A Full Continuous Model of Polymorphism

Franco Barbanetand Stefano Berardi

! Dipartimento di Matematica e Informatica, Univesitegli Studi di Catania,
Viale A. Doria 6, 95125 Catania (ltalyparba@dmi.unict.it
2 Dipartimento di Informatica, Universitdegli studi di Torino,
Corso Svizzera 185, 10149 Torino (ltaly)stefano@di.unito.it

Abstract. We introduce a model of the second-order lambda calculus. Such a model is a Scott domain whose
elements are themselves Scott domains, and in it polymorphic maps are interpreted by generic continous maps.

Keywords:Second-order lambda calculus, model, Scott domain, non-parametric.

1 Introduction

In this paper we define the Full model, a model of the second-order lambda calgylus (he
Full model, polymorphic maps are interpreteddgnericcontinuous maps, that is, maps really
depending on input types.

Some readers might argue that the interesting models of systane the parametric ones,
where only constant or "almost” constant polymorphic maps are considered. These models have
been often used in the literature for many different purposes, but would not be of help for the
implicit goal of the present paper, that is to provide a semantic basis for extensions of system
A2 wWhere one can define computations really depending on the "type tag” of their input.

It is not difficult to imagine programming languages where both functional and imperative
features are present, and where it could be possible, and useful, to define polymorphic compu-
tations really depending on the "type tag” of their input.

Suppose, for instance, to have an extension.otontaining the traditional atomic types
Int,Char, Bool, Real, added to improve efficiency. We could have also the following primi-
tive polymorphic commandloString : Va.(a — String), taking any typer, anya : «,
and "printing” it (returning a string out of it). Typically, this map would be defined by case,
calling a specific printing procedure fant, another one fo€har, Bool,Real, ..., and print-
ing a warning message whenever one tries to print an element of a functiorrogeing
is anessentially non-constarfhence non-parametric) polymorphic map; the same is true for
polymorphic order tests, polymorphic sorting maps, and so on. More involved examples would
arise if we mixed classes from object-oriented languages with second order lambda calculus.
Indeed, in object oriented languages, the application of a function to an argument may produce
different results according to the type of the input.

The intuition underlying the Full model . As a matter of fact our non-parametric modehgf
is not the first model in the literature which allows to model polymorphic maps really depending
on input types [1], [3], [6], [8]. However, we claim our Full model has a simpler definition.

The Full model consists of two Scott domaingpes and Terms. Types represents the
types of)\,, andTerms the terms of\,. EachX € Types (each "type”) is itself a Scott domain,
and a subdomain dferms. The elements € X will in turn interpret terms of\, having type
X. Both terms and types are obtained as "consistent” sets of atoms. We have two notions of
"consistency” on atoms, one used to build terms, which we call "coherence”, and another one
used to build types, which we call lTnomogeneity”. Two atoms are coherent if they may be two
pieces of the same datum; they are homogeneous if they are pieces of data having the same type.
Say, the atom8 and1 are not coherent, because no integer datum can be, at the same time, both
0 and1. On the other hand) and1 are homogeneous, because they are both data ofifitpe

The model is obtained using an Engeler model construction twice, once to define the Scott
domainTypes, the other to define the Scott domdierms. Some extra conditions are needed
in order for terms and types to match within the model. Interpretation of second order features
of Ay then works as one would expect. Type constructora.oére interpreted as continous
mapsF : Types — Types. "Polymorphic maps” associated to such Erare interpreted as
continuous map$: Types — Terms such thatf(«) € F(«) for all & € Types. Quantification
over F' is interpreted by a typéa. F/(«) € Types, whose elements are exaclf polymorphic
maps associated ®.

Our Full model includes, as we shall see through examples in section 4, non-constant maps
defined by cases over types. Again by an example, we shall show that it does not satisfy axiom
C (a weaker form of parametricity). Hence the Full model is provably not parametric.

Beta-Eta completenessThe Full model has also an unexpected and nice theoretical feature:
it equates two terms ok, if and only if such terms argn-convertible. In other words, the
Full model is fn-complete. The proof generalizes Friedmamcompleteness proof of set-
theoretical model of first order lambda calculus and may be found in [5].

The paper is organised as follows. In Section 2 we recall the definition of the second-order
polymorphic lambda-calculus and of what is a model for it. Section 3 is devoted to the costruc-
tion of our Full model. In the conclusion (Section 4) we present and discuss some relevant
features of the Full model.

All the proofs of the paper, but the proof of the correctness of the Full model, will be given
in the Appendix A.

2 The calculus and its models

In this section, mostly in order to fix the notation, we quickly recall the definition of the second-
order polymorphic lambda-calculus.) and of what is a model for it.

Thetypesof)\, are formed according to the following grammar
o:=Clt|o—o|Vto

whereC ranges over a set diype Constantandt ranges over a set dlype Variables
Theterms of)\, are formed according to the following grammar

M:=c|x|Xx:a.M | .M|(MM) | (Mo)

wherec ranges over a set @erm Constantandx ranges over a set @erm Variables

By definingcontextsas sets of the formt” = {x; : 0y,..., 2, : 0,,}, thetyping rules of \,
can be presented as follows

(var) I'vx:0 (x:0€l)

(cst) I'>c: o (caconstant of type)

I'x:10M:0

(_)I)FD)\:U:T.M:T—>U

I'vM:1T—ocl'>N:T
(— E) I'>MN : o

(V1) DF)E % 55 (tnotfreeinl’)

I'> M :Vto
(VE) I'> Mt : o[r/t]

Two notions of reduction are defined on terms o%,.
B-reduction:(Az : 7.M)N — M[N/x]
type3-reduction:(\t. M)T — M|7/t]

We refer to the standard references, for instance [13], for the definition of the reduction
relation induced by the two notions of reduction above, for the definition of term- and type-
substitution in\y, and for all usual notations and conventions.

We recall now two definitions, of structure and of modelfgras presented in [7] (see also
[13]). A \-applicative structure, or a structure fioy, is a structure in which the connectives of
system)\, are interpreted by some operation in the model. This spells out as follows.

Definition 2.1 (\;-applicative structures). A \,-applicative structured is a tuple
A= U, Dom, {App™", App’},T)
where

— U = {T4,[TA — TA], =4, VA, I} specifies a sef (the “types” of the structure), a set
[T4 — T4] of functions fronil™ to 74, a binary operation—+ on T, a mapv+ from
[T4 — TA] to T4, and a mafi¢ from type constants t6.

— Dom = {Dom* | a € T*} is a collection of sets indexed by the types of the structure.

— {App™®, App’} is a collection of application maps, with ontpp®® for every pair of
typesa, b € T4 and oneApp’ for every functionf € [Ty, — T4].

