
1

Temporal Reasoning with Classes and Instances of Events

Paolo Terenziani
DISTA, Univ. del Piemonte Orientale “ Amedeo Avogadro”

Corso Borsalino 54, Alessandria, Italy
Phone: +39 0131 287447 -- terenz@mfn.unipmn.it

Abstract
Representing and reasoning with both temporal

constraints between classes of events (e.g., between the
types of actions needed to achieve a goal) and temporal
constraints between instances of events (e.g., between the
specific actions being executed) is a ubiquitous task in
many areas of computer science, such as planning,
workflow, guidelines and protocol management. The
temporal constraints between the classes of events must
be inherited by the instances, and the consistency of both
types of constraints must be checked. In this paper, we
propose a general-purpose domain-independent
knowledge server dealing with these issues. In particular,
we propose a formalism to represent temporal constraints,
we show two algorithms to deal with inheritance and to
perform temporal consistency checking, and we study the
properties of the algorithms.

Keywords: Temporal constraints between classes and
instances of events, Inheritance, Consistency, Prediction

1 Introduction

The need to represent and reason with classes (i.e.,
sets of individuals), instances (specific individuals) and
inheritance is ubiquitous in many fields of Computer
Science (and, in particular, of Artificial Intelli gence -AI)
and in many applications. Thus, a lot of works in AI
focused on this problem, in order to provide once and for
all systems dealing with these phenomena [14]. KL-ONE
[3] and KL-ONE-like hybrid knowledge representation
systems (henceforth HKRS) are probably the most
popular examples of these types of systems (see, e.g., the
survey in [11]). HKRS were usually conceived as task and
domain independent knowledge servers, providing other
systems and problem solvers with faciliti es for storing and
reasoning with classes, instances and inheritance [9]. This
showed to be very advantageous both from the conceptual
and from the engineering point of view: instead of having
to deal from scratch with classes, instances and
inheritance, programmers and knowledge engineers could
use a HKRS to this purpose, and focus on the specific
problems of their task/application domain. In HKRS, a
terminological component (called T-Box) is used to

represent the description of classes, and an assertional one
(A-Box) is used to deal with the instances of the
terminological classes. Classification is used to determine
the exact place of each class in the class taxonomy.
Inheritance of properties is supported, as well as
integrated reasoning between instances and classes: the
realization process [11] determines (considering
inheritance of properties and the description of classes
and instances) all the most specific classes of which a
given assertional entity is an instance. HKRS are widely
and fruitfully applied in different fields of AI and
Computer Science (see, e.g., in [15] a survey on some
paradigmatic applications).

There is an obvious temporal counterpart to the
problem of dealing with classes, instances and
inheritance: in many areas, such as planning, workflow
management, protocol/guidelines management and so
on one usually wants to specify the actions (henceforth,
we use the cover term event to denote all types of
actions –e.g., agentive or not) needed in order to
achieve a given task, and the temporal constraints
between them. Notice that an event in a general plan (or
workflow, or protocol, or guideline) represents a class
(set) of instances of events, in the sense that it has
specific instantiations for specific executions of the plan
itself. On the other hand, while executing (instantiating)
a general plan, one has specific instances of the classes
of events in the plan, which must inherit the temporal
constraints from their super-classes. Obviously, the
instances must respect (i.e., be consistent with) the
constraints they inherit from their super-classes.
Moreover, general plans (or workflows, or protocols, or
guidelines) may have a predictive role, since they state
that a given action has to be executed within a give
range of time. However, surprisingly enough, this
temporal counterpart has been quite neglected in the AI
literature, in the sense that no general-purpose domain-
independent knowledge server for hybrid (i.e., classes
plus instances) temporal reasoning has been built (to
the best of our knowledge), so that the temporal issues
mentioned here have been and are still faced almost
from scratch by programmers/researchers in different
tasks and applications. In fact, although since the
beginning of the 80's many general purpose knowledge
servers (the so called temporal managers) have been
built to deal with different types of qualitative and/or

2

quantitative temporal constraints (see, e.g., the surveys
in [1,19]), none of them supports an explicit treatment
of both classes and instances constraints, with the
treatment of inheritance and consistency. In the paper,
we sketch a hybrid temporal approach which overcomes
such a limitation providing users with a temporal
corresponding of HKRS.

In section 2, we discuss the phenomena to be
addressed by an hybrid temporal manager. In section 3,
we introduce two languages to deal with temporal
constraints between instances and temporal constraints
between classes respectively. Since the main goal of this
paper is that of focusing on the integration of constraints
between classes and between instances, we deliberately
chose two languages which are based on a well-known
constraint framework (i.e., STP [6]), whose properties are
well known. In section 4, we deal with constraint
inheritance and hybrid (classes/instances) temporal
reasoning to check consistency in case the observations
on instances are not complete. In section 5, we extend
consistency checking to the case where observations are
compete (i.e., when all the events which actually occurred
have been observed). Finally, in section 6, we further
carry on the parallelism between our approach and HKRS
approaches, enlightening future research issues in the
fields of knowledge representation and temporal
reasoning.

