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troina@di.unito.it

The Stochastic Calculus of Looping Sequences is suitable todescribe the evolution of microbiolog-
ical systems, taking into account the speed of the describedactivities. We propose a type system
for this calculus that models how the presence of positive and negative catalysers can modify these
speeds. We claim that types are the right abstraction in order to represent the interaction between el-
ements without specifying exactly the element positions. Our claim is supported through an example
modelling the lactose operon.

1 Introduction

The Calculus of Looping Sequences (CLS for short) [4, 5, 19],is a formalism for describing biological
systems and their evolution. CLS is based on term rewriting,given a set of predefined rules modelling
the activities one would like to describe. The model has beenextended with several features, such as
a commutative parallel composition operator, and some semantic means, such as bisimulations [5, 7],
which are common in process calculi. This permits to combinethe simplicity of notation of rewrite
systems with the advantage of a form of compositionality. A Stochastic version of CLS (SCLS for
short) is proposed in [6]. Rates are associated with rewriterules in order to model the speed of the
described activities. Therefore, transitions derived in SCLS are driven by a rate that models the parameter
of an exponential distribution and characterizes the stochastic behaviour of the transition. The choice
of the next rule to be applied and of the time of its application is based on the classical Gillespie’s
algorithm [15].

Defining a stochastic semantics for CLS requires a correct enumeration of all the possible and distinct
ways to apply each rewrite rule within a term. A single pattern may have several, though isomorphic,
matches within a CLS term. In this paper, we simplify the counting mechanism used in [6] by imposing
some restrictions on the patterns modelling the rewrite rules. Each rewrite rule states explicitly the types
of the elements whose occurrence are able to speed-up or slow-down a reaction. The occurrences of the
elements of these types are then processed by a rate function(instead of a rate constant) which is used
to compute the actual rate of a transition. We show how we can define patterns in our typed stochastic
framework to model some common biological activities, and,in particular, we underline the possibility to
combine the modelling of positive and negative catalysers within a single rule by reproducing a general
case of osmosis.

Finally, as a complete modelling application, we show the expressiveness of our formalism by de-
scribing the lactose operon inEscherichia Coli.

∗This work was partly funded by the project BioBIT of the Regione Piemonte.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 A Type System for a Stochastic CLS

Summary The remainder of this paper is organized as follows. In Section 2 we formally recall the
Calculus of Looping Sequence. In Section 3 we introduce our typed stochastic extension and we give
some guidelines for the modelling of biological systems. InSections 4 we use our framework to model
the lactose operon ofEscherichia Coli. Finally, in Section 5 we draw our conclusions and we present
some related work.

2 The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). CLS is essentially based on term
rewriting, hence a CLS model consists of a term and a set of rewrite rules. The term is intended to
represent the structure of the modelled system, and the rewrite rules to represent the events that may
cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite alphabetE of symbols
ranged over bya,b,c, . . ..

Definition 2.1 (Terms) TermsT andsequencesS ofCLSare given by the following grammar:

T ::= S
∣∣ (S)L ⌋T

∣∣ T |T
S ::= ε

∣∣ a
∣∣ S·S

where a is a generic element ofE , andε represents the empty sequence. We denote withT the infinite
set of terms, and withS the infinite set of sequences.

In CLS we have a sequencing operator· , a looping operator( )L, a parallel composition operator
| and a containment operator⌋ . Sequencing can be used to concatenate elements of the alphabetE .

The empty sequenceε denotes the concatenation of zero symbols. A term can be either a sequence or a
looping sequence (that is the application of the looping operator to a sequence) containing another term,
or the parallel composition of two terms. By definition, looping and containment are always applied
together, hence we can consider them as a single binary operator ( )L ⌋ which applies to one sequence
and one term.

The biological interpretation of the operators is the following: the main entities which occur in
cells are DNA and RNA strands, proteins, membranes, and other macro–molecules. DNA strands (and
similarly RNA strands) are sequences of nucleic acids, but they can be seen also at a higher level of ab-
straction as sequences of genes. Proteins are sequence of amino acids which usually have a very complex
three–dimensional structure. In a protein there are usually (relatively) few subsequences, called domains,
which actually are able to interact with other entities by means of chemical reactions. CLS sequences
can model DNA/RNA strands and proteins by describing each gene or each domain with a symbol of
the alphabet. Membranes are closed surfaces, often interspersed with proteins, which may contain some-
thing. A closed surface can be modelled by a looping sequence. The elements (or the subsequences) of
the looping sequence may represent the proteins on the membrane, and by the containment operator it
is possible to specify the content of the membrane. Other macro–molecules can be modelled as single
alphabet symbols, or as short sequences. Finally, juxtaposition of entities can be described by the parallel
composition of their representations.