EachApp®® must be a function

App™” : Dom®™" — (Dom® — Dom?)
and eachApp’ must be a function
App’ : Dom™'f — H Dom/ @
acTA

— 7 : Constants— U,cra Dom® assigns a value to each constant symbol, With) <
Doml"l if ¢ is a constant of type. [7] is the meaning of as defined below.

A \,-applicative structure isxtensionaif every App®® and App’ is one-to-one. A struc-
ture is a Henkin model, or simply a model, if the interpretation of the connectives «f
compatible with the reductions of. Unfortunately, this simple idea requires some effort in
order to be precisely formalized.

Definition 2.2 (Henkin models).An extensionah,-applicative structured is aHenkin model
if, for every terml"> M : o and everyy = I', [I'> M : o], as defined below, exists.

— An A-environment is a mapping

1 : Variables — (T4 U | J Dom?)
a€TA
such that for every type variableand term variabler, we haven(t) € T4 andn(x) €
Uaera Dom®. We shall denote by? the mapping such thaf’(w) = n(w) for anyw # v,
and;(v) = p

— The meaningo],, of a type expression in environment; is defined inductively as follows
e [t], =n(t) (ttype variable)
o [C], =1Zc(C) (C type constant)
o lr— 7= ~* 7],
[Vt.o], = VA(Xa € TA [0]).
— If I is a context, then satisfies”, writteny |= I', if n(x) € Doml°l» for everyz : o € I
— The meaning of a terfi > M : ¢ in environmeny) |= I is defined by induction as follows:
o [['bx:o],=n(z)
e [I'>MN :7],=App™[I'>M:7— 7],[I'>N:7],
wherea = [7], andb = [7'],
e [I'bAx:0.M: 0 — 7], =the uniquef € Dom*~ts.t., foralld € Dom?, App™’fd =
[lz:o0M: 7],
wherea = o], andb = [7],
o [I'>Mr:olr/t]], = App’[I'> M : Vt.o],[7].,
wheref(a) = [o],s forall a € T4
e [I">At.M : Vt.o], = the uniquey € Dom™ "/ s.t., for alla € T4,
App’ga=[I'> M : e
wheref(a) = [o],s for all a € T.

3 The Full model

We suppose the reader to be familiar with Engeler construction of a model of untyped lambda
calculus [2]. As we anticipated in the introduction, we will repeat Engeler construction twice,
one to define a Scott Domairerms to interpret terms of\,, and the other to define a Scott
DomainTypes to interpret types oh,. Some extra conditions will be required to express re-
lationships betweelierms andTypes. The construction will pass through three steps: the def-
inition of a set of atoms, with a constructor for so-called "step-functions”, the definition of a
consistency notion on atoms, and the definition of an entailment relation between atoms.

First step: the definition of the setf2 of atoms. We introduce a sef? of atoms. Terms and
types of\, will be interpreted as subsets &f satisfying a consistency condition: coherence in
the case of terms, homogeneity in the case of types.

We suppose fixed a familyL; }; of disjoint sets of atomic data. These could be, for instance,
Ly ={0,1,2,...} (integers),; = {true, false} (booleans)L. = {a,b,c,...} (Characters),
etc.

12 is defined starting fror§ L, }; and then closing under two constructors,

(_7_>7 <—, —> me(ﬂ) x 2 — (2

The constructof—, —) will denote all step functions from the domdierms of terms in the
model, toTerms itself. As usual, a step-function denotéd x) will map anyb € Terms (any
consistent set of atoms) including: into the singleton{x}, and anything else intf (taken

to represent an "indefinite” output). Each first order function\otvill be built as a pointwise

union of step functions, and identified with the corresponding set of atoms. Let us consider an
example by assuming the integers to be among the atomic data.

The atom({n}, n) represents the step function mapping any element containinigp {n }
itself, and undefined elsewhere.

For any setX of atoms, the set of atomisiy = {({z}, z)|x € X}, representing the point-
wise union of all step function§z}, x), will be the identity onX.

In a similar way, the constructgr—, —) will denote all step functions from the domain
Types of terms in the model, t@ypes (or to Terms itself). Each type constructor, and each
polymorphic function of\, will be built as pointwise union of step functions, and identi-
fied with the corresponding set of atoms. Continuing the example above, for drgyatom
({n}, ({n},n)) represents the step function mapping any type includir(gay, the type of
integer) into the (singleton of the) step functiofn}, n), and undefined elsewhere. The set
of atomsid = {{{z}, ({z},x))|z atom}, representing the pointwise union of all step func-
tions ({z}, ({z}, z)), will be the polymophic identity. In fact, it will send any typ¥ into
idxy = {({z},x)|z € X} i.e, into the identity onX.

Definition 3.1 (The sets2). The setf2 is the smallest set satisfying:

1. L; C 2, for each;
2. (a C 02, afinite,z € 2) = (a,x), (a,z) € £2.

Second step: the definition of the consistency notion on atomBb the construction of
our Full model we shall use only a particular subsefbfSuch a subsefonswill be defined
together with two binary "consistency” relations 6h homogeneityho), andcoherencé co).
Conswill consists of the elements af2 which are both homogeneous and consistent with
themselves.

A set will be said to bénhomogeneougohereny if all of its elements are pairwiseomoge-
neougcoheren}. As a matter of fact the notion of pairwise homogeneity (coherence) may have
different interpretation. We leave it unspecified for the time being; it will be formally defined
later on.

As we said, coherent sets will form a Scott domBérms interpreting terms; homogeneous
sets will form a Scott domaifypes interpreting types, and will be themselves equipped with a
structure of Scott domain.

A seta will be said to behomogeneougcoheren} with a setb, aho b(a cob) for short,
whenevewr U b is homogeneou&ohereny.

As in the Engeler construction, the choice of the clausesctorho will be sometimes

forced in order to have a model, and will be sometimes arbitrary (depending on which notion
of type and polymorphic map we want to end up with). We first express (a possible choice of)
conditions onco, ho by words, then we will translate them into an inductive definition.

— We ask that eaclh; be a flat domain of data. This means that each data typdll be an

homogeneous set, but two different atomd.inwill never be coherent, because they will
represent pairwise incompatible values for the same datum)(gay, L, ortrue, false €
Ly).

— We ask thata, z), (b, y) be coherent (two pieces of the same function) if they map coherent

inputs (pieces of the same input element) into coherent outputs (pieces of the same output
element)(a, z), (b, y) are homogeneous (pieces of the same function typepiére pieces
of the same input type, and y are pieces of the same output type.

— We ask thata, x), (b, y) be coherent (two pieces of the same type polymorphic map) if they

map homogeneous inputs (pieces of the same input type) into coherent outputs (pieces of the
same output elementja, x), (b, y) are homogeneous (two pieces of the same polymorphic
map) if they map homogeneous inputs (pieces of the same input type) into homogeneous
outputs (pieces of the same output type).