2 Temporal constraints between classes and
between instances of events

2.1Classes and Instances of Events

In the introduction, we sketched the temporal
counterpart of the well known dichotomy between classes
and instances. "Classes of events" may correspond to
terminological classes (T-Box concepts), and "instances
of events" to (A-Box, i.e., assertional) instances. For
example, in a general guideline or plan (e.g., in the
clinical field), one may represent the event (action) of
"performing a laboratory test". Such an event stands for a
class (of events), since it represents a set of individual
occurrences of "performing a laboratory test", taking
place at definite intervals of time. A specific person may
execute, at a given time, a specific laboratory test. This is,
of course, an instance event (i.e., a specific occurrence) of
the class of events above. This can be graphically
represented as in Figure 1, where LT1, LT2, ... LTk
represent specific instances (Instance-of arcs) of the event
class "Lab_Tests" occurring at specific intervals of time.

2.2Temporal Constraints Inheritance

Usually, general plans (guidelines, protocols,
workflows) contain temporal constraints between (classes
of) events. For example, in the CLASSES part of Figure
1, we graphically represent in a simplified way part of a

guideline for the management of laboratory tests in an
hospital. The general guideline represents the fact that the
reservation (RS) of each test must be done between 1 and
7 days before the lab-test (LT), and that the results of the
tests are reported (RP) within 1 and 48 hours after the
end of the test. Of course, these are temporal constraints
between classes of events, which might be instantiated
many times, for different instantiations of the classes of
events (see the INSTANCES part of Figure 1). However,
it is important to notice that the temporal constraints at
the class level are "relational" constraints, in the sense
that they have to be inherited only by "corresponding"
pair of instances of the related classes. For example, in
Figure 1, the constraint between RS and LT states that
each instance of Reservation must be 1-7 days before the
corresponding instance of Lab-Test (and not before all
LT instances!). In general, a temporal constraint R
between two classes C1 and C2 of events involves an
underlying relation pairing instances of the two classes.
This correspondence relation has been recognised, e.g.,
by [10,16], who called it correlation. Correlation is
symmetric and transitive [10,16]. Its nature depends on
the problem and the context. Even in our simple clinical

example, correlation may be specified in different ways1.
Thus, in general, different rules could be devised to infer
whether two instances of events are correlated or not,
depending on the specific context and domain. Modelling
correlation is outside the goals of this paper. Further
discussions on correlation are in the conclusions and in
[10,16]. In the example in Figure 1, we suppose that RSi
is correlated to LTi which, in turn, is correlated to RPi,
1≤i≤k.

INSTANCES

CLASSES

RS1 RS2 RSk

RP1 RP2 RPk

before
Reservation Lab_Test Report

(RS) (LT) (RP)

1-7 days 1-48 hours

before

LT1 LT2
LTk

Instance_of

Correlation:
{<RS1,LT1>,<RS2,LT2>,..,
<RSk,LTk>, <LT1,RP1>,
<LT2,RP2>, ..., <LTk,RPk>}

temp. constraints

Figure 1 Temporal constraints between classes
of events and between instances.

1Even in our simple example, correlation may depend on the level of
detail used to describe events, and on assumptions on the specific
application. E.g., an instance R of Reservation may be correlated to an
instance L of Lab_Test if
(1) both L and R refer to the same patient code and to the same type of
test (in case a patient cannot have multiple tests of the same type)
(2) both L and R refer to the same patient and to the same type of test in
the same date (if a patient cannot have two tests of the same type
exactly at the same time)
(3) both L and R refer to the same "unique code" (this is the extreme
case: the correspondence is given by a code, unique for each
execution of a lab test).

3

2.3 Reasoning: consistency checking

While most KL-ONE-like approaches support
classification and realization [11], in the temporal case
one is usually interested in checking the consistency of
temporal constraints. In particular, temporal consistency
can be checked on the classes alone, on the instances
alone, or to the merge of the constraints on classes and the
constraints on instances, (i.e., considering inheritance).

2.4 Reasoning: prediction

In KL-ONE-like systems, the descriptions of classes
play a predictive role, in the sense that they predict a set
of properties and property value restrictions for the
instances. Analogously, in the temporal domain, a plan
(or protocol, or guideline) is "predictive", in the sense
that, if one has observed a given action E1 which is an
instance of a class of events E in a plan, and the class E'
follows E in the general plan, one expects to observe an
instance of E' in a time consistent with the temporal
constraints between the classes of events E and E' in the
plan. In domains where one is certain to have a full and
complete observability of events, the consistency check of
the temporal constraints must take into account
"prediction", since not having observed a given instance
of event in a given range of time may indicate an
inconsistency.

2.5 Hybrid Temporal Manager

To summarize, the goal of the work described in this
paper is to propose a general purpose knowledge server
(temporal manager) which offers a support for
- explicitly representing (i) temporal constraints between
classes and instances of events, (ii) instance-of relations,
and (iii) correlations
-reasoning about inheritance of temporal constraints, and
performing consistency checking and prediction.

