
Modeling Long–Running Transactions with

Communicating Hierarchical Timed Automata

Ruggero Lanotte1, Andrea Maggiolo-Schettini2,
Paolo Milazzo2, and Angelo Troina2

1 Dip. di Scienze della Cultura, Politiche e dell’Informazione, Università dell’Insubria
2 Dip. di Informatica, Università di Pisa

Abstract. Long-Running transactions consist of tasks which may be

executed sequentially and in parallel, may contain sub-tasks, and may

require to be completed before a deadline. These transactions are not

atomic and, in case of executions which cannot be completed, a compen-

sation mechanism must be provided.

In this paper we develop a model of Hierarchical Timed Automata suit-

able to describe the aspects mentioned. The automaton-theoretic ap-

proach allows the verification of properties by model checking. As a case

study, we model and analyze an example of long–running transaction.

1 Introduction

The term transaction is commonly used in database systems to denote a logi-
cal unit of work designed for short-lived activities, usually lasting under a few
seconds. These transactions are performed either completely or not at all: this
means that if something goes wrong during the execution of the transaction,
a roll–back activity is performed, which re–establishes the state of the system
exactly as it was before the beginning of the transaction.

In order to permit the system to perform the roll–back activity, locks are
acquired on the necessary resources at the beginning of a transaction and are
released only at its end (in both the cases of completion and roll–back). The
use of locks, which forbids others to access the resources, is justified by the
short duration of the transaction. These transactions are called ACID transac-
tions, because they satisfy the properties of Atomicity, Consistency, Isolation
and Durability. Recent developments in distributed systems have created the
need of a new notion of transaction, in which remote entities (possibly of dif-
ferent companies) may interact by performing complex activities (which may
require also a human–interaction) that may take minutes, days or weeks. This
increased length of time with respect to ACID transactions, forbids the use of
locks on resources, and hence makes roll–back activities impossible. The alter-
native to roll-back activities in this kind of transactions is the use of compen-
sations, which are activities explicitly programmed to remove the effects of the
actions performed, and may require, for instance, the payment of some kind of
penalty. This new kind of transactions are usually called long–running transac-
tions, but they are also known as Sagas [7], web transactions [10], and extended
transactions [9]. Although there is an interest for their support in distributed

1

object–based middlewares [9], they are studied in particular in the context of
orchestration languages for Web Services (such as BPEL4WS [8] and WSCI [12]).

Web Services are technologies that allow the distribution and the interoper-
ability of heterogeneous software components (providing services) over the Inter-
net. Orchestration languages allow the definition of complex services in terms of
interactions among simpler services. Most orchestration languages offer several
primitives for composing and handling services. Since the specifications of these
languages mainly consist in informal textual description of their constructors,
there is a strong interest in the formalization of their semantics (see [4–6, 10,
13]). Among these papers, [6, 10] give theoretical foundations to the fragments
of orchestration languages describing long–running transactions. In particular,
[6] identifies three main composition patterns for transactional activities with
compensations, namely sequential composition, parallel composition, and nest-
ing, and provides a formal semantics for them.

Communicating Hierarchical Machines (CHMs) [2], which are finite state
machines endowed with the ability of refining states and of composing machines
in parallel, seem to be a formalisms suitable to describe transactional activities
and their composition patterns. Time is an important factor in the functioning
of distributed systems, where communication may take time and deadlines may
be used to counteract failure of remote components. Besides, transactions may
have deadlines imposed by the requested QoS. Hence, to describe transactions a
formalism is needed that also allows the representation of time constraints. After
the seminal paper by Alur and Dill [1] many models of Timed Automata have
been proposed and used to describe systems in which time cannot be abstracted.
Furthermore, automata based formalisms are amenable to formal analysis, such
as model checking.

In this paper we define the model of Communicating Hierarchical Transaction-
based Timed Automata (CHTTAs). CHTTAs take from CHMs [2] the abilities
of composing machines in parallel and hierarchically, but differ from CHMs inso-
far as they have two different terminal states (to describe different terminations
of transactions) and provide different communication mechanisms. Moreover,
CHTTAs have a notion of explicit time. We give a flattening procedure in order
to obtain a timed automaton from a CHTTA, and prove the decidability of the
reachability problem for CHTTAs. The class of flattened CHTTAs is a subclass
of Timed Automata, hence our flattening procedure may be used in order to
verify properties of CHTTAs with model checkers defined for timed automata
(e.g. Kronos [14] and UPPAAL [3]).

We propose CHTTAs to describe transactional activities and define oper-
ations for composing CHTTAs which correspond to compositional patterns of
transactional activities. In particular, among the patterns identified in [6], we
focus on the sequential and parallel composition patterns for transactional ac-
tivities. We give formal representations of these patterns in terms of CHTTAs
and prove their correctness. As a case study, we model with CHTTAs a typical
long–running transaction and verify some properties with the UPPAAL model
checker [3].

2

2 Communicating Hierarchical Timed Automata

Let us assume a finite set of communication channels C with a subset CPub ⊆ C.
As usual, we denote with a! the action of sending a signal on channel a and with
a? the action of receiving a signal on a.

Let us assume a finite setX of positive real variables called clocks. A valuation
over X is a mapping v : X → IR≥0 assigning real values to clocks. Let VX denote
the set of all valuations over X. For a valuation v and a time value t ∈ IR≥0, let
v+ t denote the valuation such that (v+ t)(x) = v(x) + t, for each clock x ∈ X.

The set of constraints over X, denoted Φ(X), is defined by the following
grammar, where φ ranges over Φ(X), x ∈ X, c ∈ Q and ∼∈ {<,≤,=, 6=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |=
x ∼ c iff v(x) ∼ c, v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2, v |= ¬φ iff v 6|= φ,
v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and v |= true.

Let B ⊆ X; with v[B] we denote the valuation resulting after resetting all
clocks in B. More precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise.
Finally, with 0 we denote the valuation with all clocks reset to 0, namely 0(x) = 0
for all x ∈ X.

Definition 1. A Transaction-based Timed Automaton (TTA) is a tuple A =
(Σ,X, S,Q, q0, δ), where:

– Σ ⊆ {a!, a? | a ∈ C} is a finite set of labels;
– X is a finite set of clocks;
– S is a finite set of superstates;
– Q = L ∪ S ∪ {⊙,⊗}, where L is a finite set of basic states and ⊙ and ⊗

represent the special states commit and abort, respectively;
– q0 ∈ L is the initial state;
– δ ⊆ (L×Σ∪{τ}×Φ(X)×2X ×Q)∪(S×{⊡,⊠}×Q) is the set of transitions.

Superstates are states that can be refined to automata (hierarchical compo-
sition). Note that from superstates in S only transitions with labels in {⊡,⊠}
can be taken. We assume that ⊙ and ⊗ are the final states of a TTA.

A TTA is said to be flat when it has no refinable states.