Brackets can be used to indicate the order of application of the operators, and we assume( )L ⌋ to
have precedence over| . In Figure 1 we show some examples of CLS terms and their visual represen-
tation, using(S)L as a short-cut for(S)L ⌋ε .

In CLS we may have syntactically different terms representing the same structure. We introduce a
structural congruence relation to identify such terms.
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Figure 1: (i) represents(a·b·c)L; (ii) represents (a·b·c)L ⌋ (d ·e)L; (iii) represents
(a·b·c)L ⌋((d ·e)L | f ·g).

Definition 2.2 (Structural Congruence) The structural congruence relations≡S and≡T are the least
congruence relations on sequences and on terms, respectively, satisfying the following rules:

S1 · (S2 ·S3) ≡S (S1 ·S2) ·S3 S· ε ≡S ε ·S≡S S
S1 ≡S S2 implies S1 ≡T S2 and (S1)

L ⌋T ≡T (S2)
L ⌋T

T1 |T2 ≡T T2 |T1 T1 |(T2 |T3) ≡T (T1 |T2) |T3 T |ε ≡T T
(ε)L ⌋ε ≡T ε (S1 ·S2)

L ⌋T ≡T (S2 ·S1)
L ⌋T

Rules of the structural congruence state the associativityof · and | , the commutativity of the latter
and the neutral role ofε . Moreover, axiom(S1 ·S2)

L ⌋T ≡T (S2 ·S1)
L ⌋T says that looping sequences can

rotate. In the following, for simplicity, we will use≡ in place of≡T .
Rewrite rules will be defined essentially as pairs of terms, with the first term describing the portion

of the system in which the event modelled by the rule may occur, and the second term describing how
that portion of the system changes when the event occurs. In the terms of a rewrite rule we allow the
use of variables. As a consequence, a rule will be applicableto all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these are associated with
the two different syntactic categories of terms and sequences, and one is associated with single alphabet
elements. We assume a set of term variablesT V ranged over byX,Y,Z, . . ., a set of sequence variables
S V ranged over bỹx, ỹ, z̃, . . ., and a set of element variablesX ranged over byx,y,z, . . .. All these sets
are possibly infinite and pairwise disjoint. We denote byV the set of all variables,V = T V ∪S V ∪X ,
and withχ a generic variable ofV . Hence, a pattern is a term that may include variables.

Definition 2.3 (Patterns) PatternsP andsequence patternsSP ofCLSare given by the following gram-
mar:

P ::= SP
∣∣ (SP)L ⌋P

∣∣ P|P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP·SP
∣∣ x̃

∣∣ x

where a is a generic element ofE , and X, x̃ and x are generic elements ofT V ,S V andX , respectively.
We denote withP the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to patterns. Aninstantiationis
a partial functionσ : V →T . An instantiation must preserve the type of variables, thusfor X ∈T V , x̃∈
S V andx∈ X we haveσ(X) ∈ T ,σ(x̃) ∈ S andσ(x) ∈ E , respectively. GivenP∈ P, with Pσ we
denote the term obtained by replacing each occurrence of each variableχ ∈ V appearing inP with the
corresponding termσ(χ). With Σ we denote the set of all the possible instantiations and, givenP∈ P,
with Var(P) we denote the set of variables appearing inP. Now we define rewrite rules.

Definition 2.4 (Rewrite Rules) A rewrite rule is a pair of patterns(P1,P2), denoted with P1 7→P2, where
P1,P2 ∈ P, P1 6≡ ε and such that Var(P2) ⊆Var(P1).
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A rewrite rule P1 7→P2 states that a termP1σ , obtained by instantiating variables inP1 by some
instantiation functionσ , can be transformed into the termP2σ . We define the semantics of CLS as a
transition system, in which states correspond to terms, andtransitions correspond to rule applications.

We define the semantics of CLS by resorting to the notion of contexts.

Definition 2.5 (Contexts) ContextsC are defined as:

C ::= �
∣∣ C|T

∣∣ T |C
∣∣ (S)L ⌋C

where T∈ T and S∈ S . The context� is called theempty context. We denote withC the infinite set
of contexts.