On the other hand, in this paper we do not deal with
the representation of the internal description of events
(which are considered as “ primitive” entities; see also the
discussions in section 6).

3 A hybrid approach to temporal reasoning

3.1 Language for temporal constraints between
instances of events (ITL)

The basic notion in our temporal ontology are time
points. A time interval I is a convex set of points between
a starting (Start(I)) and an ending (End(I)) point.
Different types of temporal constraints can involve
instances of events. Dates locate instances of events in
time and can be precise (see Ex.1) or imprecise (Ex.2,3).
(Ex.1) RS1 started on 10/1/98 at 10:00 and ended on

10/1/98 at 10:05

(Ex.2) RS2 started on 10/1/98 at 10:10-10:15 and ended
on 10/1/98 at 10:20

(Ex.3) LT1 started on 15/1/98 at 9:00-9:40 and ended on
15/1/98 at 10:00
Dates can be expressed in our language for temporal

constraints between instances of events (called ITL) using
the predicate date(E,L1,U1,L2,U2), stating that the
starting point of E is between L1 and U1 and its ending
point is between L2 and U2. Also durations can be
precise or not (e.g., Ex.4)
(Ex.4) LT2 lasted at least 1 hour

Durations are represented in ITL by the predicate
duration(E,L1,U1), stating that L1 and U1 are the
minimum and maximum durations of E respectively.
Delays represent (in a precise or imprecise way) the
temporal distance between pairs of instances (more
precisely, between two of their endpoints; see, e.g., Ex5)
(Ex.5) RS2 started 4-5 minutes after the end of RS1

Delays are represented in ITL by the predicate
delay(P1,P2,L1,U1), stating that L1 and U1 are the
minimum and maximum delay between P1 and P2, where
P1 and P2 are endpoints of events. On the other hand,
qualitative temporal constraints do not involve any
metric of time, allowing one to deal with the relative
position of two instances of events (ex.6). Currently, ITL
considers the qualitative constraints of the Continuous
Interval Algebra i.e., the subset of relations of Allen's
Interval Algebra which can be mapped onto conjunctions
of constraints between points, excluding disequality [19].
We chose such a subset because it has very interesting
computational properties, and nevertheless it proved to be

very important in many practical applications [5,18]2.
(Ex.6) LT1 was before LT2

E.g., the constraints in (Ex.1-Ex.6) can be represented
in ITL as shown by (ITL1).
 (ITL1):

date(RS1,10/1/98 at 10:00,10/1/98 at 10:00,10/1/98 at
10:05,10/1/98 at 10:05),

date(RS2,10/1/98 at 10:10,10/1/98 at 10:15,10/1/98 at
10:20,10/1/98 at 10:20),

date(LT1,15/1/98 at 9:00,15/1/98 at 9:40,15/1/98 at
10:00,15/1/98 at 10:00),

duration(LT2,1 hour,∞),
delay(End(RS1),Start(RS2),4 min,5 min),
before(LT1,LT2)

All the constraints in ITL above can be easily mapped
onto distances between time points, or, better into bounds
on differences (b.o.d.) constraints of the general form

L≤ X - Y≤ U where L, U are real numbers
where X and Y represent time points and L and U their
minimum and maximum temporal distance (i.e., onto the
STP framework). The semantics of ITL predicates can be

2Notice that arbitrary disjunctions of temporal constraints (as in "LT1
was during LT2 or LT2 lasted at least 1 hour") cannot be specified in
ITL, as well as some disjunctive relations in Allen's algebra such as
"LT1 before or after LT2".

4

specified in terms of b.o.d. constraints on the distance
between points as follows:

date(E,L1,U1,L2,U2) ⇔ (L1 ≤ Start(E) - X0 ≤ U1) Λ
(L2 ≤ End(E) - X0 ≤ U2)

duration(E,L1,U1) ⇔ L1 ≤ End(E) - Start(E) ≤ U1
delay(P1,P2,L1,U1) ⇔ L1 ≤ P2 - P1 ≤ U1

Notice that dates are represented by distances from a
reference time point X0 for the whole knowledge base,
and that P1 and P2 are starting/ending points of events.
As examples of qualitative relations, let us consider
before and during between two time intervals E1 and E2

before(E1,E2) ⇔ 0 < Start(E2) - End(E1)
during(E1,E2) ⇔ (0 < Start(E1) - Start(E2)) Λ (0 <
End(E2) - End(E1))

Bounds on differences (and the STP framework) have
been widely used in the AI literature in order to represent
and reason with temporal constraints (consider, e.g.,
[5,6,7]). Correct and complete reasoning on b.o.d. can be
performed efficiently using an all-to-all shortest path
algorithm which provides an inconsistency or the upper
and lower bounds for the distance between each pair of
time points (also called minimal network), and which
operates in a time that is cubic in the number of time
points [6]. A simple test in the all-shortest-path algorithm
allows it to detect inconsistencies, at no additional cost
[6]. For example, reasoning on the b.o.d. corresponding to
(ITL1) finds their consistency and infers that, e.g., RS2
started at 10:10 and LT2 started after 15/1/98 at 10:00.