Definition 2 (Flat TTAs). A TTA A = (Σ,X, S,Q, q0, δ) is flat if S = ∅.

Inspired by the definition of CHMs (see [2]) we now introduce CHTTAs as
an extension of TTAs allowing superstate refinement and parallelism.

Definition 3. Let ΣPub = {a!, a? | a ∈ CPub} and A = {A1, . . . , An} be a
finite set of TTAs, with Ai = (Σi,Xi, Si, Qi, qi

0, δ
i) and such that there exists m

(m < n) such that Aj is flat if and only if j ≥ m. A Communicating Hierarchical

Transaction-based Timed Automaton (CHTTAΣP ub

A) is given by the following
grammar:

CHTTA
ΣP ub
A ::= 〈Ai

, µ〉
∣

∣ CHTTA
ΣP ub
A ||CHTTA

ΣP ub
A

where µ is a hierarchical composition function µ : Si → CHTTA
ΣP ub

{Ai+1,...,An}
.

3

Parallelism allows concurrent execution of automata. Hierarchical composi-
tion allows refining superstates. Automata executed in parallel may communi-
cate by synchronizing transitions labeled with a sending and a receiving action
on the same channel. Communication performed using non public channels are
only allowed between components inside the same superstate or at top–level.
Communication performed by using public channels have no restrictions.

Note that, by definition of A and µ, cyclic nesting is avoided. In the fol-
lowing, if it does not give rise to ambiguity, we may write CHTTA instead of
CHTTAΣP ub

A . Finally, if A is a flat TTA, in 〈A,µ〉 µ is an empty function.

Example 1. In Figure 1 we show an example of CHTTA. Superstates of the
CHTTA are depicted as boxes and basic states as circles; initial states are repre-
sented as vertical segments. Transitions are labeled arrows in which labels τ and
constraints true are omitted. Containment into boxes represents hierarchical
composition, while parallel composition is represented by juxtapositions. The
CHTTA in the figure is formally defined as 〈(∅, ∅, {s1}, {q0, s1,⊙,⊗}, q0, δ), µ〉
where δ = {(q0, τ, true, ∅, s1), (s1,⊡,⊙), (s1,⊠,⊗)}, and µ(s1) = A1||A2. A1

and A2 are defined as A1 = 〈({a!, b?}, {x}, ∅, {q0, q1,⊙,⊗}, q0, δ1) and A2 =
〈({a?, b!}, ∅, ∅, {q0, q2,⊙,⊗}, q0, δ2), where δ1 = {(q0, a!, true, {x}, q1), (q1, b?, x <
5, ∅,⊙), (q1, τ, x ≥ 5, ∅,⊗)} and δ2 = {(q0, a?, true, ∅, q2), (q2, b!, true, ∅,⊙)}.

a!

x:=0

b?

x<5

x>=5

a? b!

s1

q1

q2

Fig. 1. Example of CHTTA.

2.1 Semantics of CHTTAs

Configurations of CHTTAs are pairs tc = (c, ν) where c, the untimed config-
uration, represents the currently active states, and ν, the composed valuation,
represents the current clock valuations.

The configuration of a CHTTA without parallel components, when the cur-
rently active state is a basic state, is a pair (q, v) with q the currently active
state, and v the automaton clock valuation. We represent with q.c the configu-
ration where q is a superstate and c is the untimed configuration of µ(q), and
with v.ν the composed valuation where v is the clock valuation of the automaton
having q as superstate and ν is the composed valuation of the clocks of µ(q). We
denote with c1; c2 the untimed configuration of the parallel composition of two
CHTTAs having c1 and c2 as untimed configurations. Analogously, we denote
with ν1; ν2 the composed valuation of the parallel composition of two CHTTAs
having ν1 and ν2 as composed valuations.

Formally, the set of configurations Conf(A) of a CHTTA A is inductively
defined as follows:

4

– ifA = 〈(Σ,X, S,Q, q0, δ), µ〉, then Conf(A) = {(Q\S)×VX} ∪ {(q.c, v.ν) | q ∈
S ∧ v ∈ Vx ∧ (c, ν) ∈ Conf(µ(q))};

– if A = A1||A2 then Conf(A) = {(c1; c2, ν1; ν2) | (c1, ν1) ∈ Conf(A1) ∧
(c2, ν2) ∈ Conf(A2)}.

For a composed valuation ν and a time value t ∈ IR≥0, let ν + t denote the
composed valuation such that (v+t)(x) = v(x)+t, for each valuation v occurring
in ν.

The initial configuration of A, denoted Init(A) ∈ Conf(A), is the config-
uration (c, ν) such that each state occurring in c is an initial state and each
valuation occurring in ν is 0.

We give a semantics of CHTTAs in SOS style as a labeled transition system
where states are pairs (A, tc) with A ∈ CHTTAΣP ub

A and tc ∈ Conf(A), and
labels are in IR>0 ∪

⋃

iΣ
i ∪ {τ}.

In order to simplify the SOS semantics for CHTTAs we introduce a notion
of structural equivalence for pairs (A, tc), accounting for commutativity and
associativity of parallelism. The relation ≈ is the least equivalence relation sat-
isfying (A1||A2, tc1; tc2) ≈ (A2||A1, tc2; tc1) and (A1||(A2||A3), tc1; (tc2; tc3)) ≈
((A1||A2)||A3, (tc1; tc2); tc3). Moreover, given an untimed parallel configuration
c = c1; . . . ; cn we use the following notations: c ≈ ⊙ if for ∀i.ci = ⊙, and c ≈ ⊗
if for ∃i.ci = ⊗ ∧ ∀i 6= j.cj ∈ {⊙,⊗}.

Definition 4 (Semantics of CHTTAs). Given A ∈ CHTTAΣP ub

A , the seman-

tics of a A is the least labeled transition relation
α

−→ over {A}×Conf(A) closed
with respect to structural equivalence and satisfying the rules in Figure 2.

Rule (T) allows the elapsing of time for a generic CHTTA A. We note that
the time t is the same for any TTA composing A.

Rules (C1) and (C2) describe the behavior of a flat TTA. From a configura-
tion (q, v), the step is performed due to a transition (q, α, φ,B, q′) such that the
condition φ is satisfied by v. After the step, the flat TTA is in the configuration
composed by state q′ and where clocks in B are reset. If q′ is a superstate (rule
(C2)), then the CHTTA µ(q′) becomes active inside q′.

The synchronization step is described by rule (P2). By definition of the rela-
tion ≈ also CHTTAs that are not neighborhood in the parallel composition can
communicate.

Rules (C3) and (P1) allow expanding the step of a TTA which is a component
of a CHTTA. Rule (C3) deals with the hierarchical composition and rule (P1)
deals with the parallel composition. The label of the step is either τ or a public
channel. Hence, thanks to rule (P2), communication between TTAs in parallel
is allowed both for private and public channels, while for TTAs in different
superstates the communication is allowed only if the channel is public. Moreover,
we note that the step we are expanding cannot be a time step. Hence, time steps
can be performed only by the root, implying that the time elapsed is the same
for each TTA composing the CHTTA we are considering.