In the informal definition above, we have implicitly assumed that two coherent or homo-

geneous elements are either both in sabpeor both of the form(a,), or both of the form

(a,

x); that is, a type may contain only data, or only first order functions, or only polymorphic

functions.

If the reader takes now some time to formalize the choices of conditions expressed above,

(s)he will end up with the following definition.

Definition 3.2. (Cons ho, co) We define the sefons C (2 and the relationsho, co C
Consx Consby simultaneous induction as follows:

(hO 0)
(coyp)
(Cons)

(hO 1)
(coq)

(Consg)

(hOQ)
(coy)

(Cons)

L; x L; C ho for anyi;
pcop foranyp € L, and anyi;
L; C Consfor anyy;

(a,x)ho (b,y) if (a,z),(b,y) € Consahobandzhoy;
(a,z)co(b,y) if (a,x),(b,y) € Consand[acob= zcoy]
(a,z) € Cons if x € Consanda is a coherent and homogeneous subsé&aris

(a,z)ho(b,y) if (a,x),(b,y) € Consand|ahob = xhoy;
{(a,z) co(b,y) if (a,x),(b,y) € Consand|ahob = x coy]
(a,z) € Cons if x € Consanda is a homogeneous subset@dns

Notice thatConsis neither homogeneous nor coherent. In fact it contains, for instance, the
two non-homogeneous elemeftand({0}, 0), and the two non-coherent eleme(f8}, 0) and

({0}, 1).

Remark 3.3.It is straightforward to see that the following holds:
- Any subset of an homogeneous (coherent) set is homogeneous (coherent).
- Any two subsets of an homogeneous (coherent) set are homogeneus (coherent) with each other.

We shall denote b ong) andConsg;y the subsets o€onswhose elements are all of the
form (a, x) and(a, z).

Third (and last) step: the definition of entailments onCons We introduce two entailment
relations onCons ., andh,, . Such relations are needed in order to get an extensional model
of Ao

The intuitive meaning ot ., z is: x denotes a map smaller thanor, equivalentlya
anda U {z} represent the same functioferms — Terms. We will check that the set™, of
all z such that +, =, is the maximum set representing the same function &y bounding
ourselves to subsets 6bnsof the forma', we will have just one denotation for each function.
Thus, two subsets associated to the same funcfietms — Terms will be equal, and we will
get an extensional model of, (extensional on terms). In the same wayty,, « intuitively
meansa anda U {z} represent the same functioTypes — Types (Or : Types — Terms).

By bounding ourselves to subsets@dnsclosed undek,, we will get an extensional model
of A\, (extensional on polymorphic maps).

Definition 3.4. (Fuo, Feo)

(i) The relationsg,, , ., C Consx Consare defined by simultaneous induction as follows. Let
z,y € Consa,b € Pp(Cong. Forany X, Y C ConsletX hy, Y (X , Y) be short for
VyeYdr e X.x by y(x e y).

z e x foranyz € ((JL; UCong,)

Tt x foranyz e | JL;

ahw b Thye ¥y
<b7 l’> l_ho <CL, y)

b b Theoy
(b,) Feo (a,y)

b b Tho ¥y
(b, x) Feo (a,y)
wherea,b C Cons z,y € Consanda k. b(a -, b) is short forVy € b3z € a.z by

y(:E Feo y)
(i) Leta, X C Cons then

a =p.; {x € Cons| atye z}
a= =p.; {z € Cons| a -, z}
CLX =Def am N X.

wherea by, z(a b, z)is shortfora by, {z}(a bFeo {z})

Given X C Conswe shall denote b, (X) andP., (X) the sets of, respectively, homo-
geneus and coherent subsetsofThe superscriptfin’ will denote the extra restriction tinite
subsets ofX.

We are now ready to define the Scott domain interpreting types a$ the set of homoge-
neous subsets @onsclosed with respect tb,, . The Scott domain interpreting terms will be
instead defined as the set of coherent subseootclosed with respect te,, .

Definition 3.5.

Types =pes {a™

a € Phuo (Cong}.
a € P, (Cons}.

Terms =p.s {a"

Proposition 3.6. (i) (Types, C,U) is a Scott domain, withag
of its compact elements.

(i) (Terms, C,UJ) is a Scott domain, witfa
elements.

a € Py’ (Cong} as the set

ap € P (Cong} as the set of its compact

As usual, given a domai®, [D — D] denotes the set of theontinuousfunctions from
D to D. We may now introduce operation @gpes interpreting arrow and quantification over
types of);.

Definition 3.7. (=, Q)

We define=: Types x Types — Types andQ : [Types — Types| — Types as follows.
Let X,Y € Types and letF’ € [Types — Types].

X =Y =ps{(a,y)]ac P{@"(X), yevYl
QF) =pes {{a,y) | a € BL(Cong, y € F(a™)}.

In the Appendix=- andQ will be proved to be well-defined and continuous (Proposition
A.2). It is possible to associate a Scott domain to any elememiyeds, in such a way that

X = Y andQ(F') will be the set of continuous maps framto Y, and of "polymorphic maps
associated té@™ (the mapsf : Types — Terms such thatf(X) € F(X) for all X € Types).

The Scott domain associated k0 consists of all traces t& of elements offerms closed
undert, .

Definition 3.8. Let X € Types.
| X |=pes {a* | a € Terms}.

The closure undef,, in | X |is required in order to have extensionality of the interpretation
(on terms). Remark that the "elements”|of | are not the atoms oX, but thesets of atoms of
X (coherent and closed undey, in X).

Proposition 3.9. For any X € Types, (| X |,C,U) is a Scott domain, wit{a) | ag €
Pff)”(X)} as the set of its compact elements.

Definition 3.10. Let F' € [Types — Types|. We define

[1T 1F(T))) =pes {f € [Types — Terms] | f(X) €|F(X)] for X € Types}.
TETypes
We consider the elements @1 ;cr,,.s | F'(T)|] as ordered by pointwise inclusion.
It is now possible to prove thatX =- Y | and| Q(F') | are isomorphic, respectively, to
(| X |[=]Y |} and[[Trerypes | F/(T) []. This means that we interpret our arrow and universally
guantified types with as rich a set of functions as possible. It will be routine to show that what
we have is indeed a model fag.

Proposition 3.11. Let X, Y € Types and F’ € [Types — Types|. Then

(i) There exists an isomorphism pai—)", (—)¥) such that
| X = Y|~ [|X]|-]Y]]
(i) There exists an isomorphism pa(r—)ﬂ, (—)“) such that
Q)= [IT £
TeTypes
We can now define a,-applicative structure as follows. For simplicity sake we assume to

have one basic type® and no term constants.