The temporal high-level language we described until
now is very similar to the ones of many STP-based
temporal managers in the AI literature (see, e.g.,
[1,5,6,19]). In order to be able to integrate temporal
constraints between classes and between instances, we
must extend ITL. We introduce the predicate
Instance_of(E1,C1) to state that E1 is a specific instance
of the class of events C1. In the following, we suppose
that we have the classes in Figure 1, and to have observed
only the instances RS1 and RS2 (of Reservation) and
LT1, LT2 (of Lab_Tests). The class/instance relations can
be represented in ITL as shown by (ITL2):
(ITL2):

Instance_of(RS1, Reservation),
Instance_of(RS2, Reservation),
Instance_of(LT1, Lab_Tests),
Instance_of(LT2, Lab_Tests)

Predicate COR is introduced to represent correlations
between instances of events. In our example, we assume
(as in Figure 1) that LT1 is correlated to RS1 and LT2 is
correlated to RS2. This can be expressed in ITL by
(ITL3): COR(RS1,LT1), COR(RS2,LT2)

Finally, it is useful to indicate the set IKB_Elements
of all the instances e.g., as shown in (ITL4)
(ITL4): {RS1,RS2,LT1,LT2}

In ITL, a Knowledge Base of temporal constraints
between instances (IKB for short) is a quadruple

<IKB_Elements, IKB_Instance_of, IKB_COR,
IKB_Constraints>, where IKB_Elements is a set of
instances of events, IKB_Instance_of is a set of
Instance_of assertions, IKB_COR a set of correlations
and IKB_Constraints a set of temporal constraints on
instances of events. In our example, we have IKB =
<ITL4,ITL2,ITL3,ITL1>.

Axioms (Ax1) and (Ax2) (and the logical formulae in
section 3.2) are introduced to make explicit our intended
semantics of an IKB: IKB is a representation of the
instances of events which have been observed until NOW
(where NOW is the system time when a call to the
temporal manager is done). (Ax1) states that if one
instance x of event has been observed (i.e.,
x∈IKB_Elements), then it has been observed to start
before (or equal to) NOW. Of course, the temporal
reasoning algorithms we describe in the following
sections have to respect such a semantics (in other words,
they can be seen as a procedural implementation of such a
semantics).
(Ax1) ∀x x∈IKB_Elements ⇒ Start(x) - NOW ≤ 0

If we hypothesize that observations are complete, the
fact that an instance x of event has not been observed
(i.e., x∉ IKB_Elements) implies that it did not start until
NOW (see Axiom Ax2).
(Ax2) ∀x x∉IKB_Elements⇒ NOT(Start(x) - NOW ≤ 0)

3.2 Language for temporal constraints between
classes of events (CTL)

In general, all the types of temporal constraints
discussed above can also be expressed between classes of
events. For instance, considering again the example in
Figure 1, one could assert the following temporal
constraints:
(Ex.7) Laboratory tests are made between 1 and 7 days

after the reservation
(Ex.8) Laboratory tests last between 30 minutes and 48

hours
(Ex.9) Results are reported between 1 and 48 hours after

the end of the tests
(Ex.10) Results are reported after the tests

Thus, we used the same predicates as above to express
them into our temporal language for classes of events
(CTL for short). Ex.7-Ex.10 are represented in CTL as
follows:
(CTL1):

Cdelay(End(Reservation),Start(Lab_Tests),1day, 7day),
Cduration(Lab_Tests, 30 min, 48 hour),
Cdelay(End(Lab_Tests),Start(Report), 1 hour, 48 hour),
Cafter(Report,Lab_Tests)

The predicates on classes are basically the same as for
instances (we put the prefix C to distinguish them);
however, when applied to classes, durations, delays (here
we consider just the delays between the starting points of
two classes; the other cases are analogous) and qualitative
relations have a different meaning, as shown below.

5

Cduration(C,L1,U1) ⇔
∀ E Instance_of(E,C) ⇒ L1 ≤ End(E)- Start(E) ≤ U1

Cdelay(Start(C1),Start(C2),L1,U1) ⇔
(∀ C1',C2' (Instance_of(C1',C1) Λ Instance_of(C2',C2) Λ
COR(C1',C2')) ⇒ (L1 ≤ Start(C2') - Start(C1') ≤ U1) Λ
(∀ C1' Instance_of(C1',C1) ⇒

(∃ C2’ I nstance_of(C2',C2) Λ COR(C1',C2'))))

As example of qualitative relations, let us consider the
relation "before":

Cbefore(C1,C2) ⇔ (∀ C1',C2' (Instance_of(C1',C1) Λ
Instance_of(C2',C2) Λ COR(C1',C2')) ⇒
 (0 < Start(C2') - End(C1')) Λ

 (∀ C1' Instance_of(C1',C1) ⇒
(∃ C2’ I nstance_of(C2',C2) Λ COR(C1',C2'))))