By definition, every context contains a single hole�. Let us assumeC ∈ C , with C[T] we denote
the term obtained by replacing� with T in C. The structural equivalence is extended to contexts in the
natural way (i.e. by considering� as a new and unique symbol of the alphabetE ).

Rewrite rules can be applied to terms only if they occur in a legal context. Note that the general
form of rewrite rules does not permit to have sequences as contexts. A rewrite rule introducing a parallel
composition on the right hand side (asa 7→ b|c) applied to an element of a sequence (e.g.,m·a·m) would
result into a syntactically incorrect term (in this casem· (b|c) ·m). To modify a sequence, a pattern
representing the whole sequence must appear in the rule. Forexample, rulea·x̃ 7→ a| x̃ can be applied
to any sequence starting with elementa, and, hence, the terma·b can be rewritten asa|b, and the term
a·b·c can be rewritten asa|b·c.

The semantics of CLS is defined as follows.

Definition 2.6 (Semantics)Given a finite set of rewrite rulesR, thesemanticsof CLS is the least rela-
tion closed with respect to≡ and satisfying the following rule:

P1 7→ P2 ∈ R σ ∈ Σ P1σ 6≡ ε C ∈ C

C[P1σ ] −→C[P2σ ]

As usual we denote with−→∗ the reflexive and transitive closure of−→.
Given a set of rewrite rulesR, the behaviour of a termT is the tree of terms to whichT may reduce.

Thus, amodelin CLS is given by a term describing the initial state of the system and by a set of rewrite
rules describing all the events that may occur.

3 Typed Stochastic CLS

In this section we show how types are used to enhance the expressivity of CLS. In particular, we use
types to focus on quantitative aspects of CLS, by showing howto model the speeds of the biological
activities.

We classify elements inE with types. Intuitively, given a molecule represented by anelementa in
E , we associate a type to it which specifies the kind of the molecule. For an elementa, we distinguish
between occurrences of a singlea in parallel with other terms, for which we use abasic type t, and
occurrences ofa within a sequence, for which we use asequence typẽt. So, types specify the kind of
elements and their positioning. In the following, with type, we mean either a basic type or a sequence
type and we uset to range over both basic and sequence types. The metavariable τ ranges over multi-sets
of types. Byt ∈n τ we denote that typet occursn times inτ , and⊎ is the union on multisets.
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Let Γ be a type assignment such that fora∈ E , if Γ(a) = t, thent andt̃ are the types fora. The type
of a term (or sequence) is the multiset of types (or sequence types) of its outermost component. This is
formalised in the following definition oftypeof a term andstypeof a sequence.

Definition 3.1 (Mappings typeand stype) The mappings type and stype are defined by induction on
terms and sequences as follows:

• – type((S)L ⌋T) = stype(S)

– type(T1 |T2) = type(T1)⊎ type(T2)

– type(S1 ·S2) = stype(S1 ·S2)

– type(a) = {Γ(a)}

• – stype(S1 ·S2) = stype(S1)⊎stype(S2)

– stype(a) = {Γ̃(a)}

For example ifΓ(a) = ta, Γ(b) = tb and Γ(c) = tc we havetype(a|a|c) = {ta, ta, tc}, type(b · c · c) =
{t̃b, t̃c, t̃c}, type(a|a|c| (b·c·c)L ⌋a) = {ta, ta, tc, t̃b, t̃c, t̃c} andtype((b·c·c)L ⌋a|a|a|c) = {t̃b, t̃c, t̃c}.

Term transitions are labelled with arate r, a real number,T
r
−→ T ′, modelling the speed of the transi-

tion. The numberr depends on the types and multiplicity of the elements interacting.
To compute the rate of transitions we associate to each rule,P 7→P′ the information which is relevant

to the application of the rule. This is expressed by giving:

• for each variableχ in the patternP, the types of the elements that influence the speed of the
application of the rule,

• a weighting function that combines the multiplicity of types on single variables, producing the
final rate.

We provide this information as follows. Given a patternP, let V(P) = 〈χ1, . . . ,χm〉 be the list of (se-
quence, term, and element) variables ofP in left-to-right order of occurrence.

• To eachχi we associate a listΠi = 〈t(i)1 , . . . , t(i)pi 〉 of types,

• Moreover, letφ : Nq → R be a function from a list ofq = ∑1≤i≤m pi integers to a real.