— U = {Types, [Types — Types|, =,Q,Z¢}
— Dom® =|X| for X € Types

— App™’ = Ah €|la = b| Az €|a] . (z)

— App’ = Ak €|Q(f)] Az € Types.kﬂ(x)

- Ic(O) =IN

It is easy to check that the one above is a well-defined, extensigraglplicative structure.
Now we can show that what we have is indeed a Henkin Model.

Theorem 3.12 (Main Theorem).
The\;-applicative structure above defined is a Henkin Model.

Proof. We have to show that for every terf> M : o and every) = I, there exist§/" > M :
o], as defined in Definition 2.2.
In order to do that we can prove a stronger statement by induction, namely that forzevery
T € I"andn | I', the map

de[r]y—[I'>M: o]

is a continuous function frorfr], to [¢],,. By Proposition 3.11, our interpretations of the arrow
types and of the universally quantified types consist of all the continuous functions of the appro-
priate functionality. Then the inductive proof can be easily carried on almost in the same way
as the standard proof that the full continuous hierarchy is a model for the simply typed lambda
calculus (see [13] for a good presentation). Of course we first need to show that for every type
o, [o], exists. This result can easily be achieved by showing that for every type vatdbée

map

e

X € Types — [o]
IS a continuous function frormypes to Types, and this can be done by means of a straightfor-

ward induction on the structure of

4 Comparison with a PER model

To conclude the paper we show some elementary properties of the Full model(including the
fact that it isnot parametric), and some examples of non-constant polymorphic maps. We shall
also state (without proving it) th8n-completeness property. Such property makes clear the
differences between our Full model and parametric models, for example LaRgdg P(w)),

the Partial Equivalence Relation model over the lambda mgde) [7]. We shall also briefly
discuss about the interpretation of integers in our model.

Proposition 4.1. (i) There is a continuous ma’ € [Types — Types — Types] inverting
the quantifier ma, that is, such thaQ’(Q(F'), X) = F(X).

(i) Thereisacontinuous md} » € [Types — Types x Types] inverting the arrow constructor
for non-empty domains, that is, such that.(= (X,Y)) = (X,Y) wheneverY is not
empty (it is associated to a non-empty set of atoms).

Proposition 4.2. The Full model is not parametric. In fact it does not satisfies the weaker "ax-
iom C” of [11].

We shall recall the "axiom C” in the proof of the above proposition in the Appendix.

Proposition 4.3. (i) There is a mag : [Types — Types — Terms — Terms|, such that
J(X,Y,x) =y € Y wheneverr € X, andj(X, X, z) = z (type recasting is the identity
whenX =Y).

(i) If Ly is the set of integers, and the sétsare pairwise disjoint, then there exists an element
test € [Types — Lo| which, given anyX € Types, checks whetheX is a type of first
order functions, a type of polymorphic functions, or a subtype of sbme

From a theoretical viewpoint, the most interesting (and unexpected) property of the Full
model is thesn-completeness.

Theorem 4.4. The Full model is?n-complete, that is the following hold

1. Two closed types denote the same elememypés if and only if they arex-convertible;
and

2. Two closed terms ok, denote the same element frms if and only if they aresn-
convertible.

We do not include the proof of the theorem in this paper: it may be found in [5]. We
will rather usefn-completeness to point out the difference between the Full model and the
PER(P(w)) model ([7]), which is parametric.

Comparing the Full model and PER(P(w)) . LetN = Va.(a — a) — (o — «) be
the version of Church integers defined within. There exist closed termgg : N — N
of A, which are non-convertible, yet equal in the mo@#dl R(P(w)). It is enough to takd, g
extensionally equalf{(n) =3, g(n) for all closed normak : V), yet not convertible: say = 5,
(the left successor);, = S, (the right successor) ThensS;, S, are equal inPER(P(w)), but
different (bysn-completeness) in the Full model. The reason is that, in the Full madisinot
the "right” interpretation of integers. Indeed, in the Full modél= Va.(a — a) — (o — «)
consists of all polymorphic functionals sending a map everto a map over the same If we
have non- constant polymorphic maps, functional®’iare far more than just Church integers.
For some of such extra functionals, S, : N — N will produce two different results. Thus
S, S, are different in the Full model.

! DefineS; = An : NaAf : (@ — a).)z : an(a, f, f(z)) andS, = An : NaAf : (@ — a).)z : a.f(n(a, f,z)).
We haveS;(n, a, f,z) = f*(f(z)) = fAT)(z), while S;(n, o, f,z) = f(f"(z)) = f@TV(z). S; and S, are exten-
sionally equal over terms representing integersPiR(P(w)) every element in the interpretation df is equal to some
integer, and the model is extensional. It follows thatS,. are equal iPER(P(w)).

Interpreting integers in the Full model. One may think that a “good” model of, should
equates;, S,, and, thefore, that our Full model is not a "good” model. As a matter of fact also
the Full model does equatg, S, but we need to choose the “right” interpretation of integers. In
the Full model, such “right” interpretation of integers is not the interpretatiai,dfut the flat
domainZ, = {0,1,2,...}. Then we could add ta, some fresh constantat, 0, 1, +, *, . ..
denotingL, and some primitive operations over it. In the Full model, we have (as expected)
extensional equality over terms of tyget — Int, not just/n-convertibility. For instance,
take any maps, s,,, corresponding to the left and right successor, but over the ypeWe
could defines; = (Ax : Int.1 + z),s, = (Ax : Int.x 4+ 1). 5, s, are equated in the Full
model (we can check that they have the same trace). In fact, thasype- Int is not in the
original \,, thus thesn-completeness result does not apply to it. Completeness of Full model
only applies to “pure” typed lambda terms, not to lambda terms containg extra constants like
Int, +,....

5 Conclusions

It has been known since the very beginning that types in a polymorphic lambda calculus may be
consistently interpreted as domain descriptions: gay,V.X.X — X means that for each set

or "type” X, id(X) is, in the model, a map from the set or "typ&” to itself. This is the only

use of types in any model known up to now: a type input determines the type of the output, not
the output itself. Such restriction to polymorphic maps is known as parametricity.

In this paper, we have shown that also a different interpretation is possible: types may be
consistently intepreted as "information-tags”, which are part of the term, and may be used in a
definition by cases of a map. Here is an example of a map looking to the type-tag of the input to
compute the output. Using the maps P », j andtest of proposition 4.1,4.3, we may define a
map

Newton: Real — VX.(X — (Real + String))

"Newton” takes a reak, a type X, an objectf : X, and returns the result of applying, if
possible (iff : Real — Real — ... — Real) the result of Newton algorithm to : Real
and to f. In the casef has not a type with the right shape, "Newton” returns some string
complaining it. We may write down the map "Newton” using (fixed point and)tésemap to
test the shape of the typé, then@)’, § to "disassembly’X, in order to check ifX has the shape
Real — Real — ... — Real.