While durations are simply inherited by all i nstances,
qualitative relations and delays are only inherited by
correlated pairs of instances (see section 2). The second
conjuncts in the definition of Cdelay and Cbefore
formalize the “ predictive” character of delays and
qualitative relations between classes of events. For
example, given the constraint between classes
Cbefore(C1,C2), the observation of an instance of C1
implies the later occurrence of a correlated instance of
C2. Finally, the predicate EventClass is introduced in
CTL in order to declare the classes of events being
considered. Thus, in the example in Figure 1, we would
have (CTL2) below
(CTL2): EventClass(Reservation),

EventClass(Lab_Tests), EventClass(Report)
Thus, in our language CTL, a KB of temporal

constraints between classes of events (CKB for short) can
be defined as a pair <CKB_EventClass,
CKB_Constraints> (<CTL2,CTL1> in our example).

4 Hybrid consistency checking (no
prediction)

If one has only constraints between classes, the fact
that they are classes is irrelevant from the point of view of
temporal reasoning; they can be interpreted as primitive
(individual) events and standard temporal reasoning can
be performed on them (see, e.g., [2] as regards temporal
constraints in general plans). On the other hand, hybrid
temporal reasoning takes in input a KB of temporal
constraints between classes and a KB of temporal
constraints between instances, and gives as output the
upper and lower bounds on the distance between each pair
of starting and ending points of instances (i.e., the
minimal network) or an inconsistency. The procedure
Integrated_Reasoning in Figure 2 deals with the case
(common in many applications) in which observations are
incomplete, i.e., instances of events can occur and not be
observed (i.e., not be present in the IKB).

Before performing hybrid temporal reasoning,
temporal constraints in the high-level language are
translated into the corresponding b.o.d. constraints (steps
(1) and (2)). In step (3), Set_NOW updates the constraints
in IKB_Constraints adding the constraint represented in

Axiom (Ax1)3. Then, temporal reasoning is performed
separately on instances and on classes (using the all -
shortest-path algorithm on b.o.d. constraints [6], called
here Temporal_reasoning) to check whether each one of
them is independently consistent and to infer the implied
temporal constraints separately (see steps (4) and (5); let
BOD_IKB_Con' and BOD_CKB_Con' the resulting sets
of constraints). Step (6) performs the transitive closure of
correlation relations. The rest of the procedure deals with
the integration of the two levels of constraints. The basic
idea is that of inheriting (accordingly with the semantics
specified is section 3.2) the temporal constraints between
classes on the instances of events, and then performing
temporal reasoning on instances (applying again the all -
shortest-path algorithm) on the union of the inherited plus
the instances constraints. Step (7) implements the
inheritance of durations of events. All distances t ≤
End(E) - Start(E) ≤ u between the ending point and the
starting point of an event class E must be inherited by all
the instances of the class. Thus, they are added to the
constraints in BOD_IKB_Con'. For each pair of
correlated instances E1 and E2, Step (8) deals with the
inheritance of qualitative relations and delays from the
corresponding classes of events. Finally, step (9) performs
integrated reasoning at the level of instances, considering
also the constraints inherited from the classes of events.
The procedure stops reporting an inconsistency if a call to
Temporal reasoning (steps 4, 5, and 9) finds it.

Procedure Integrated_Reasoning
(<CKB_EventClass, CKB_Constraints>,
<IKB_Elements,IKB_Instance_of, IKB_COR,

 IKB_Constraints>)
(1) BOD_IKB_Con := Transform(IKB_Constraints);
(2) BOD_CKB_Con := Transform(CKB_Constraints);
(3) BOD_IKB_Con :=

Set_NOW(BOD_IKB_Con,NOW);
(4) BOD_IKB_Con' :=

Temporal_reasoning(BOD_IKB_Con);
(5) BOD_CKB_Con':=

Temporal_reasoning(BOD_CKB_Con);
(6) IKB_COR := Closure(IKB_COR);
(7) Forall C1 \ EventClass(C1) ∈ CKB_EventClass Λ

t ≤ End(C1) - Start(C1) ≤ u ∈ BOD_CKB_Con' do
Forall E \ Instance_of(E,C1) ∈ IKB_Instance_of do

BOD_IKB_Con':= BOD_IKB_Con' ∪
{ t ≤ End(E) - Start(E) ≤ u} od od;

3In our example, we have observed (the beginning of) LT2, but there is
only the constraint before(LT1,LT2) concerning LT2 in IKB. Thus, in
the mapping on b.o.d., we have Start(LT2) - X0 < ∞, and the effect of

Set_NOW is to change this constraint into Start(LT2) - X0 ≤ NOW.