Each execution of a superstate terminates with either a commit or an abort
state. Rules (Com1) and (Com2) deal with the case in which the commit of the

5

t ∈ IR>0

(A, (c, ν))
t

−→ (A, (c, ν + t))
(T)

(q, α, φ, B, q′) ∈ δ v |= φ q′ 6∈ S

(〈A, µ〉, (q, v))
α

−→ (〈A, µ〉, (q′, v[B]))
(C1)

(q, α, φ, B, q′) ∈ δ v |= φ q′ ∈ S Init(µ(q′)) = (c, ν)

(〈A, µ〉, (q, v))
α

−→ (〈A, µ〉, (q′.c, v[B].ν))
(C2)

(µ(q), (c, ν))
α

−→ (µ(q), (c′, ν′)) α ∈ ΣP ub ∪ {τ}

(〈A, µ〉, (q.c, v.ν))
α

−→ (〈A, µ〉, (q.c′, v.ν′))
(C3)

(A1, (c1, v))
α

−→ (A1, (c′1, v′)) α ∈ ΣP ub ∪ {τ}

(A1||A2, (c1; c2, v))
α

−→ (A1||A2, (c′1; c2, v′))
(P1)

(A1, (c1, v))
a!
−→ (A1, (c′1, v′)) (A2, (c2, v′))

a?
−→ (A2, (c′2, v′′))

(A1||A2, (c1; c2, v))
τ

−→ (A1||A2, (c′1; c′2, v′′))
(P2)

c ≈ ⊙ (q,⊡, q′) ∈ δ q′ 6∈ S

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′, v))
(Com1)

c ≈ ⊙ (q,⊡, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν′)

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′.c′, v.ν′))
(Com2)

c ≈ ⊗ (q,⊠, q′) ∈ δ q′ 6∈ S

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′, v))
(Ab1)

c ≈ ⊗ (q,⊠, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν′)

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′.c′, v.ν′))
(Ab2)

Where we assume A = (Σ, X, S, Q, q0, δ) except for rule (T) where A is a generic CHTTA.

Fig. 2. SOS semantics for CHTTAs.

superstate takes the TTA to a basic state or to a superstate, respectively, and
rules (Ab1) and (Ab2) deal with the case in which the abort of the superstate
takes the TTA to a basic state or to a superstate, respectively.

Given a string w = α1 . . . αm, we will write (A, (c, ν))
w

=⇒ (A, (c′, ν′)) to

denote the existence of a sequence of steps (A, (c, ν))
α1−→ . . .

αm−→ (A, (c′, ν′)).
We denote with |w| = m the length of w and with w[i] = αi the i−th label.

With L(A,ΣV) we denote the language accepted by a CHTTA A w.r.t. a
set of visible actions ΣV ⊆ ΣPub. Namely, L(A,ΣV) = {w ∈ ({τ} ∪ ΣV ∪

IR>0)∗ | (A, Init(A))
w

=⇒ (A, (⊙, ν′)) or (A, Init(A))
w

=⇒ (A, (⊗, ν′))}.
The following proposition holds.

Proposition 1. The class of flat TTAs is equivalent to the class of Timed Au-
tomata.

3 Deciding Reachability for CHTTAs

Reachability is interesting for proving properties. For timed Automata the reach-
ability problem is PSPACE-COMPLETE. In our case the problem is still decid-
able, but becomes EXPSPACE-COMPLETE.

6

Firstly, we give an algorithm for flattening a generic CHTTA, hence the
reachability problem can be checked on the Timed Automaton resulting by the
flattening. Due to the complexity of the flattening, the reachability problem for
CHTTAs is EXPSPACE-COMPLETE. The increase of complexity is caused by
the communication between different superstates, but it is not caused by the
number of clocks.

3.1 Flattening CHTTAs

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} and φ be a formula in Φ(X). With
φ[Y := X] we denote the formula where each clock yi is replaced with xi. More-
over, with Xi,j we denote the renaming of clocks x in X with clocks xi,j , more

precisely Xi,j = {xi,j
1 , . . . , xi,j

n }.
Given a CHTTA A with w(A) we denote the maximum width of the CHT-

TAs composing A. Namely:

w(〈A1, µ1〉‖ . . . ‖〈Am, µm〉) = max{m,w(〈A1, µ1〉), . . . , w(〈Am, µm〉)},

where w(〈A,µ〉) = max{w(µ(q)) | q ∈ S}.
Moreover, d(A) denotes the maximum depth of A. Namely:

d(〈A1, µ1〉‖ . . . ‖〈Am, µm〉) = max{d(〈A1, µ1〉), . . . , d(〈Am, µm〉)},

where d(〈A,µ〉) = 1 +max{d(µ(q)) | q ∈ S}.

Definition 5. Let A = {A1, . . . , An}, with Ai = (Σi,Xi, Si, Qi, qi
0, δ

i), be a set
of TTAs, and A ∈ CHTTAΣP ub

A . Given ΣV ⊆ ΣPub, with Flat(A,ΣV) we denote
the flat TTA (Σ,X, ∅, Q, q0, δ) such that:

– Σ = ΣV ;
– X =

⋃

i∈[1,d(A)]

⋃

j∈[1,w(A)]Xi,j;

– Q = {c | (c, ν) ∈ Conf(A)};
– q0 = c0 such that Init(A) = (c0, ν) is the initial configuration of A;
– δ is such that:

• (c, τ, true, ∅, c′) is in δ if there exists a step (A, (c, ν))
τ

−→ (A, (c′, ν′))
triggered by either a commit or an abort transition;

• (c, α, φ,B, c′) is in δ if there exists a step (A, (c, ν))
α

−→ (A, (c′, ν′)), with
α ∈ ΣV triggered by the transition (q, α, φ,B, q′) of a TTA Ai;

• (c, τ, φ,B, c′) is in δ if there exists a step (A, (c, ν))
τ

−→ (A, (c′, ν′))
triggered by the transition (q1, a!, φ1, B1, p1) of the TTA Ai at position
i1, j1 and by the transition (q2, a?, φ2, B2, p2) of the TTA Aj at position
i2, j2 such that φ = (φ1[X

i := (Xi)i1,j1]) ∧ (φ2[X
j := (Xj)i2,j2]) and

B = (B1)i1,j1 ∪ (B2)i2,j2 .

Proposition 2. Let A = {A1, . . . , An} and A ∈ CHTTAΣP ub

A where each Ai has
at most h states and k clocks. The reachability problem for A can be computed

in O(hw(A)d(A)

· 2k·d(A)·w(A)).

7

Proof. Flat(A,ΣV) has at most hw(A)d(A)

states. Actually, the root is a parallel
composition of at most w(A) CHTTAs. Each of them has depth of at most

d(A) − 1 and, by induction, has hw(A)d(A)−1

state configurations implying that

the number of state configurations is hw(A)d(A)

.