We have thus shown that there exist a mathematical interpretation making sense of an use
of typing, which could not be described in a model with only parametric polymorphic maps.

A Appendix: Proofs

We begin this appendix with the proof that and Q (Definition 3.7) are well-defined and
continuous. For such a proof we first need the following lemma.

Lemma A.1.

() hwo andk, are reflexive and transitive.

(i) (a7) =qe; (a)m = g
(i) zhoy,xhw 2,y b ¥ = 2'hoy.
(iv) xcoy,x b o,y b ¥ = 2'coy.

(v) If a C Consis homogeneus(coherent) therr (o™) is homogeneus(coherent).

Proof. (i) Easy, by simultaneous induction on the definitionsgf andt, .
(i) Immediate by (i).
(iii) We proceed by induction on the proof ofH,, z’.

— Base cases.
Trivial, since, by definition of+,, and ho, it follows thatx = 2’ andy = v/.

— Inductive caser = (¢, z), 2’ = (¢, 2') with ¢ k,, candz b, 2.
By definition of,, and ho we obtain thaty = (d,t), v = (d',t') with d' H,, d and
t ko t', moreoverchod = zhot. What we have to prove i§”/, z’) ho (d', '), that is , by
definition of ho, ¢ hod = z'hot'. Let us assumeé ho d’ in order to show:'hot'. Since
d b candd h, d, foranyu € candv € d there exist’ € ¢ andv’ € d' such
thatu’ H,, v andv’ H,, v. Moreover,u’ ho v’ because’ ho d’. Then it is possible to apply
the induction hypothesis om hov', v’ H,, v andv’ k,, v, obtaininguho v for for any
u € candv € d. This means thatho d. Fromcho d we can now obtain ho ¢ by using
our hypothesighod = zhot. By recalling that: 1, 2z’ andt k,, t’, we can apply the
induction hypothesis onhot, z k,, 2’ andt k,, ¢/, obtainingz’ ho t'.

(iv) We proceed by induction on the proof oto z'.

— Base case.
Trivial, since, by definition of., andco, 2’ =z =y =y .

— Firstinductive caset = (¢, z), 2’ = (¢, 2), with cco ¢ andz co 2.
We can proceed as done in the induction case of the proof of (ii). It is enough to exchange
the role of() and(), and oft,, andt, .

— Second inductive case:= (¢, z), z = (¢,), with ¢ i, candz k., 2.
By definition oft—, and co it necessarily follows thag = (d,t), v = (d',t') with ¢ F, «¢,
d he d, z b, 72 andt k, t’, moreoverchod = zcot. What we have to prove is
(c,2") co(d',1'), that is , by definition ofco, ¢ hod’ = 2’ cot’. Let us assumé hod’ in

order to derivez’ cot’. By (ii) it is possible to infercho d. Since we know that cod =
z cot, we can infer alsa co t. By applying the induction hypothesis erot, z -, 2z’ and
t . t', we obtainz’ cot'.

(v) Easy by (ii) and (iii).
Proposition A.2.

() = andQ are well-defined.
(i) = andQ are continuous.

Proof. (i)(=). We have to show thaY = Y C Consand thatX = Y is homogeneous and
closedw.r.t,. Let(a,y),(d',y) € X = Y.SinceX € Types, X is homogeneous. Then also
a anda’ are homogeneous, being subsets of an homogeneous seta%inde’ are coherent
as well andy, v’ € Cons by definition ofConsit follows that(a, y), (¢’,y') € Cons Moreover,
(a,y)ho (d’,y") becauserho a’ andyhoy’ (a anda’ are subsets of an homogeneous set, and
y andy’ are elements of an homogeneous set.) Sipgeaestricted toX = Y is the identity
relation, it follows immediately thak’ =- Y is closed w.r.tk,, .

()(Q). We have to show th&(F") C Consand thatQ(F") is homogeneous and closed fqg .
Let (a,y), (¢/,y') € Q(F). Q(F) C Consby definition. In order to prove thdt, y) ho (¢, 3/},

let assumerho a’. By Remark 3.3 U o' is homogeneous. From the monotonicity 6f(F
being continuous) we infer that 3’ € F((a U a')™), and henceyhoy’. this means that
ahoa’ = yhoy/, that is, by definition ofho, (a,y) ho (d’,y’). To show the closure dR(F')
with respect td+,,, let us assumeéa, y) € Q(F) and(a,y) ko (d’,y'), thatisa’ H, a and

y b ¥ By definition,y € F(a™). Now, sincea™ C o™ andF is monotone, we have
alsoy € F(a™). But F(a"™) is in Types, hence closed w.ttt,,, and theny’ € F(a™). We
obtain what we wished, that (&', ¢') € Q(F'), by noticing that, by Lemma A.1(jii}g . @’
implies thata’ is homogeneous, beinghomogeneous.

(i) (=) = is trivially monotone. LetX = (J,c; X; where{X;}.c; is directed. ThelX = Y =
{(a,y) | @ € Peo(User Xi), afinite ,y € Y}. If ais finite, the fact that the I.u.b. of two elements
of { X, }icr is their union (which is still in{ X’ },c;) implies that froma € P, (U;c; X;) we can
infer that there existé € I such thaiu € P, (Xi). Hence(U;c; Xi) = Y = {(a,y) | a €
Peo (Uier Xi),afinite .y € Y} = Uier{(a,y) | a € Peo (Xi), afinite,y € Y} = Uje (X =
Y).

Let nowY = U,c; Y; where{Y;},c; is directed. It is immediate to check th&it = |J,.; Y; =
Uier (X = Y)).

(i)(Q) Qs trivially monotone. Let” = | |,.; F; where{F;},c; is directed iNTypes — Types].
QUics Fi) = {{a.y) | a € Puo(Cong,afinite,y € (Ui, F)(a™)} = {{a,y) | a €
Pho (Cong, a finite , y € Ui (Fi(a™)} = Uier{(a,y) | a € Puo (Cong, a finite ,y € F(a™)} =
Uier Q(E3).

We provide now the proofs thdTypes, C,), (Terms, C,J) and (] X |, C,U) are Scott
domains.

Proof of Proposition 3.6 We only consider the case Dfpes, the case oferms being similar.
Let Lrypes = O(= 07). Let{Y;},cr be adirected subset Tfpes. If two elements ofypes
have a common upper bound then they are homogeneous with each other. This, togheter with the
fact that the union of sets closed w.kf, is still closed w.r.t,, , implies thatJ,c; Y; € Types.
It is immediate to see th&y,; Y; is the least upper bound ¢t };c;. Hence(Types, C,U) is
complete.
By definition of Types, givenY € Types, ay* C Y for anya, which is a finite subset of .
Therefore, given a directefl; },c; and a finite homogeneous subsgtof Y = (J,.; Y;, there
exists a finite set of indexes C I such thaty C U;c; Y;. Now, sinceJ;.; Y; € {Y;}ies, the
set of the compact elementsDfpes is {a™ | ap € Rﬁi”(Cons)}.
Now it is easy to check thatypes is algebraic and bounded complete.