6

(8) Forall E1,E2 ∈ IKB_Elements, E1≠E2\ COR(E1,E2)
Let C1∈ CKB_EventClass and
C1∈ CKB_EventClass the corresponding classes

/* i.e., Instance_of(E1,C1) and Instance_of(E2,C2) hold
*/

Istantiate on E1 and E2 the constraints in
CKB_Constraints between C1 and C2

(9) Minimal_Network :=
Temporal_reasoning(BOD_IKB_Con');

Figure 2. Procedure Integrated_Reasoning

For example, let us apply Integrated_Reasoning to
<CTL2,CTL1> and <ITL4,ITL2,ITL3,ITL1> described
above, supposing that NOW=18/1/98 at 18:00. Step (7)
inherits the constraints on the duration of LT1 and LT2
(which must last between 30 minutes and 48 hours). Step
(8) inherits the delay of 1-7 days between correlated pairs
of instances of Reservation and Lab_Tests. In the
example, and taking minutes as the basic granularity, this
corresponds to adding the constraints 30 ≤ End(LT1)-
Start(LT1) ≤ 2880, 30 ≤ End(LT2)-Start(LT2) ≤ 2880,
1440 ≤ Start(LT1)-End(RS1) ≤ 10080, and 1440 ≤
Start(LT2)-End(RS2) ≤ 10080 into the temporal
constraints between instances of events. The final
application of Temporal_reasoning does not detect any
inconsistency and provides, among the others, the
constraints that: LT1 starts on 15/1/98 at 9-9:30; LT2
starts between 15/1/98 at 10:00 and 17/1/98 at 10:20 and
ends between 15/1/98 at 11:00 and 19/1/98 at 10:20.

More generally, the following property holds:

Property 1 The procedure Integrated_Reasoning is
correct with respect to the logical semantics of the
temporal language we introduced in subsections 3.1 and
3.2.
Proof (Sketch) The proof is based on the fact that all and
only the temporal constraints specified by the semantics
of the constructs in CTL (Cduration, Cdelay etc.) are
inherited at the level of instances of events (steps (7) and
(8)), and then correct and complete temporal reasoning is
performed at the level of instances of events via the all -to-
all shortest path algorithm (step 9).♦

Given the proof sketched above,
Integrated_Reasoning is complete as regards consistency
checking on the classes in CKB plus the instances in IKB.
However, it does not consider the “ predictive” part in the
logical semantics of delays and qualitative relations
between classes, since it does not add the predicted
(correlated) instances into the IKB. However, this is
reasonable in many applications. For example, in all the
applications where observations are incomplete (i.e.,
where Axiom Ax2 does not hold), prediction has no
impact on consistency checking. In fact, even if the
predicted events should have occurred in the past (i.e.,
before NOW), not having them in the IKB does not imply

an inconsistency: maybe they occurred and were not
observed (inserted in the IKB). Thus, Property 2 holds:

Property 2 In the case of incomplete observations, the
procedure Integrated_Reasoning checks consistency in a
correct and complete way with respect to the logical
semantics of the temporal language.

5 Hybrid consistency checking (complete
observations)

In many applications, the “ predictory” part of
temporal constraints between classes must be considered.
For example, in applications where one can hypothesize
that observations are complete (i.e., Axiom Ax2 holds),
“ prediction” must be used to detect inconsistency. In fact,
in such a case, the absence of the observation of an
instance of an event which, according to the constraints
among classes, should have already happened (and be
observed), gives an inconsistency. This can be coped with
as in Procedure Integrated_Predictory_Reasoning in
Figure 3. The procedure first calls Integrated_Reasoning
(step 1) and then consider “ predictions” . In the
procedure, we denote by CKB_Connected(C) the set of
all classes in CKB that can be reached (directly or
indirectly) from the class C via some temporal constraint
(a delay or a qualitative relation; i.e., CKB_Connected(C)
represent the set of classes correlated to C). This can be
easily computed a-priori by navigating the graph of
constraints between classes (see Figure 1). Step (2)
implements the “ prediction” of new instances. For each
instance E in IKB, it considers all the classes in
CKB_Connected(CE) which are connected to the class
CE of which E is an instance. For each one of these

classes (say C), it looks whether there is an instance of C
which is correlated to E in IKB. If there is not, in step
(2.1.1) Add_Instance(C, IKB_Elements,
IKB_Instance_of, IKB_COR,E) returns a new instance I’
of C and inserts: I’ into IKB_Elements, the relation
Instance_of(I’ ,C) into IKB_Instance_of, and COR(E,I’)
in IKB_COR; this amounts to create a new instance I’ of
C correlated to E, according to the “ prediction” part of
the semantics of constraints between classes.

Then, in step (2.1.3), the transitive closure of COR is
computed, and in 2.1.4 Inh_constr_inst is invoked to
consider all the constraints concerning (the starting and
ending points of) C in CKB, and to let I’ inherit them
(inheritance here is analogous to steps (7) and (8) of the
procedure Integrated_Reasoning). Step (3) executes
temporal reasoning on the resulting set of constraints.
Finally, step (4), for each one of the new instances I
introduced into the IKB (the instances in NEW_INST),
checks whether the resulting constraints in the IKB imply
that I should have started necessarily before NOW. In
such a case, an inconsistency is reported. NEC(KB,test)
checks whether test is necessarily true given the
constraints in KB (i.e., if test is logically implied by KB;

7

considering the minimal network of a KB of bounds on
differences constraints, this can be done in a time linear in
the time points in test [4]).