Given a Timed Automaton with d states and l clocks, the reachability prob-

lem can be solved in d ·2l (see [1]). Hence, since Flat(A,ΣV) has hw(A)d(A)

states
and at most k · d(A) · w(A) clocks, the reachability problem for A can be com-

puted in hw(A)d(A)

· 2k·d(A)·w(A). ⊓⊔

Therefore, the reachability problem for a CHTTAA is EXPSPACE-COMPLETE
w.r.t. m, w(A) and d(A). As it happens for the reachability problem for Timed
Automata (see [1]), the number of clocks does not influence the complexity.

Proposition 3. Let A = {A1, . . . , An} and A ∈ CHTTAΣP ub

A , where each Ai

has at most m states. The reachability problem for A is EXPSPACE-COMPLETE
w.r.t. m, w(A) and d(A).

Proof. In [2] it is proved that the reachability problem for CHMs is EXPSPACE–
COMPLETE w.r.t. m, w(A) and d(A). The same holds for untimed CHT-
TAs, hence, the reachability problem for CHTTAs is at least EXPSPACE–
COMPLETE w.r.t. m, w(A) and d(A). Therefore, if the reachability problem is
PSPACE–COMPLETE for Flat(A,ΣV), then the thesis holds. But Flat(A,ΣV)
has at most k · w(A) · d(A) clocks, that is a polynomial number of clocks, and
hence the thesis holds since the reachability problem for Timed Automata is
PSPACE–COMPLETE [1]. ⊓⊔

4 Compositional Patterns for Long–Running Transactions

A long–running transaction is composed by atomic activities (called subtrans-
actions or simply activities) that should be executed completely. Atomicity for
activities means that they are either successfully executed (committed) or no
effect is observed if their execution fails (aborted). Activities may be composed
by other subtransactions.

Partial executions of a long–running transaction are not desirable, and, if
they occur, they must be compensated for. Therefore, all the activities Ai in a
long–running transaction have a compensating activity Bi that can be invoked
to repair from the effects of a successful execution of Ai if some failure occurs
later. Compensations are assumed to be transactions that always complete their
execution successfully (they always commit and can never abort).

We assume that both activities and compensations are described as CHTTAs,
and we denote with A�B the association of compensation B with activity A.

Following the approach in [6], we identify some composition patterns for
transactional activities with compensations. In particular, we focus on the se-
quential composition pattern and on the parallel composition one.

8

We denote with A1�B1 · A2�B2 the sequential composition of two transac-
tional activities with compensations, and we use the standard parallel composi-
tion of CHTTAs also to describe parallel composition of transactional activities
with compensations. We show that the compositional patterns on transactional
activities can be formulated as compositions of CHTTAs.

4.1 Sequential Transactions

Activities A1, . . . , An composing a sequential transaction are assumed to be exe-
cuted sequentially, namely, when activityAi is committed, activity Ai+1 starts its
execution. Compensation activities B1, . . . , Bn are associated with each activity
Ai. Transactions of this kind must be guaranteed that either the entire sequence
A1, . . . , An is executed or the compensated sequence A1, . . . , Ai, Bi, . . . , B1 is
executed for some i < n. The first case means that all activities in the sequence
completed successfully, thus representing a successful commit of the whole trans-
action. The second case stands for the abort of activity Ai+1; hence, all the
activities already completed (A1, . . . , Ai) are recovered by executing the com-
pensating activities (Bi, . . . , B1).

In Figure 3 (a) we show the CHTTA A = [[A1�B1 · A2�B2]]
S modeling the

pattern of sequential transactions. We consider just two activities A1, A2 and
compensations B1, B2. Note that, since the transaction is composed by only two
activities, the compensation B2 is not executed. This is because compensations
are invoked only for activities that complete successfully, however, if activity A2

commits, then the whole transaction successfully commits and no compensation
needs to be invoked. The compensation B of the whole transactional activity
A is defined as the sequential execution of the compensations B2 and B1 (see
Figure 3 (b)).

A1 A2

B 1

B 2

B 1

(b)(a)

Fig. 3. Pattern for Sequential Transactions.

Definition 6. Given A1, A2, B1, B2 ∈ CHTTAΣP ub

A we define the sequential

composition of activities A1, A2 with compensations B1, B2 as the CHTTAΣP ub

A

A = [[A1�B1 · A2�B2]]
S = 〈(∅, ∅, {s1, s2, s3}, {s1, s2, s3, q0⊙,⊗}, q0, δ), µ〉 where

δ = {(q0, τ, true, ∅, s1), (s1,⊡, s2), (s1,⊠,⊗), (s2,⊡,⊙), (s2,⊠, s3), (s3,⊡,⊗)} and
µ = {(s1, A1), (s2, A2), (s3, B1)}. The compound compensation of A is defined as
the CHTTAΣP ub

A B = [[B1 · B2]]
S
C = 〈(∅, ∅, {s1, s2}, {s1, s2, q0,⊙,⊗}, q0, δ

′), µ′〉
with δ′ = {(q0, τ, true, ∅, s2), (s2,⊡, s1), (s1,⊡,⊙)} and µ′ = {(s1, B1), (s2, B2)}.

Considering only two activities in the sequential pattern is not a real limi-
tation, since the case of n activities may be reduced by iteratively grouping the

9

activities in pairs. Intuitively, A = [[A1�B1 ·A2�B2 ·A3�B3]]
S = [[A′�B ·A3�B3]]

S

where A′ = [[A1�B1 ·A2�B2]]
S and B is the compensation for the whole sequential

subtransaction A′ (see Figure 4).

A3

A1 A2

B 1

B 2 B 1

Fig. 4. Composing Sequential Transactions.

In order to prove the correctness of our definitions of compositional patterns,
we introduce the notion of wrapped CHTTAs. Intuitively, for a CHTTA A, we
call wrapper the automaton AM which performs the special action commitA!
before reaching the final commit state.

Given a CHTTA A, AM = 〈({commitA!}, ∅, {s}, Q, q0, δ), µ〉 is the wrapped
CHTTA of A with set of states Q = {s, q0, q1,⊙,⊗}, set of transitions δ =
{(q0, τ, true, ∅, s), (s,⊡, q1), (s,⊠,⊗), (q1, commitA!, true, ∅,⊙)} and µ(s) = A.
In Figure 5 we show the CHTTA AM .

A

commit_A!

Fig. 5. AM .

The next lemma derives immediately from the definition of AM .