Proof of Proposition 3.9 Ly = 0(= 0). Let {a;};c; be a directed subset ¢fX |. If two
elements of X | have a common upper bound then they are coherent with each other. This,
togheter with the fact that the union of sets closed w.r.t. the restrictibg, dd X is still closed

w.r.t. the restriction ofy,, to X, implies thatJ;.; a; €| X|. It is immediate to see that;.; a; is

the least upper bound éf; }.;. Hence(| X |, C, U) is complete.

By definition of| X |, givena €| X |, af C a for anya, which is a finite subset af. Therefore,

given a directed sefta; },; and a finite coherent subsef of X, with ag C @ = U,¢; a;, there
exists a finite set of indexes C I such thatug® C Ujc; a;. Now, sincel;c; a; € {a;}ier, the

set of the compact elements|of | is {ay | ap € P/™(X)}.

Now it is easy to check thafX | is algebraic and bounded complete.

Proof of Proposition 3.11 Let us start proving Item (i) of Proposition 3.11.
In order to show thatX = Y|~ [| X |—|Y || we define two functiong,—)* and(—)". We then
will show that they are well-defined and that form an isomorphism pair.

Definition A.3. LetX,Y € Types.
(i) We defind—)* : [| X|—]Y|] —|X = Y| as follows:
Letf € | X|=]Y]]
" =pes {(a,y) | a € BL(X), y € f(a¥)}.

(i) We defind—)":|X = Y|— [|X|—|Y] as follows:
LetA €| X = Y|, a €| X]|

AM(a) =pes {y | (a0, y) € A, ap C a, aofinite}

Proposition A.4. (—)* and(—)" are well-defined.

Proof. Let us begin with(—)!.

— f¥is acoherent subset 6f = Y.
Let (a,y), (d',y') € f*. By definition of co, we have to prove thatcoa’ = ycoy'. Let
us assume co a'. It is immediate to see thatU «’ is a finite coherent subset &f and that
aX, (a')* C (aUd)¥. By definition of f¥, y € f(a) andy’ € f((a’)*) and hence, by
monotonicity of f (f being continuous)y, vy’ € f((a U d')X) €|Y|. Thus, by definition of
| —| we obtainy coy/'.

— f¥is closed with respect to the restrictiontef to X = Y.
Let (a,y) € f*, (d/,y) € X = Y and(a,y) F. (d’,y'). By definition of X = Y we
have thata’ € P/ (X), then, in order to show thdt/,y') € f*, we need to show that
y € f((a’)X). To prove this fact, let us notice that, frofm, y) ., (a’,7/) it follows that
a’ . a. This means that® C (a’)¥. By the definition off¥, we havey € f(a*). Then,
by the monotonicity off, y € f((a’)*). We can now infey/ € f((a’)*) from the fact that
f((a)X) €]Y]. Infact| Y] is closed with respect to the restrictiontef to Y by definition,
and from(a, y) ., (a’,y') it follows y ., /.

Now, let us proceed with—)".

— A" maps| X | into | Y|
It is enough to show, for €] X |, A™(a) to be a coherent subset Bfclosed with respect to
the restriction of, to Y. A"(a) C Y isimmediate by definition. To show the coherence of
Al(a), lety,y € AM(a). By definition, there existag, y), (aj,y') € A such thaty, a) C a.
It then follows a, co af, because, by definition df- |, a is coherent. It is now possible to
infer y coy’ from the definition ofco since(ao, y) co (a;,y’). In order to show the closure
of A(a) with respect to the restriction ¢f, to Y, let us assume € A"(a), s’ € Y and
y Feo v'. By definition there exist$ag,y) € A. Sinceay k., ag, fromy ., 3y we can
infer (ao, y) Feo (ao,y’). This means thaiug, ') € A, sinceA is closed with respect to the
restriction oft, to X = Y, and(ag,y’) € X = Y. Theny' € Af(a) by definition of
Al(a).

— A™is continuous.
It is straightforward to check that® is monotone. Lea;},c; be a directed set ih X |
anda = U;es ai. User A'(a;) € A'(a) by monotonicity. To prove the inverse relation, let
y € A"(a). This means that there exidi&), y) € A with ay C a. Then there exists € T
such thatag C (ag)* C a;, C a, because = J;c; a; and(ao)” is a compact element of
| X'|. This means, by definition o', thaty € A"(a;) and hence € U,c; A'(a;).

Now we have to show thdt-)* and(—)" form an isomorphism pair. In order to do that we
need a couple of technical lemmas.

By definition of Scott domain it is straightforward to check the following property.

Proposition A.5. Let D; and D, be two Scott domains such that the element®pare sets
with the set theoretical union as l.u.b. operator. Then, giyea [D; — Ds], d € D; and
y € f(d), there exists a compact elemetsuch thatdy, C d andy € f(dy).

Corollary A.6.

(i) Letf € | X|—|Y|],a €| X|andy € f(a). Then there exists, finite such that, C a and
y € flag).
(i) LetF € [Types — Types|, f € [[Irerypes | F(T)]], Y € Types andy € f(Y'). Then there
existsay finite such thaty C Y andy € f(a3).
(iii) LetF € [Types — Types|, Y € Types andy € F(Y'). Then there exists, finite such that
ap C Y andy € F(af°).

LemmaA.7. (i) LetA €|X = Y|anda € P (X).
Then((ap,y) € A a9 C a™) = (a,y) € A.

(i) LetA €|Q(F)|anda € P (Cons.
Then (ao,y) € A,ap C a™>) = (a,y) € A.

Proof. (i) Sincea™ is closed with respect to the restrictiontaf to X, we have that, C a*
impliesa ., ag. Then, by definition of-,, (ao,y) F (a,y). This means thata,y) € A,
sinceA is closed with respect to the restrictiontQf to X = Y.

and hence, by definition of Scott domain, there exigtfinite, (ii) Sincea™ is closed with re-
spect,, , we have that, C o™ impliesa b, ao. Then, by definition of,, (ag, y) Feo (a,y).
This means thafa, y) € A, sinceA is closed with respect to the restrictiontef to Q(F').

Proposition A.8.

() (" = Idppp-
@iy (=M = Idx sy
(i) Letf.ge |X|-{Y]. fCg & fCg

Proof. (i) Let f € [| X|—|Y'|] anda €] X |.

(M) (a) = |

{y] (a0.y) € {(b,2) |0 € PLI(X), v € f(b¥)}, ag Ca} =

{y |y e flaf), ao C a,aq finite} = f(a) By Corollary A.6(i)

(i Let A €] X =Y.