Procedure Integrated_Predictory_Reasoning
(<CKB_EventClass, CKB_Constraints>,
<IKB_Elements,IKB_Instance_of, IKB_COR,
IKB_Constraints>)

(0) NEW_INST := ∅;
(1) Integrated_Reasoning (CKB,IKB);
(2) Forall E ∈ IKB_Elements do

Let CE ∈ CKB_EventClass the class such that

Instance_of(E,CE) ∈ IKB_Instance_of

Let CKB_Connected(CE) the set of all classes in
CKB_EventClass connected to CE via temporal

constraints
(2.1) Forall C ∈ CKB_Connected(CE) do

if NOT (Exists E' such that
Instance_of(E',C) ∈ IKB_Instance_of
Λ COR(E',E) ∈ IKB_COR) then

begin
(2.1.1) I’ := Add_Instance(C, IKB_Elements,

IKB_Instance_of, IKB_COR, E);
(2.1.2) NEW_INST := NEW_INST ∪ { I’ } ;
(2.1.3) IKB_COR := Closure(IKB_COR);
(2.1.4) Forall bod ∈ BOD_CKB_Con concerning C

do Inh_constr_inst(bod,BOD_IKB_Con’) od
end od od;

(3) Minimal_Network :=
Temporal_Reasoning(BOD_IKB_Con’) ;

(4) Forall I ∈ NEW_INST do
If NEC(BOD_IKB_Con’ , Before(start(I),NOW))
then INCONSISTENT; od;

Figure 3. Procedure
Integrated_Predictory_Reasoning

Let us consider again our example. The procedure
above inserts two instances RP1 and RP2 of Report into
the IKB. RP1 is correlated to RS1 and LT1, and RP2 to
RS2 and LT2. Considering the inherited temporal
constraints, we infer that RP1 should start between 1 and
48 hours after the end of LT1, i.e., between 15/1/98 at
11:00 and 17/1/98 at 10:00, and RP2 should start between
15/1/98 at 12:00 and 21/1/98 at 10:20. In particular, the
starting point of RP1 must be between 15/1/98 at 11:00
and 17/1/98 at 10:00 and thus it is necessarily before
NOW (18/1/98 at 18:00 in our example). Thus, an
inconsistency is detected. In general, Property 3 holds:

Property 3
The procedure Integrated_Predictory_Reasoning checks
consistency in a correct and complete way with respect to
the logical semantics of the temporal language we
introduced in subsections 3.1 and 3.2.
Proof (Sketch) The proof is based on the fact that
Integrated_Reasoning is correct, and its incompleteness is

only due to the fact that it does not consider the
“ predictive” part of the semantics of constraints between
classes, which is dealt with by step (2) of
Integrated_Predictory_Reasoning. Then correct and
complete temporal reasoning is performed at the level of
instances of events via the all -to-all shortest path
algorithm (step 3). Finally, step 4 is needed to force the
fact that observations are complete (see Ax2), checking
whether some predicted instance should have been
observed necessarily before now.♦

6 Conclusions and Developments

In planning, workflows, guidelines, protocols and so
on, checking whether the temporal constraints in a general
plan (protocol, guideline, workflow) are respected by the
plan (protocol, guideline, workflow) instantiation is a
fundamental task. Such a task involves integrated
temporal reasoning considering both the temporal
constraints between the classes of events and the
(observed) temporal constraints between their instances.

The approach in this paper is, to the best of our
knowledge, the first one proposing a general-purpose and
domain-independent knowledge server supporting such a
task, thus providing a temporal corresponding of HKRS
systems. We think that the parallel between our approach
and HKRS systems [11] could give rise to new
interesting topics of research in temporal reasoning. For
example, a main issue in HKRS concerns the relation
between the expressiveness of the terminological and the
assertional components [11], ranging from KL-ONE [3],
in which the terminological component is very powerful
and expressive and the assertional one very limited, to
BACK [12], where the two components are balanced
from both the expressive and computational point of
view. Considering this issue, our approach is close to a
balanced BACK-like approach. However, as in the
research about HKRS’s, a lot of work should be done in
order to extend the classes and/or the instances languages
and the temporal reasoning features (for the sake of
simplicity, we currently adopted very simple STP-based
languages, whose expressive limitations are well known
within the temporal reasoning community), and
considering the trade-off between expressive power and
the complexity of (complete) reasoning.