Lemma 1. Given a CHTTA A, (A, (c, ν))
w

=⇒ (A, (c′, ν′)), with c 6≈ ⊙ and c 6≈

⊗ and either c′ ≈ ⊙ or c′ ≈ ⊗ if and only if (AM , (s·c, ǫ·ν)
w′

=⇒ (AM , (s· ĉ, ǫ· ν̂)),
where (given z̃ ∈ {IR>0}∗):

{

w′ = z̃ · τ · w · τ · commitA! and ĉ = ⊙ if c′ ≈ ⊙
w′ = z̃ · τ · w · τ and ĉ = ⊗ if c′ ≈ ⊗

Let us assume ΣV = {commitA1
!, commitB1

!, . . . , commitAn
!, commitBn

!}.

Theorem 1 (Correct Completion). Given A = [[AM
1 �B

M
1 · . . . · AM

n �B
M
n]]S,

(A, Init(A))
w

=⇒ (A, (⊙, ν)) if and only if w ∈ L(A,ΣV) and w = x̃1 ·commitA1
!·

. . . · x̃n · commitAn
! · x̃n+1 where x̃i ∈ ({τ} ∪ IR>0)∗.

Proof. By definition of accepted language, it is obvious that if w ∈ L(A,ΣV),

then (A, Init(A))
w

=⇒ (A, (⊙, ν)). Hence we prove only the implication ⇒.

10

We prove by induction on n that, given c = c1; . . . ; cn with ci 6≈ ⊙, if
(A, Init(A))

w
=⇒ (A, (⊙, ν)), then w = x̃1 · commitA1

! · . . . · x̃n · commitAn
! · x̃n+1

where x̃i ∈ ({τ} ∪ IR>0)∗.
If n = 1 then the thesis holds by Lemma 1. If n > 1, then AM

1 �B
M
1 · . . . ·AM

n �

BM
n is synthesized as A′�B′ · AM

n �B
M
n where A′ = AM

1 �B
M
1 · . . . · AM

n−1�B
M
n−1

and B is the sequence of compensations B1, . . . , Bn−1.

By induction, if (A′, Init(A))
w′

=⇒ (A′, (⊙, ν)), then w′ = ỹ1 · commitA1
! ·

. . . · ỹn−1 · commitAn−1
! · ỹn where ỹi ∈ ({τ} ∪ IR>0)∗. Now, by Lemma 1, if

(AM
n , (c, ν)

w′′

=⇒ (AM
n , (⊙, ν′)), then w′′ = z̃ · commitAn

! · z̃′, and, hence, for a
fixed w = w′ · w′′ and x̃1 = ỹ1, . . . , x̃n−1 = ỹn−1 and x̃n = ỹ · z̃ and x̃n+1 = z̃′

we have that (A, Init(A))
w

=⇒ (A, (⊙, ν′)) with w = x̃1 · commitA1
! · . . . · x̃n ·

commitAn
! · x̃n+1 where x̃i ∈ ({τ} ∪ IR>0)∗. ⊓⊔

Theorem 2 (Correct Compensation). Given A = [[AM
1 �B

M
1 ·. . .·AM

n �B
M
n]]S,

(A, Init(A))
w

=⇒ (A, (⊗, ν)) if and only if, w ∈ L(A,ΣV) and, for some k ∈
[1, n], w = x̃1 · commitA1

! · . . . · x̃k−1 · commitAk−1
! · x̃′k−1 · commitBk−1

! · . . . · x̃′1 ·

commitB1
! · x̃′ where x̃i, x̃

′
i ∈ ({τ} ∪ IR>0)∗.

Proof. By definition of accepted language, it is obvious that if w ∈ L(A,ΣV),

then (A, Init(A))
w

=⇒ (A, (⊗, ν)). Hence we prove only the implication ⇒.

We prove by induction on n that, if(A, Init(A))
w

=⇒ (A, (⊗, ν)), then w ∈
L(A) and, for some k ∈ [1, n], w = x̃1 · commitA1

! · . . . · x̃k−1 · commitAk−1
! ·

x̃′k−1 · commitBk−1
! · . . . · x̃′1 · commitB1

! · x̃′ where x̃i, x̃
′
i ∈ {{τ} ∪ IR>0}∗.

If n = 1 then the thesis holds by Lemma 1. If n > 1, then AM
1 �B

M
1 · . . . ·AM

n �

BM
n is synthesized as A′�B′ · AM

n �B
M
n where A′ = AM

1 �B
M
1 · . . . · AM

n−1�B
M
n−1

and B is the sequence of compensations B1, . . . , Bn−1.

We have two cases. If (A′, Init(A′))
w′

=⇒ (A′, (⊗, ν)), then the thesis holds

by induction. Otherwise, if (A′, Init(A′))
w′

=⇒ (A′, (⊙, ν)), then by Theorem 1
w′ = ỹ1 ·commitA1

!·. . .·ỹn−1 ·commitAn−1
!·ỹn where ỹi ∈ ({τ}∪IR>0)∗. Now, by

Lemma 1, if (AM
n , (c, ν))

w′′

=⇒ (AM
n , (⊗, ν′)), then w′ = z̃, and, (B′, (Init(B′))

w′′′

=⇒
(B′, (⊙, ν′′)) with w′′′ = ỹ′n−1 ·commitBn−1

!·. . . · ỹ′1 ·commitB1
!· ỹ′. Therefore, for

a fixed w = w ·w′ ·w′′ ·w′′′; x̃1 = ỹ1, . . . , x̃n−1 = ỹn−1; x̃
′
1 = ỹ′1, . . . , x̃

′
n−2 = ỹ′n−2

and x̃′n−1 = z̃ · ỹ′n−1 we have that (A, Init(A))
w

=⇒ (A, (⊗, ν′)) and w = x̃1 ·
commitA1

! · . . . · x̃n−1 · commitAn−1
! · x̃′n−1 · commitBn−1

! · . . . · x̃′1 · commitB1
! · x̃′

where x̃i, x̃
′
i ∈ {{τ} ∪ IR>0}∗. ⊓⊔

4.2 Parallel Transactions

If activities A1, . . . , An composing a parallel transaction are executed concur-
rently, the whole transaction terminates when all the activities Ai complete
their execution. Again, we assume compensation activities B1, . . . Bn. If all the
activities terminate successfully then the whole transaction reaches a commit
state. If some Ai aborts, then compensation activities should be invoked for the

11

activities that completed successfully. In this latter case, the result of the whole
transaction is “abort”.

The pattern for parallel transactions is shown in Figure 6. As for sequential
transactions, we consider only two activities A1, A2 with compensations B1, B2

composed in parallel, thus resulting in the CHTTA A = [[A1�B1||A2�B2]]
P of

Figure 6. We remark that, by the semantics of CHTTAs, the parallel operator
|| is assumed to be commutative and associative. In such a pattern, activities
A1 and A2 are executed concurrently together with a controller that invokes
compensations when one of the two activities commits and the other aborts.

A1

com1!

ab1!

A2

com2!

ab2!

com1?

ab2?

ab1?

com1?

com1?

ab2?

ab2?

B 1

B 2

ab2?

ab1?

com2?

com2?

com2?

B 1 B 2

(�a)

(b)

Fig. 6. Pattern for Parallel Transactions.

