def
⋃

{a | ∃x. (a, x) ∈ X} h̀o ,

P2(X) =Def {x | ∃a. (a, x) ∈ X} h̀o .

Let us first prove thatP1(X), P2(X) ∈ Types. P1(X), P2(X) ⊆ Conssince(a, x) ∈ X im-

pliesa ⊆ Consandx ∈ Cons. P1(X) andP2(X) are homogeneous becauseX is so. In fact

(a, x), (a′, x′) ∈ X impliesa ho a′ andx ho x′. The closure ofP1(X) andP2(X) with respect

to h̀o is trivial by definition.

Let us now show thatP1,2◦ →⇒= IdTypes×Types. Indeed, using the remark that{d} ∈ P|co (X)

for any d ∈ X, and the fact thatX andY are closed with respect tòho , P1,2(X →⇒ Y) ≡
P1,2({(a, y) | a ∈ Pfin

|co (X), y ∈ Y }) ≡ (X h̀o , Y h̀o ≡ (X, Y).

To complete the proof let us proveP1,2 to be continuous.P1,2 is trivially monotone. Let{Xi}i∈I

be directed. We have that(x, y) ∈ P1,2(
⋃

i∈I Xi) if and only if there existx′, y′ such that

x′ h̀o x, y′ h̀o y and(a, x′), (b, y′) ∈ Xi with x′ ∈ a for somea, b andi. This means that

(x, y) ∈ P1,2(
⋃

i∈I Xi) if and only if (x, y) ∈ P1,2(Xi) for somei, that isP1,2(
⋃

i∈I Xi) =
⋃

i∈I P1,2(Xi).

We give now the proof of the fact that our model does not satisfy the ”axiom C”.

Proof of Proposition 4.2 Axiom C is a (very) particular case of parametricity. It says: all

polymorphic maps in types∀αA, with α not free inA, are constant inα. It may be expressed

by saying: ift, u : ∀αA, with α not free inA, thent(B) =C u(B), for any typeB.

Let nowA = ∀α, β, γ.((∀δ.γ) → γ) andt, u : A defined byt = λα, β, γ.λy : (∀δ.γ).y(α)

andu = λα, β, γ.λy : (∀δ.γ).y(β)

t, u are equal if we assume axiom C. Indeed, ify : ∀δ.γ, then δ is not free inγ.Thus,

y(α) =C y(β). Now abstract overy : ∀δ.γ, then abstract overα, β, γ. Eventually, we get

t =C u : A.

Still, t, u are different in our model. This is a consequence ofβη-completeness, and of the

fact thatt, u are notβη- convertible. Alternatively, we may checkt 6= u directly, by finding

someα, β, γ ∈ Types, and somey : (∀δ.γ) in the model, such thatt(α, β, γ, y) 6= u(α, β, γ, y),

that is,y(α) 6= y(β). Take, for instance,α = ∅, β = {0}, γ = {0}, y = {〈{0}, 0〉}, then check

thaty(α) = ∅, y(β) = {0}.

Proof of Proposition 4.3 (i) Let X, Y ∈ Types anda ∈||X ||. We define

j(X,Y)(a) =Def aY .

By definition ofaY it is easy to check thataY is an element ofY and thatj(X, Y) is continuous.

(ii) Let li ∈ Li be a choice of elements, one for eachLi. By assumption, the setsLi are pair-

wise disjoint. By definition of homogeneity overLi, it follows that the elementsli are pairwise

non-homogeneous.

Let nowX ∈ Types. We define

test(X) =Def































{0} if (a, x) ∈ X for somea andx;

{1} if 〈a, x〉 ∈ X for somea andx;

{i + 2} if li ∈ X for someli ∈ L;

{} otherwise

test is well-defined. Indeed, by the homogeneity ofX, the fact thatli, (a, x), 〈a, x〉 are by def-

inition non-homogeneous, the three first conditions are pairwise incompatible. The indexi in

the third condition is uniquely given, because the elementli are pairwise incompatible.test is

continuous becauseL0 is a flat domain andtest is monotone.

References

1. AMADIO R., BRUCE K.B., LONGO G. (1986) The Finitary Projection Model for Second-order Lambda-calculus, In

Logic in Computer Science, IEEE Computer Society Press, 122–130.

2. BARENDREGT H., Theλ-calculus, its syntax and semantics, Studies in Logic vol.103, North-Holland, revised edition

1984.

3. BERARDI S., Retractions on dI-Domains as a Model for Type:Type, Information and Computation 94, p.204-231, 1991.

4. BERARDI S., Ch. Berline, Building continuous webbed models for SystemF. To appear on: proceedings of MFPS 14.

5. BERARDI S., BERLINE C., β-η complete models for systemF . Tech.report Dip. di Informatica, Universitá di

Torino,1998.

6. BERLINE C., Rétractions et Interpretation Interne du Polymorphisme : le Problème de la Ŕetraction Universelle, Infor-

matique th́eorique et Applications/Theoretical Informatics and Applications vol.26, n◦1, p.59-91, 1992.

7. BRUCE K.B., MEYER A.R., MITCHELL J.C. (1990) The Semantics of Second-Order Lambda Calculus,Information

and Computation85, 76-134.

8. COQUAND T., A. GUNTER C.A., AND WINSKEL G. (1989) Domain Theoretic models of Polymorphism,Information

and Computation, vol. 81 (1989), 123–167.

9. GIRARD J.Y. (1972) Interprétation Fonctionelle et́Elimination des Coupures de l’Arithḿetique d’Ordre Superiéur,

Thése d’Etat, University of Paris VII.

10. GIRARD J.Y. (1986) The system F of variable types, fifteen years later,Theoretical Computer Science, vol.45, 159–192.

11. LONGO G., MILSTED K., SOLOVIEV S., The Genericity Theorem and effective Parametricity in Polymorphic lambda-

calculus.Theoretical Computer Science, 121:323–349, 1993.

12. MCCRACKEN N. A Finitary Retract Model for the Polymorphic Lambda-calculus, unpublished, 1984.

13. M ITCHELL J.C.Foundations for Programming Languages, The MIT Press, 1996.

14. PITTS A., Polymorphism is set-theoretic, constructively, InCategory Theory and Computer Science, LNCS 283,

Spinger-Verlag, 1987.

15. REYNOLDS J.C. Towards a theory of type structure, InParis Programming symposium, LNCS 19, Springer-Verlag,

157–168, 1974.

16. REYNOLDS J.C.Polymorphism is not set-theoretic, InSemantics of Data Types, LNCS 173, Spinger-Verlag, 145–156,

1984.