(A =

{(a.y) |a € LX), y € {y/ | (aho) € A, 0y C a¥}} =

{(a,y) | a € PI™(X), ay € a¥, (a),y) € A} =A By Lemma A.7(i)

(iii)(=) In order to showf* C ¢, let(a,y) such that, € P/""(X) andy € f(a*). Sincef C g,
we have thatf (™) C g(a*) and hence € g(a¥), thatis(a, y) € ¢*.

(«) Towards a contradiction, let us assurhéZ g. This means that there existc| X | and
y € f(a) such thaty ¢ g(a). By Corollary A.6(i), there exista, C a finite such thatao, y) €
f¥.By the assumptiorf C ¢*, (ag,y) € ¢*, and hence € g(ai). By monotonicity,y € g(a),
contradiction.

Corollary A.9 (Proposition 3.11(i)).
| X = V|~ [X]|-]Y]]

We can now pass to the proof of Item (ii) of Proposition 3.11 that is of the fact@dt) |
’: [HTGTypes "F(T) "]
Let us start by defining two functions,—)U and(—)ﬂ. Then we shall see that they are well-
defined and that indeed they form an isomorphism pair.

Definition A.10. (i) We define{—)lL - Mrerypes | F(T)|] —|Q(F)] as follows:
Letf € [HTETypes |F<T) “]

¥ =pes {{a,) | a € BL"(Cons, y € fa™)}.

(i) We define{—)Tr QM) | [Trerypes | F(T)]] as follows:
LetA €|Q(F)|, Y € Types

AT(Y) =pes {y | (a0,) € A, ao finite, ag C V).
Proposition A.11. (—)iL and(—)TT are well defined.

Proof. Let us begin witr’(—)U.

- fU is coherent.
Let (a,y),(¢,y) € fU. We need to show thathoa’ = ycoy'. Let us assumehoad’'.
Thena U d € ﬂﬁi”(Cons. Moreover,a™ (a')* C (a U d')™. By monotonicity, from
y € f(a™)andy € f((a’)™) we can infery,y’ € f((a U a’)™). We obtainy coy’ by
definition of | —|, sincef((a U a')™) €| F((a U a’)™)].
— fU is closed w.r.t. the restriction &, to Q(F).
Let (a,y) € fu, (a,y) Feo (a',y') with (d’,y") € Q(F). By definition oft,, a’
a. Hencea™ C (a/)™. By monotonicity and the fact that € f(a™), we obtainy €
F((a)), thatis(a’,) € fV.

Now, let us proceed With—)ﬂ.

- ATT(Y) is a coherent subset 6f(Y").
o AMNY)C F(Y).
Lety € ATT(Y). This means that for a certaip finite, ap C Y and(ao,y) € A C Q(F).
By definition of Q we havea, € Hﬁi”(Cons andy € F((ap)™).y € F(Y) is now a
consequence of the monotonicity Bf because, C Y implies (ag)™ C F(Y') =
F(Y).
. ATT(Y) is coherent.
Lety,y' € Aﬂ(Y). Then there exist, af, C Y finite such thatag, v), (ay,y’) € A.
Since A is coherent,(ay, y) co (aj,y’) and hence, by definition oto, ayhoa; =
ycoy'. Is in now possible to infey coy’ since, beingy, anda;, subsets of an homo-
geneous sety, ho ay,.
- ATT(Y) is closed with respect to the restrictiontQf to F/(Y).
Lety € ATT(Y), y € F(Y)andy ., . By definition there exista, C Y finite such
that (ag,y) € A. By Corollary A.6(iii) v’ € F(Y') implies that there exists, C Y finite
such that/ € F((ap)™). By monotonicity we get/ € F((ao U a)™). This means that
(agUagy,y") € Q(F). Now, by definition ot , ap U aj ke ao. Then, sincey -, v/, we get
(ag,y) Feo (apUayg,y’) by definition oft, . SinceA is closed with respect to the restriction
of I, to Q(F), we obtain thata, U), y') € A and, by definition ofAT (Y), v € AT ().
— AN is continuous.
It is straightforward to check that! is monotone.
Let {Y;},c; be a directed set iliypes andY = U;c; Yi. Uier ATT(Yi) - Aﬂ(Y) by mono-
tonicity. To prove the inverse relation, lete ATT(Y). This means that there exisis), y) €
A with ay C Y. Then there existé € I such thatay C (o)) C Y, C Y, since
Y = U,e; Vi and(ao)®) is a compact element Q(F)|. This means, by definition off,
thaty € ATT(Y,C) and hence € U;c; ATT(YZ-).

Proposition A.12.

(i) ((—)U)ﬂ =1 d[HTeTypele(T)”'
(@) (—MV = rdgry.
(iii) Letf, g€ Mlrerpes [F(TD). fCg & gl

Proof. (i) Let f € [[Trerypes | F(T)]] andY” € Types.

() = |

{y | (a0, y) € {(b,z) | b€ PL(Con, w € f(b™)}, ap C Y} =

{y |y € fl(ag)™), apfinite ,ap C Y} = f(Y) By Corollary A.6(ii)

(i) Let A €|Q(F)].

(AMY =

{{a,y) | a € PL(Cons, y € {y | (ah,/) € A, af CaPe}} =

{{a,y) | a € 77|f0n(C0n$, (af,y) € A, ay Ca»}=A ByLemmaA.7(ii) =

(i) (=) In order to showa C gu, let (a,y) be such that € Rﬁ”(Cons) andy € f(a™).

Sincef C g, we have thaf(a™) C g(a"™) and hencey € g(a™), thatis(a, y) € gV.

(<) Toward a contradiction, let us assurfielZ g. This means that there exist € Types

andy € f(Y) such thaty ¢ g(Y'). By Corollary A.6(ii), there exista, C Y finite such that
(ag,y) € fiL. By the assumptiopflL C g, (ap,y) € giL, and hence € g(aj). It follows that,

by monotonicityy € g(Y'), contradiction.

Corollary A.13 (Proposition 3.11(ii)).

QAI~[I [FDI.
TETypes
We can now pass to the proofs of the properties of our model stated in the Conclusions
section.

Proof of Proposition 4.1 (i) Let X, Y € Types. We define
Q(X)(Y) =pes {y |3 C Y s.t. (dy) € X}

Let us first show tha®’ is well defined.

- Q(X)(Y) is homogeneous.
Let v,/ € Q(X)(Y). By definition there existel,d C Y such that(d,y), (d,y') €
X. By the homogeneity ol” we infer dho d’, whereas the homogeneity of implies
(d,y)ho (d',y'). Then, by definition ofho, dhod" = yhoy’, and hence we can derive
yhoy'.