Definition 7. Given A1, A2, B1, B2 ∈ CHTTAΣP ub

A we define the parallel com-

position of activities A1 and A2 with compensations B1 and B2 as the CHTTAΣP ub

A

A = [[A1 � B1||A2 � B2]]
P = 〈(∅, ∅, {s}, {s, q0⊙,⊗}, q0, δ), µ〉 with transitions

δ = {(q0, τ, true, ∅, s), (s,⊡,⊙), (s,⊠,⊗)}, and µ(s) = A′||A′′||C, where A′ and
A′′ are the two CHTTAs depicted in Figure 6 (a) contained in the superstate and
referring to activities A1 and A2, and C is the compensation controller shown
on the right part of the superstate. The compound compensation of A is defined
as the CHTTAΣP ub

A B = [[B1||B2]]
P
C = 〈(∅, ∅, {s}, {s, q0,⊙,⊗}, q0, δ

′), µ′〉 with
δ′ = {(q0, τ, true, ∅, s), (s,⊡,⊙)} and µ′(s) = B′||B′′, where B′ and B′′ are the
two CHTTAs in Figure 6 (b) referring to B1 and B2 respectively.

As for sequential transactions, considering only two activities in the parallel
pattern is not a limitation, since the case of n activities may be reduced by
iteratively grouping the activities in pairs. For instance, A = [[A1 �B1||A2 �

B2||A3 �B3]]
P = [[A′ �B||A3 �B3]]

P where A′ = [[A1 �B1||A2 �B2]]
P and B

is the compensation for the whole parallel subtransaction A′. Given B1 and
B2, we define the compensation B of A′ as the concurrent execution of the
compensations B1 and B2 (see Figure 6 (b)).

12

Theorem 3 (Correct Completion). Given A = [[AM
1 �B

M
1 || . . . ||AM

n �B
M
n]]P ,

(A, Init(A))
w

=⇒ (A, (⊙, ν)) if and only if, w ∈ L(A,ΣV) and ∀i ∈ [1, n].∃!
j ∈ [1, |w|]. w[j] = commitAi

!.

Proof. Since executions of activities Ai and compensations Bi do not interfere,
we can assume that all compensations Bi are performed after the commit of
activities Ai that terminate successfully.

Hence, the theorem can be reformulated as follows.
Given A = [[AM

1 �B
M
1 || . . . ||AM

n �B
M
n]]P , (A, Init(A))

w
=⇒ (A, (⊙, ν)) if and

only if w ∈ L(A,ΣV) and there exists a permutation (i1, . . . , in) of (1, . . . , n)
such that w = x̃1 ·commitAi1

!·. . .·x̃n ·commitAin
!·x̃n+1 where x̃i ∈ ({τ}∪IR>0)∗.

By definition of accepted language, it is obvious that, if w ∈ L(A,ΣV), then

(A, Init(A))
w

=⇒ (A, (⊙, ν)). Hence, we prove only the implication ⇒.
We prove by induction on n that, given c = c1; . . . ; cn with ci 6≈ ⊙, if

(A, (c, ν))
w

=⇒ (A, (⊙, ν′)), then w ∈ L(A,ΣV) and there exists a permutation
(i1, . . . , in) of (1, . . . , n) such that w = x̃1 ·commitAi1

! · . . . · x̃n ·commitAin
! · x̃n+1

where x̃i ∈ {{τ} ∪ IR>0}∗.
If n = 1 then the thesis holds by Lemma 1. If n > 1, then, given a sequence

(A, (c, ν))
w′

=⇒ (A, (c′1; . . . ; c
′
n, ν

′)) such that c′k = ⊙ for some 1 ≤ k ≤ n, by
Lemma 1, w′ = z̃ · commitAk

· z̃′.
Now, since AM

k+1 has committed and hence it does not participate in commu-

nications, we have that (A, (c′1; . . . ; c
′
n, ν

′))
w′′

=⇒ (A, (⊙, ν′′)) iff (A′, (c′, ν′))
w′′

=⇒
(A′, (⊙, ν′′)), where A′ = [[AM

1 �B
M
1 || . . . ||AM

k−1 �B
M
k−1||A

M
k+1 �B

M
k+1|| . . . ||A

M
n �

BM
n]]P and c′ = c′1; . . . ; c

′
k−1; c

′
k+1; . . . ; c

′
n.

By induction, if (A′, (c′, ν′))
w′′

=⇒ (A′, (⊙, ν′′)), then there exists a permuta-
tion (j1, . . . , jn−1) of (1, . . . , n) \ {k} such that w′′ = ỹ1 · commitAj1

! · . . . · ỹn−1 ·

commitAjn−1
! · ỹn where ỹi ∈ {{τ} ∪ IR>0}∗.

Hence, for a fixed w = w′ ·w′′ and (i1, . . . , in) = (k, j1, . . . , jn−1) and x̃1 = z̃,
x̃2 = z̃′ · ỹ1, x̃3 = ỹ2, . . . , x̃n+1 = ỹn and x̃n = ỹ · z̃ and x̃n+1 = z̃′ we have that

(A, (c, ν))
w

=⇒ (A, (⊙, ν′)) and w = x̃1 · commitAi1
! · . . . · x̃n · commitAin

! · x̃n+1,

where x̃i ∈ ({τ} ∪ IR>0)∗. Since Init(A) = (c1; . . . ; cn) satisfies the condition
ci 6≈ ⊙, the thesis holds. ⊓⊔

Theorem 4 (Correct Compensation). Given A = [[AM
1 �B

M
1 || . . . ||AM

n �

BM
n]]P , (A, Init(A))

w
=⇒ (A, (⊗, v)) if and only if w ∈ L(A) and, there exists

Committed ⊂ {A1, . . . , An} such that ∀Ai 6∈ Committed w[j] 6= commitAi
! and

∀Ai ∈ Committed ∃! j ∈ [1, |w|[such that w[j] = commitAi
!∧∃! k ∈]j, |w|] such

that w[k] = commitBi
!.

Proof. The theorem can be reformulated as follows.
Given A = [[AM

1 �B
M
1 || . . . ||AM

n �B
M
n]]P , (A, Init(A))

w
=⇒ (A, (⊗, v)) if and

only if w ∈ L(A) and there exists a proper subset D of {1, . . . , n} such that
w = x̃1 · commitX1

! · . . . · x̃|D| · commitX|D|
! · x̃|D|+1 · commitX|D|+1

! · . . . · x̃2|D| ·
commitX2|D|

! · x̃2|D|+1 where:

13

– if Xi = Ai, then i ∈ D;
– for any i ∈ D there exist k and h in [1, 2|D|] with k < h and such that
Ai = Xk and Bi = Xh;

– for any i, x̃1, . . . , x̃2|D|+1 ∈ ({τ} ∪ IR>0)∗.

By definition of accepted language, it is obvious that, if w ∈ L(A,ΣV), then

(A, Init(A))
w

=⇒ (A, (⊙, ν)). Hence we prove only the implication ⇒.