The rewrite rules of ourTyped StochasticCLS (TSCLS for short) are of the shape

P
Π
−→
φ

P′

whereΠ = 〈Π1, . . . ,Πm〉.
For example as discussed in the following subsection the transformation of the elementa into the

elementb inhibited by the presence of the elementc can be described by the rule

a|X
〈〈ta,tc〉〉
−−−−→

φ
b|X (1)

whereφ = λn1n2.
(n1+1)×k

if n2=0 then 1 elsen2×k′ , andk,k′ are the kinetic constant of the state change ofa into b
and the deceleration due to the presence of one inhibitorc, respectively.

We consider local interactions, that is interactions between elements in the same compartment. When
applying a rule, to take into account a whole compartment, weredefine the notion of context by enforcing
the property that the hole of a context embraces a whole compartment as follows:
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Definition 3.2 (Stochastic Contexts)Stochastic ContextsC are defined as:

C ::= �
∣∣ T | (S)L ⌋C

where T∈ T and S∈ S . We denote withS C the infinite set of stochastic contexts.

We can now define the typed semantics.

Definition 3.3 (Typed Stochastic Semantics)Given a finite set of rewrite rulesR, the semanticsof
TSCLSis the least relation closed with respect to≡ and satisfying the following rule:

P1
Π
−→
φ

P2 ∈ R σ ∈ Σ P1σ 6≡ ε C∈ S C

type(σ(χi)) = τi t(i)j ∈
n(i)

j
τi (1≤ j ≤ pi) (1≤ i ≤ m)

r = φ(n(1)
1 , . . . ,n(1)

p1 , · · · ,n(m)
1 , . . . ,n(m)

pm )

C[P1σ ]
r
−→C[P2σ ]

For example, applying rule (1) with the empty context to the terma|a|c we have:

a|a|c
2×k
1×k′
−−→ a|b|c

1×k
1×k′
−−→ b|b|c

and to the terma|a|c| (b·c·c)L ⌋a we have:

a|a|c| (b·c·c)L ⌋a
2×k
1×k′
−−→ a|b|c| (b·c·c)L ⌋a

1×k
1×k′
−−→ b|b|c| (b·c·c)L ⌋a

Applying (1) with the contextε | (b·c·c)L ⌋� to the term(b·c·c)L ⌋a|a|a|c we get:

(b·c·c)L ⌋a|a|a|c
3×k
1×k′
−−→ (b·c·c)L ⌋a|a|b|c

2×k
1×k′
−−→ (b·c·c)L ⌋a|b|b|c

1×k
1×k′
−−→ (b·c·c)L ⌋b|b|b|c

Note that we cannot use Definition 2.5 for contexts, since we would not count correctly the numbers of
elements which influence the speed of transformations. For example, again rule (1) applied to the term
a|a|c with the context� |a|c would produce the wrong transition:

a|a|c
k
−→ a|b|c.

Given the Continuous Time Markov Chain (CTMC) obtained fromthe transition system resulting
from our typed stochastic semantics, we can follow a standard simulation procedure. Roughly speaking,
the algorithm starts from the initial term (representing a state of the CTMC) and performs a sequence
of steps by moving from state to state. At each step a global clock variable (initially set to zero) is
incremented by a random quantity which is exponentially distributed with the exit rate of the current
state as parameter, and the next state is randomly chosen with a probability proportional to the rates of
the exit transitions.

Therace conditiondescribed above implements the fact that, on the lines of Gillespie’s algorithm [15],
when different reactions are competing with different rates, the ones which are not chosen should restart
the competition at the following step.
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3.1 Modelling Guidelines

In the remain of this section we will put at work the TSCLS calculus in order to model biomolecular
events of interest.

• The application rate in the case of thechange of state of an elementary objectis proportional to
the number of objects which are present. For this reason ifta is the type of the objecta andk is
the kinetic constant of the state change ofa into b we can describe this chemical reaction by the
following rewrite rule:

a|X
〈〈ta〉〉
−−−→

φ
b|X

whereφ = λn.(n+1)×k. Using this rule we get for example:

(m)L ⌋(a|a|a)
3k
−→ (m)L ⌋(b|a|a)

(m)L ⌋(a|a·a)
k
−→ (m)L ⌋(b|a·a)

wherem is any membrane.