— Q(X)(Y) is closed with respect ta,, .
Lety € Q(X)(Y) with y b, v/. By definition, there existg C Y such thatld,y) € X. by
definition of ho we have thatd, y) k. (d,v’). SinceX is closed with respect te,,, we
have also thatd, y') € X, and hence/ € Q' (X)(Y) by definition ofQ'.

It is easy to check th&’ is continuous.

We can now provéQ, Q') to be a retraction pair fdTypes — Types| < Types.
Let F' € [Types — Types|. By definition of Q" andQ we have

Q(QF)(Y) =

{y13d CY st (dy) € {(a.y)) | a € B (CoONg, y € Fa™)}} =

{y| 3d CY s.t.dfinite, y € F(d™>)} = F(Y) By Corollary A.6(iii)
(if) Let X € Types. We define

P12 =pes (P1(X),P2(X))

where
P1(X) =pey U{a | 3z. (a,2) € X},

Po(X) =pes {7 | Ja. (a,2) € X}™.

Let us first prove thaP,(X), Py(X) € Types. P1(X),Py(X) C Conssince(a,z) € X im-
pliesa C Consandz € Cons P,(X) andP,(X) are homogeneous becaukeis so. In fact
(a,x),(d',2") € X impliesahoa’ andzho z’. The closure oP,(X) andP,(X) with respect
to h, is trivial by definition.

Let us now show thal, ;0 == Idrypesxtypes- INde€d, using the remark théd} € P, (X)
for anyd € X, and the fact tha’ andY” are closed with respect tg,, P12(X = Y) =
Pro({(a,y) | a € BE(X), y € Y}) = (X, Y™ = (X,Y),.

To complete the proof let us prowg , to be continuousP, » is trivially monotone. Le{ X } ¢,
be directed. We have thdt,y) € P,.(U;c; Xi) if and only if there exist’,y’ such that
' b T,y b yand(a,z’),(b,y) € X; with 2/ € a for somea, b and:. This means that
(z,y) € P12(Uier X;) if and only if (z,y) € Pi2(X;) for somei, that isPy o(U;ie; Xi) =
Uier P12(X5).

We give now the proof of the fact that our model does not satisfy the "axiom C”.

Proof of Proposition 4.2 Axiom C is a (very) particular case of parametricity. It says: all
polymorphic maps in typega A, with « not free inA, are constant imv. It may be expressed
by saying: ift, u : VaA, with a not free inA, thent(B) =¢ u(B), for any typeB.

Let now A = Va, 5,v.((Vd.7) — 7) andt,u : A defined byt = Ao, 5,v. Ay : (Vo.7).y(«)
andu = Ao, 5,v.\y : (V6.7).y(B)

t,u are equal if we assume axiom C. Indeedyif Vd.y, thend is not free in+.Thus,
y(a) =¢ y(B). Now abstract ovey : Vd.v, then abstract ovew, 3, v. Eventually, we get
t=cu:A.

Still, ¢, u are different in our model. This is a consequencgmpicompleteness, and of the
fact thatt, v are notgn- convertible. Alternatively, we may check+# « directly, by finding
somew, 3,7 € Types, and somey : (Vd.y) in the model, such thato, 5, v, y) # u(a, 8,7, y),
that is,y(a) # y(53). Take, for instancey = 0, 3 = {0}, = {0},y = {({0},0)}, then check
thaty(a) = 0,y(5) = {0}.

Proof of Proposition 4.3 (i) Let X, Y € Types anda €| X |. We define
(X, Y)(a) =peg a”.

By definition ofa" it is easy to check that" is an element of” and thafj(X, Y) is continuous.

(i) Let [; € L; be a choice of elements, one for edghBy assumption, the sels are pair-
wise disjoint. By definition of homogeneity ové, it follows that the elements are pairwise
non-homogeneous.

Let now X € Types. We define

{0} if (a,z) € X for somea andz;
{1} if (a,z) € X for somea andz;
{i+ 2} if |; € X for somel; € L;

{} otherwise

test(X) =pey

test is well-defined. Indeed, by the homogeneityXof the fact that,, (a, z), (a, z) are by def-
inition non-homogeneous, the three first conditions are pairwise incompatible. Theiimdex
the third condition is uniquely given, because the elemgeaite pairwise incompatibleest is
continuous becausk, is a flat domain andest is monotone.

References

1. AMADIO R., BRUCEK.B., LONGO G. (1986) The Finitary Projection Model for Second-order Lambda-calculus, In

Logic in Computer SciencéEEE Computer Society Press, 122—130.

2. BARENDREGTH., The A-calculus, its syntax and semantics, Studies in Logic vol.103, North-Holland, revised edition

1984.

3. BERARDI S., Retractions on dI-Domains as a Model for Type:Type, Information and Computation 94, p.204-231, 1991.

4. BERARDI S, Ch. Berline, Building continuous webbed models for Sysfériio appear on: proceedings of MFPS 14.

5. BERARDI S., BERLINE C., #-n complete models for system’. Tech.report Dip. di Informatica, Univeraitdi
Torino,1998.

6. BERLINE C., Rétractions et Interpretation Interne du Polymorphisme : le Broblde la Rtraction Universelle, Infor-
matique tteorique et Applications/Theoretical Informatics and Applications vol.26, p.59-91, 1992.

7. BRUCEK.B., MEYERA.R., MITCHELL J.C. (1990) The Semantics of Second-Order Lambda Calctifrsrmation
and Computatior85, 76-134.

8. COQUAND T., A. GUNTER C.A., AND WINSKEL G. (1989) Domain Theoretic models of Polymorphidnfprmation
and Computationvol. 81 (1989), 123-167.

9. GIRARD J.Y. (1972) Interprétation Fonctionelle eElimination des Coupures de I'Arithetique d’Ordre Supesiur,
Thése d’Etat, University of Paris VII.

10. GIRARD J.Y.(1986) The system F of variable types, fifteen years lateeoretical Computer Scienoeol.45, 159-192.

11. LONGOG., MILSTED K., SoLoVIEV S, The Genericity Theorem and effective Parametricity in Polymorphic lambda-

calculus.Theoretical Computer Scienck21:323—-349, 1993.
12. McCRACKEN N. A Finitary Retract Model for the Polymorphic Lambda-calculus, unpublished, 1984.
13. MITCHELL J.C.Foundations for Programming Languag&he MIT Press, 1996.

14. PITTS A., Polymorphism is set-theoretic, constructively, @ategory Theory and Computer Scient®&CS 283,
Spinger-Verlag, 1987.

15. REYNOLDS J.C. Towards a theory of type structure, Raris Programming symposiyraNCS 19, Springer-Verlag,
157-168, 1974.

16. ReyNoLDs J.C.Polymorphism is not set-theoretic, Bemantics of Data TypelsNCS 173, Spinger-Verlag, 145-156,
1984.