We prove by induction on the size of D that,
Let c be a configuration of A; we say that c is well defined if it holds that

Ai is in the state ⊙ iff Bi is in a state reachable after reading commAi
. With

commit(c) we denote the sum of the Ai and Bj that have commit.
Given two well defined configurations c1 and c2 we write that c1 < c2 if

commit(c1) > commit(c2).
Given a well defined configuration c, we prove by induction on the rela-

tion < that if (A, (c, ν))
w

=⇒ (A, (⊙, ν′)), then there exists a proper subset D
of {i | Ai in c is not in the state ⊙} such that w = x̃1 · commitX1

! · . . . · x̃m ·
commitXm

! · x̃m+1 where:

– if Xi = Ai, then i ∈ D;
– if Xi = Bi and i 6∈ D, then Ai in c is in the state ⊙;
– for any i ∈ D there exist k and h in [1,m] with k < h and such that Ai = Xk

and Bi = Xh;
– for any i, x̃1, . . . , x̃m+1 ∈ ({τ} ∪ IR>0)∗.

The base case c = ⊙ is trivial.
Let us consider now the induction step. By Lemma 1, let c′ be a configuration

such that (A, (c, ν))
w

=⇒ (A, (c′, ν′)) and w = z̃ · commitX ! · z̃′ with z̃, z̃′ ∈
({τ} ∪ IR>0)∗.

By Lemma 1 and since c is well defined, there exists j such that it holds one
of the following two cases:

– X = Aj and Aj in c is not in the state ⊙;
– X = Bj and Aj in c is in the state ⊙.

In both cases we have that c′ is well defined and c′ < c, hence, by in-
duction, if (A, (c′, ν′))

w
=⇒ (A, (⊙, ν′′)), then there exists a proper subset D′

of {i | Ai in c′ is not in the state ⊙} such that w = ỹ1 · commitX1
! · . . . · ỹm ·

commitXm′ ! · ỹm′+1 where:

– if Xi = Ai, then i ∈ D′;
– if Xi = Bi and i 6∈ D′, then Ai in c′ is in the state ⊙;
– for any i ∈ D there exist k and h in [1,m′] with k < h and such that Ai = Xk

and Bi = Xh;
– for any i, ỹ1, . . . , ỹm′+1 ∈ ({τ} ∪ IR>0)∗.

Therefore, for a fixed D = D′ ∪ {j}, and x̃1 = z̃ and x̃2 = z̃′ · ỹ1 and

x̃3 = ỹ2, . . . , x̃m+1 = ỹm′+1 we have that (A, (c, ν))
w

=⇒ (A, (⊗, ν′)). Now, since
Init(A) is well defined, the thesis holds. ⊓⊔

14

4.3 Long–Running Transactions

Sequential and parallel transactions may be composed in order to define com-
plex transactions. Hence, resorting to the patterns of sequential and parallel
transactions, we give the definition of long–running transactions.

Definition 8 (Long–running Transaction). Given activities A1, . . . , An ∈

CHTTAΣP ub

A and compensations B1, . . . , Bn ∈ CHTTAΣP ub

A , a long–running
transaction is given by the following grammar:

T ::= Ai�Bi

∣

∣ T · T
∣

∣ T ||T.

Now, we need to introduce an encoding function [[·]] → A�B that takes in
input a long–running transaction and returns the CHTTAs A and B where A is
the compound CHTTA modeling the transaction and B its compensation. We
define the function [[·]] recursively as follows:

– [[Ai�Bi]] = Ai�Bi,
– [[T1 · T2]] = [[A1�B1 ·A2�B2]]

S�[[B1 ·B2]]
S
C , where Ai�Bi = [[Ti]] for i ∈ [1, 2],

– [[T1||T2]] = [[A1�B1||A2�B2]]
P�[[B1||B2]]

P
C , where Ai�Bi = [[Ti]] for i ∈ [1, 2].

Since the building blocks of the encoding function are the patterns of sequen-
tial and parallel transactions, the correctness of [[·]] is given by Theorems 1– 4.

Given a long–running transaction T , we define the top–level of T (denoted
top(T)) as the CHTTA A such that [[T]] = A�B.

Modeling long–running transactions with CHTTAs allows verifying proper-
ties by model checking. In fact, given a long–running transaction T obtained
as in Definition 8, and a set of visible actions ΣV , we may flatten the CHTTA
top(T) according to Definition 5, and then verify properties of the transaction
by model checking on the timed automaton Flat(top(T), ΣV).

5 Case Study: A Double Request

We model a typical all–or–nothing scenario in which a client performs two con-
current requests to two different servers, waits for replies, and sends back ac-
knowledgements either to both servers (if it receives both replies) or to none of
them (if it receives at most one reply). A similar scenario in a realistic context
is given in [11], where a typical e–commerce application is described in which a
customer of an on–line shop orders two products which are provided by two dif-
ferent stores. In that case, acknowledgements are sent (and products are bought)
only if both products are available, instead, in our case, acknowledgements are
sent only if replies are received before given times.

A single request/reply activity performed by the client is described by the
transaction given in Figure 7 (a). We denote such a transaction with Ai�Bi. The
client sends the request to the server by synchronizing on channel req i and waits
for the reply as a synchronization on channel rep i. The time deadline for the
reply is Ti. This is expressed as a constraint on the value of clock xi which is set

15

stop_i!
x:=0

rep_i?

x<Ti

x>=Ti

cancel_i! req_i?

y:=0

rep_i!

y>Ri

 stop_i?
(a) (b)

req_i!

ack_i?

cancel_i?

ack_2!
(c)

ack_1!

Fig. 7. A Double Request.

to zero when the request is sent. If the reply is received in time, the transaction
commits, otherwise a stop message is sent to the server as a synchronization
on channel stop i, and the transaction is aborted. The compensation of this
transaction consists in a synchronization on channel cancel i, which corresponds
to sending an undo message to the server.

A server is modeled by the automaton given in Figure 7 (b). We denote
such an automaton with Si. The server receives a request and sends the reply
by synchronizing on the proper channels, and it spends a time between these
two synchronizations which is greater than Ri. This amount of time models the
time spent by the server to satisfy the request of the client. Then, the server
reaches a state in which it waits for either an acknowledge or an undo message
from the client. These two communications are modeled as synchronizations on
channels ack i and cancel i, respectively, and lead to commit and abort of the
server activity, respectively.

The activity of sending acknowledgments to two servers S1 and S2 is modeled
by the transaction given in Figure 7 (c). We denote such a transaction with
Aack�Back. Finally, the whole client transaction in which two requests are sent
to two different servers and the corresponding acknowledgments are sent if both
requests are satisfied, is modeled by the long–running transaction T = (A1 �

B1||A2�B2) · Aack�Back and the whole system in which both the client and the
two servers are modeled is SY STEM = T ||S1||S2.