• In the process ofcomplexation, two elementary objects in the same compartment are combined to
produce a new object. The application rate is then proportional to the product of the numbers of
occurrences of the two objects. Assuming thatta andtb are the types ofa andb we get:

a|b|X
〈〈ta,tb〉〉
−−−−→

φ
c|X

whereφ = λn1n2.(n1 + 1)× (n2 + 1)× k andk is the kinetic constant of the modelled chemical
reaction.

Using the same conventions a similar and simpler rule describesdecomplexation:

c|X
〈〈tc〉〉
−−−→

φ
a|b|X

whereφ = λn.(n+1)×k.

• Another phenomenon which can be easily rendered in our formalism is theosmosisregulating the
quantity of water inside and outside a cell for a dilute solution of non-dissociating substances. In
fact in this case according to [26] the total flow isLp

S
V ∆ψw, whereLp is the hydraulic conductivity

constant, which depends on the semi-permeability properties of the membrane,S is the surface
of the cell,V is the volume of the cell,∆ψw = ψw(ext) − ψw(int) is the difference between the
water potentials outside and inside the cell. The water potential for non-dissociating substances
is the sum of the solute potentialψs = −RTcs (whereR is the gas constant,T is the absolute
temperature andcs is the solute concentration) and the pressure potentialψp (which depends on
the elastic properties of the membrane and on the cell wall).We can therefore consider the rate of
flow of water proportional (via a constantk) to S

V (cs(ext) −cs(int)), where the sign of this real gives
the direction of the flow. The membrane crossing of the element a according to the concentration
of the elementsb inside and outside the cell is given by the pairs of rules:

(x̃)L ⌋(X |a) |Y
〈〈〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−→

φ
(x̃)L ⌋X |a|Y

(x̃)L ⌋X |a|Y
〈〈〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−→

φ ′
(x̃)L ⌋(X |a) |Y
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where
φ = λn1n2n3n4.

S
V × ( n2

(n1+1)Va+n2Vb
− n4

(n3+1)Va+n4Vb
)×k

φ ′ = λn1n2n3n4.
S
V × ( n4

(n3+1)Va+n4Vb
− n2

(n1+1)Va+n2Vb
)×k

andVa,Vb are the volumes of the

elementsa andb, respectively.

Thepositive catalysisof osmosis by the presence of elementsc on the membrane is rendered by:

(x̃)L ⌋(X |a) |Y
〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−−→

φ
(x̃)L ⌋X |a|Y

(x̃)L ⌋X |a|Y
〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−−→

φ ′
(x̃)L ⌋(X |a) |Y

where
φ = λn1n2n3n4n5.(n1×kc +1)× S

V × ( n3
(n2+1)Va+n3Vb

− n5
(n4+1)Va+n5Vb

)×k

φ ′ = λn1n2n3n4n5.(n1×kc +1)× S
V × ( n5

(n4+1)Va+n5Vb
− n3

(n2+1)Va+n3Vb
)×k

andkc is the ac-

celeration due to the presence of one elementc.

Similarly theinhibition of osmosis by the presence of elementsc on the membrane is rendered by:

(x̃)L ⌋(X |a) |Y
〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−−→

φ
(x̃)L ⌋X |a|Y

(x̃)L ⌋X |a|Y
〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉
−−−−−−−−−−→

φ ′
(x̃)L ⌋(X |a) |Y

where
φ = λn1n2n3n4n5.

1
if n1=0 then 1 elsen1×kc

× S
V × ( n3

(n2+1)Va+n3Vb
− n5

(n4+1)Va+n5Vb
)×k

φ ′ = λn1n2n3n4n5.
1

if n1=0 then 1 elsen1×kc
× S

V × ( n5
(n4+1)Va+n5Vb

− n3
(n2+1)Va+n3Vb

)×k
andkc is

the deceleration due to the presence of one elementc.

• If the rule

P1
Π
−→
φ

P2

describes an event, in order to express that this event ispositively catalysedby an elementc we
can modify the rewrite rule as follows.

If P1 ≡ P′
1 |X, the type list ofX is ΠX and the weighting functionφ is λnnX .e, wheren takes into

account the elements occurring inP′
1 andnX takes into account the elements occurring inX, we

define:

– Π′
X as the list whose head istc and whose tail isΠX,

– φ ′ = λnncnX .e× (nc×k+1),

wherek is the acceleration due to the presence of one positive catalyserc. The new rule is obtained
from the old one by replacingΠ′

X andφ ′ to ΠX andφ , respectively.