Moreover, some HKRS have been extended with an
Inferential Box, containing formulae or rules operating
on the assertional component (consider, e.g., the I-Box in
BACK [13]). Analogously, in our approach, one could
introduce a further component, which manages the
(domain and application dependent) rules which specify
the correlation relations between instances of events.
Finally, the integration of our approach with a classical
HKRS (e.g., BACK) to represent the internal description
of classes and instances of events (using concepts and
roles) and to exploit the classification and realization
faciliti es would be interesting. In such an extended
approach, one could use (in the I-Box rules) the

8

descriptions of the classes of events in T-Box in order to

infer, e.g., correlation4.
Finally, it would be interesting to extend the approach

in this paper in order to cope with cases where a one-to-
one correspondence between events cannot be assumed
(e.g., coming back to the example in Figure 1, where the
same reservation can be used for more than one
laboratory test). Furthermore, we think that our approach
is suitable to be extended in order to use constraints
between classes as basic knowledge to be evaluated a-
priori, and to be used to check consistency in an
incremental way whenever new (constraints on) instances
are added (e.g., to deal with least commitment temporal
planning).

To conclude, we conceive our hybrid temporal
reasoner as a domain and task independent knowledge
server to be loosely coupled with other systems and
problem solvers to deal with different problems in
different areas (following the lines which have been
pointed out by many applications of HKRS [11,15] and
e.g., by [1,5] as regards applications of temporal
managers dealing with instances only). Currently, we are
studying to loosely couple our hybrid temporal manager
with GLARE, a system for managing clinical guidelines
we developed in cooperation with the physicians of
Azienda Ospedaliera S. Giovanni Battista of Torino, Italy
[8,17].

References

[1] J. Allen, "Time and Time again: the Many Ways to
Represent Time", Int'l J. Intelli gent Systems, vol. 6,
no. 4, pp. 341-355, July 1991.

[2] J. Allen, "Planning as Temporal Reasoning", Proc.
KR91, 3-14, 1991.

[3] R. Brachman, and J. Schmolze, "An Overview of the
KL-ONE Knowledge Representation System",
Cognitive Science, vol. 9, No. 2, pp. 171-216, April -
June 1985.

[4] V. Brusoni, L. Console, and P. Terenziani. "On the
computational complexity of querying bounds on
differences constraints", Artificial Intelli gence
74(2):367-379, 1995.

[5] V. Brusoni, L. Console, B. Pernici, P. Terenziani,
"LaTeR: Managing Temporal Information
Eff iciently", IEEE Expert 12(4), 56-64, 1997.

[6] R. Dechter, I. Meiri, J. Pearl, "Temporal Constraint
Networks", Artificial Intelli gence 49, 61-95, 1991.

[7] E. Davis, "Constraint Propagation with Interval
Labels", Artificial Intelli gence 32, 281-331, 1987.

4Considering for example footnote 1, the rule (2) of correlation could
be implemented in the following way. One could describe Reservation
(RS for short) and Lab-tests (LT) giving them (among the others) the
attributes (slots) patient code (PC), type of test code (TTC) and date of
the examination (EXAM_DATE), and insert in I-Box a rule such as
∀ I1,I2 Instance_of(I1,RS) Λ Instance_of(I2,LT) Λ
I1.PC=I2.PC Λ I1.TTC=I2.TTC Λ
I1.EXAM_DATE = I2.EXAM_DATE ⇒ COR(I1,I2)

[8] A. Guarnero, M. Marzuoli , G. Molino, P.
Terenziani, M. Torchio, K. Vanni, "Contextual and
Temporal Clinical Guidelines", Journal of the
American Medical Informatics Association, 683-
687, 1998.

[9] H.J. Levesque and R.J. Brachman, "Expressiveness
and Tractabilit y in Knowledge Representation and
Reasoning", Computational Intelli gence 3, 78-93,
1987.

[10] R.A. Morris, W.D. Shoaff , and L. Khatib, "Path
Consistency in a Network of Non-convex Intervals",
Proc. thirteenth Int'l Joint Conf. on Artificial
Intelli gence, pp. 655-660, Chambery, France, 1993.

[11] B.Nebel, Reasoning and Revision in Hybrid
Representation Systems, LNCS 422, Springer-
Verlag, 1990.

[12] B. Nebel and K. von Luck, "Hybrid Reasoning in
BACK", In Z.W. Ras and L. Saitta eds.,
Methodologies for Intelli gent Systems 3, North
Holland, 260-269, 1988.

[13] J. Quantz and C. Kindermann, "Implementation of
the BACK System Version 4", KIT-REPORT 78,
Technische Universitat Berlin, December 1990.

[14] E. Rich, K. Knight, Artificial Intelli gence, McGraw
Hill , 1991.

[15] J. Schmolze, W.Mark "The NIKL Experience",
Computational Intelli gence 6, 48-69, 1991

[16] P. Terenziani, “ Integrating calendar-dates and
qualitative temporal constraints in the treatment of
periodic events” , IEEE Trans. on Knowledge and
Data Engineering 9(5), 1997.

[17] P. Terenziani, G. Molino, and M. Torchio, “ A
modular approach for representing and executing
clinical guidelines” , Artificial Intelli gence in
Medicine 23, 249-276, 2001.

[18] P. VanBeek, "Temporal Query Processing with
Indefinite Information", Artificial Intelli gence in
Medicine, 3(6), 325-339, 1991.

[19] L.Vila, "A Survey on Temporal Reasoning in
Artificial Intelli gence", AI Communications 7(1), 4-
28, 1994.