To verify properties of this system, we consider the CHTTA top(T), and
then we compute the flat TTA T ′ = Flat(top(T), ΣV), where ΣV = {a!, a? | a ∈
{reqi, repi, stopi, canceli, acki}}. Now, since S1 and S2 are both flat, we have
that T ′||S1||S2 can be used as an input for the UPPAAL model checker. In
order to reduce the size of the model we remove unnecessary τ transactions, and
in order to avoid the execution of paths containing an infinite sequence of timed
transitions we include time invariants in the states of the automaton modeling
the client.

In Table 1 we show the results of the model checking. We have verified eight
properties, and each property has been verified three times: once by setting
both timeouts T1 and T2 greater than R1 and R2, respectively, once by setting
T1 < R1 and T2 > R2, and once by setting both T1 and T2 smaller than R1 and
R2, respectively.

Properties are expressed as logical formulas using the operators accepted by
the UPPAAL model checker. A logical formula may have one of the following

16

T1 > R1 T1 < R1 T1 < R1

T2 > R2 T2 > R2 T2 < R2

1. A♦(T. ⊙ ∨T.⊗) true true true
2. (A1. ⊗ ∨A2.⊗) T.⊗ true true true
3. (A1. ⊙ ∧A2.⊙) T.⊙ true true true
4. T.⊙ (S1. ⊙ ∧S1.⊙) true true true
5. x1 ≥ T1 T.⊗ true true true
6. x2 ≥ T2 T.⊗ true true true
7. E♦T.⊙ true false false
8. E♦T.⊗ true true true

Table 1. Results of the model checking.

forms: E♦φ,E�φ,A♦φ,A�φ and φ ψ, where φ and ψ are state formulas,
namely conditions which could be satisfied by a state. In particular: E♦φ repre-
sents reachability: it asks whether φ is satisfied by some reachable state; E�φ
says that there should exists a maximal path such that φ is always true; A♦φ
says that φ is eventually satisfied in all paths; A�φ expresses that φ should be
true in all reachable states; finally, φ ψ means that whenever φ is satisfied,
then eventually (in the continuation of the path) ψ will be satisfied.

Properties 1–3 express the correctness of the encoding of long–running trans-
actions into automata. These properties must be satisfied for any setting of the
parameters. In particular, property 1 says that either the commit or the abort
states of the transaction (denoted T.⊙ and T.⊗, respectively) must be eventually
reached. Property 2 requires that if at least one of the abort states of the parallel
activities A1 and A2 is reached, then the whole transaction must reach its abort
state, and property 3 requires that if both parallel activities A1 and A2 reach
their commit states, then the whole transaction must reach its commit state.

Properties 4–7 express the correctness of the modeling of the scenario. As
before, these properties must be satisfied for any setting of the parameters.
Property 4 says that if the transaction reaches a commit state, then eventually
both servers must reach their commit states. Properties 5 and 6, instead, say
that if one of the two clocks of the parallel activities A1 and A2 becomes greater
than its deadline, then the whole transaction must reach its abort state.

Finally, properties 8 and 9 express that the commit and abort states of the
transaction can be reached, for different settings of the parameters. In particular,
the commit state can be reached only if both the timeouts T1 and T2 are greater
than the times R1 and R2 spent by the two servers. The abort state, instead,
can be reached with any setting of the parameters. This is true because R1 and
R2 are lower bounds, hence a server may spend more time than its minimum
time, and may exceed the corresponding deadline in the transaction.

6 Conclusions

We studied some pattern for the composition of activities in long–running trans-
actions. In particular we focused our attention on the sequential and parallel
pattern. In [6] another pattern is identified allowing to deal with nested transac-
tions. Intuitively, a nested transaction is composed by a hierarchy of subtrans-
actions as activities. In the nested pattern, the top–level transaction completes
its activity when all its sub–transactions terminate. When a transaction aborts,

17

all its subtransactions should abort, and the committed subtransactions should
be compensated. Nevertheless, a top–level transaction can commit even though
some of its subtransactions have aborted. In [6] the compensation pattern for
nested transactions is defined by resorting to a stack where the compensations
of each subtransactions are stored when the related activities commit. If, at
some point, the supertransactions needs to be compensated, compensations of
the subtransactions are invoked from the stack.

With the model of CHTTAs given in this paper, we may represent the pattern
of nested transaction by defining a compensation controller which should be put
in parallel with the top–level transaction. While the patterns for sequential and
parallel transactions are expressed in a rather natural way by CHTTAs, it is not
so for the latter mechanism. Hence, we plan to enrich the model of CHTTAs
with a notion of memory to store compensations of committed subtransactions.

References

1. R. Alur and D. L. Dill. “A Theory of Timed Automata”. Theoretical Computer

Science, volume 126, pages 183–235, 1994.

2. R. Alur, S. Kannan, and M. Yannakakis. “Communicating Hierarchical State

Machines”. ICALP’99, LNCS 1644, pages 169–178, 1999.

3. T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David, A. Fehnker,

T. Hune, B. Jeannet, K. G. Larsen, M. O. Moeller, P. Pettersson, C. Weise, and

W. Yi. “Uppaal-now, next and future”. LNCS 2067, pages 99–124, 2000.

4. B. Benatallah and R. Himadi. “A Petri Net–Based Model for Web Service Com-

position”. ADC’03, Australian Computer Society, pages 191–200, 2003.

5. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. “Formalizing Web Services

Choreographies”. WS–FM’04, ENTCS 105, pages 73-94, 2004.

6. R. Bruni, H. Melgratti, and U. Montanari. “Theoretical Foundations for Compen-

sations in Flow Composition Languages”. POPL’05, ACM Press, pages 209–220,

2005.

7. H. Garcia–Molina and K. Salem. “Sagas”. SIGMOD’87, ACM Press, pages 249–

259, 1987.

8. BPEL Specifications: www-128.ibm.com/developerworks/library/ws-bpel/.

9. I. Houston, M.C. Little, I. Robinson, S. K. Shrivastava, and S. M. Wheater. “The

CORBA Activity Service Framework for Supporting Extended Transactions”.

Software — Practice and Experience, volume 33, number 4, pp. 351–373, 2003.

10. C. Laneve and G. Zavattaro. “Foundations of Web Transactions”. FOSSACS’05,

LNCS 3441, pp. 282–298, 2005.

11. M. Mazzara and S. Govoni. “A Case Study of Web Services Orchestration.”.

COORDINATION’05, LNCS 3454, pp. 1–16, 2005.

12. WSCI Specification. Version 1.0. Available at http://www.w3.org/TR/wsci/.

13. M. Viroli. “Towards a Formal Foundation to Orchestration Languages”. WS–

FM’04, ENTCS 105, pages 51–71, 2004.

14. S. Yovine. “Kronos: A verification tool for real-time systems”. International Jour-

nal on Software Tools for Technology Transfer, volume 1, pages 123–133, 1997.

18