Otherwise ifP1 6≡ P′
1 |X, the new rule is:

P1 |X
Π⌢

〈〈tc〉〉
−−−−→

φ ′
P2 |X

where⌢ represents list concatenation and ifφ = λn.e, thenφ ′ = λnnc.e× (nc×k+1).

Similarly we can represent the effect of aninhibitor just replacing the inserted multiplications by
divisions. We can also represent in one rule both positive and negative catalysers. For example to

add the effect of a positive catalyserc and an inhibitord to the ruleP1
Π
−→
φ

P2 if P1 ≡ P′
1 |X andΠX,

φ are as above we define:
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– Π′
X = 〈tc, td〉⌢ΠX,

– φ ′ = λnncndnX.e× nc×k+1
if nd=0 then 1 elsend×k′ ,

wherek is the acceleration due to the presence of one positive catalyserc andk′ is the deceleration
due to the presence of one inhibitord.

Otherwise ifP1 6≡ P′
1 |X, the new rule is:

P1 |X
Π⌢

〈〈tc,td〉〉
−−−−−−→

φ ′
P2 |X

where ifφ = λn.e, thenφ ′ = λnncnd.e
nc×k+1

if nd=0 then 1 elsend×k′ .

Looking at the previous examples, we claim that our formalism enlightens better than other formalisms
the duality between the roles of positive and negative catalysers.

4 An Application: The Lactose Operon

To show that our framework can be easily used to model and simulate cellular pathways, we give a model
of the well-known regulation process of the lactose operon in Escherichia coli.

E. coli is a bacterium often present in the intestine of many animals. It is one of the most completely
studied of all living things and it is a favourite organism for genetic engineering. Cultures of E. coli can
be made to produce unlimited quantities of the product of an introduced gene. As most bacteria, E.coli is
often exposed to a constantly changing physical and chemical environment, and reacts to changes in its
environment through changes in the kinds of enzymes it produces. In order to save energy, bacteria do not
synthesize degradative enzymes unless the substrates for these enzymes are present in the environment.
For example, E. coli does not synthesize the enzymes that degrade lactose unless lactose is in the envi-
ronment. This result is obtained by controlling the transcription of some genes into the corresponding
enzymes.

Two enzymes are involved in lactose degradation: thelactose permease, which is incorporated in the
membrane of the bacterium and actively transports the sugarinto the cell, and thebeta galactosidase,
which splits lactose into glucose and galactose. The bacterium produces also thetransacetylaseenzyme,
whose role in the lactose degradation is marginal.

The sequence of genes in the DNA of E. coli which produces the described enzymes, is known as the
lactose operon.

The first three genes of the operon (i, p and o) regulate the production of the enzymes, and the
last three (z, y and a), calledstructural genes, are transcribed (when allowed) into the mRNA for beta
galactosidase, lactose permease and transacetylase, respectively.

The regulation process is as follows (see Figure 2): gene i encodes thelac Repressor, which, in
the absence of lactose, binds to gene o (theoperator). Transcription of structural genes into mRNA is
performed by the RNA polymerase enzyme, which usually bindsto gene p (thepromoter) and scans
the operon from left to right by transcribing the three structural genes z, y and a into a single mRNA
fragment. When the lac Repressor is bound to gene o, it becomes an obstacle for the RNA polymerase,
and the transcription of the structural genes is not performed. On the other hand, when lactose is present
inside the bacterium, it binds to the Repressor and this cannot stop anymore the activity of the RNA
polymerase. In this case the transcription is performed andthe three enzymes for lactose degradation are
synthesized.



10 A Type System for a Stochastic CLS

i p o z y a

R  RNA

Polime-

  rase
NO TRANSCRIPTION

a)

i p o z y a

R

  RNA

Polime-

  rase

b)

LACTOSE

lac Repressor R

 beta-gal.  permease  transacet.

Figure 2: The regulation process in the Lac Operon.

4.1 Typed Stochastic CLS Model

A detailed mathematical model of the regulation process canbe found in [28]. It includes information
on the influence of lactose degradation on the growth of the bacterium.

We give a TSCLS model of the gene regulation process, with stochastic rates taken from [27]. We
model the membrane of the bacterium as the looping sequence(m)L, where the alphabet symbolm
generically denotes the whole membrane surface in normal conditions. Moreover, we model the lactose
operon as the sequencelacI · lacP· lacO· lacZ · lacY · lacA (lacI−A for short), in which each symbol
corresponds to a gene. We replacelacO with RO in the sequence when the lac Repressor is bound to
gene o, andlacP with PP when the RNA polymerase is bound to gene p. When the lac Repressor and
the RNA polymerase are unbound, they are modelled by the symbols repr andpolym, respectively. We
model the mRNA of the lac Repressor as the symbolIrna, a molecule of lactose as the symbolLACT, and
beta galactosidase, lactose permease and transacetylase enzymes as symbolsbetagal, permandtransac,
respectively. Finally, since the three structural genes are transcribed into a single mRNA fragment, we
model such mRNA as a single symbolRna.

The transcription of the DNA, the binding of the lac Repressor to gene o, and the interaction between
lactose and the lac Repressor are modelled by the following set of stochastic typed rewrite rules:

lacI−A|X
〈〈〉〉
−−→

φ
lacI−A| Irna |X (R1)

whereφ = 0.02.

Irna |X
〈〈t〉〉
−−→

φ
Irna | repr|X (R2)

wheret is the type ofIrna andφ = λn.(n+1)×0.1.

lacI−A| polym|X
〈〈t〉〉
−−→

φ
lacI ·PP· lacO· lacZ· lacY · lacA|X (R3)

wheret is the type ofpolymandφ = λn.(n+1)×0.1.

lacI ·PP· lacO· lacZ· lacY · lacA|X
〈〈〉〉
−−→

φ
lacI−A| polym|X (R4)
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whereφ = 0.01.

lacI ·PP· lacO· lacZ · lacY · lacA|X
〈〈〉〉
−−→

φ
lacI−A| polym|Rna|X (R5)

whereφ = 20.

Rna|X
〈〈t〉〉
−−→

φ
Rna|betagal| perm| transac|X (R6)

wheret is the type ofRnaandφ = λn.(n+1)×0.1.

lacI−A| repr|X
〈〈t〉〉
−−→

φ
lacI · lacP·RO· lacZ· lacY · lacA|X (R7)

wheret is the type ofrepr andφ = λn.(n+1)×1.

lacI ·PP· lacO· lacZ· lacY · lacA| repr|X
〈〈t〉〉
−−→

φ
lacI ·PP·RO· lacZ· lacY · lacA|X (R8)

wheret is the type ofrepr andφ = λn.(n+1)×1.

lacI · lacP·RO· lacZ· lacY · lacA|X
〈〈〉〉
−−→

φ
lacI−A| repr|X (R9)

whereφ = 0.01.

lacI ·PP·RO· lacZ· lacY · lacA|X
〈〈〉〉
−−→

φ
lacI ·PP· lacO· lacZ· lacY · lacA| repr|X (R10)

whereφ = 0.01.

repr|LACT |X
〈〈tr ,tl 〉〉
−−−−→

φ
RLACT|X (R11)

wheretr andtl are the types ofrepr andLACT andφ = λn1n2.(n1 +1)× (n2+1)×0.005.

RLACT|X
〈〈t〉〉
−−→

φ
repr|LACT|X (R12)

wheret is the type ofRLACTandφ = λn.(n+1)×0.1.
Rules (R1) and (R2) describe the transcription and translation of gene i into the lac Repressor (as-

sumed for simplicity to be performed without the intervention of the RNA polymerase). Rules (R3) and
(R4) describe binding and unbinding of the RNA polymerase togene p. Rules (R5) and (R6) describe the
transcription and translation of the three structural genes. Transcription of such genes can be performed
only when the sequence containslacO instead ofRO, that is when the lac Repressor is not bound to gene
o. Rules (R7)-(R10) describe binding and unbinding of the lac Repressor to gene o. Finally, rules (R11)
and (R12) describe the binding and unbinding, respectively, of the lactose to the lac Repressor.

The following rules describe the behaviour of the three enzymes for lactose degradation:

(x̃)L ⌋(perm|X) |Y
〈〈〉,〈t〉,〈〉〉
−−−−−→

φ
(perm·x̃)L ⌋X |Y (R13)

wheret is the type ofpermandφ = λn.(n+1)×0.1.
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(x̃)L ⌋X |LACT|Y
〈〈t̃p〉,〈〉,〈tl 〉〉
−−−−−−→

φ
(x̃)L ⌋(LACT|X) |Y (R14)

wheretp andtl are the types ofpermandLACT, respectively, andφ = λn1n2.n1× (n2 +1)×0.001.

LACT|X
〈〈tl ,tb〉〉
−−−−→

φ
GLU |GAL|X (R15)

wheretl andtb are the types ofLACT andbetagal, andφ = λn1n2.(n1 +1)×n2×0.001.
Rule (R13) describes the incorporation of the lactose permease in the membrane of the bacterium,

rule (R14) the transportation of lactose from the environment to the interior performed by the lactose
permease, and rule (R15) the decomposition of the lactose into glucose (denoted GLU) and galactose
(denoted GAL) performed by the beta galactosidase.

The initial state of the bacterium when no lactose is presentin the environment and when 100
molecules of lactose are present are modelled, respectively, by the following terms (wheren×T stands
for a parallel compositionT | . . . |T of lengthn):

Ecoli ::= (m)L ⌋(lacI−A|30× polym|100× repr) (2)

EcoliLact ::= Ecoli|100×LACT (3)

Now, starting from the termEcoliLact, a possible stochastic trace generated by our semantics, given
the rules above, is1:

EcoliLact
R3, 30×0.1
−−−−−−→ 100×LACT| (m)L ⌋(lacI ·PP· lacO· lacZ· lacY · lacA|29× polym|100× repr)

R5, 20
−−−→ 100×LACT| (m)L ⌋(lacI−A|30× polym|100× repr|Rna)

R6, 0.1
−−−−→ 100×LACT| (m)L ⌋(lacI−A|30× polym|100× repr|Rna|betagal| perm| transac)

R13, 0.1
−−−−→ 100×LACT| (perm·m)L ⌋(lacI−A|30× polym|100× repr|Rna|betagal| transac)

R14, 100×0.001
−−−−−−−−−→ 99×LACT| (perm·m)L ⌋(lacI−A|30× polym|100× repr|Rna|betagal| transac|LACT)

R15, 0.001
−−−−−−→99×LACT| (perm·m)L ⌋(lacI−A|30× polym|100×repr|Rna|betagal| transac|GLU |GAL)

5 Conclusions and Related Work

This paper is a first proposal for using types in describing quantitative aspects of biological systems.
Types for qualitative properties of the CSL calculus have been studied in [2] and [14]. We plan to
develop a prototype simulator for our calculus TSCLS in order to experimentally test the expressiveness
of our formalism. This would make possible to compare quantitatively the approach presented in this
paper, with the one of [6].

In the remaining of this section we will put our paper in the framework of qualitative and quantitative
models of biological systems.

1For simplicity we just show the rate of the transition reaching the target state considered in the trace. We avoid to report
explicitly the whole exit rate from a given term, which should be computed, following the standard simulation algorithm, by
summing up the rates for all the possible target states. For the sake of readability, we also show, on the transitions, thelabels of
the rules leading the state change.
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Qualitative Models. In the last few years many formalisms originally developed by computer scientists
to model systems of interacting components have been applied to Biology. Among these, there are Petri
Nets [18], Hybrid Systems [1], and theπ-calculus [11, 25]. Moreover, new formalisms have been defined
for describing biomolecular and membrane interactions [4,9, 10, 13, 22, 24]. Others, such as P-Systems
[21], have been proposed as biologically inspired computational models and have been later applied to
the description of biological systems.

Theπ-calculus and new calculi based on it [22, 24] have been particularly successful in the descrip-
tion of biological systems, as they allow describing systems in a compositional manner. Interactions
of biological components are modelled as communications onchannels whose names can be passed;
sharing names of private channels allows describing biological compartments.

These calculi offer very low-level interaction primitives, but may cause the description models to
become very large and difficult to read. Calculi such as thoseproposed in [9, 10, 13] give a more
abstract description of systems and offer special biologically motivated operators. However, they are
often specialized to the description of some particular kinds of phenomena such as membrane interactions
or protein interactions.

P-Systems [21] have a simple notation and are not specialized to the description of a particular class
of systems, but they are still not completely general. For instance, it is possible to describe biological
membranes and the movement of molecules across membranes, and there are some variants able to
describe also more complex membrane activities. However, the formalism is not so flexible to allow
describing easily new activities observed on membranes without extending the formalism to model such
activities.

Danos and Laneve [13] proposed theκ-calculus. This formalism is based on graph rewriting where
the behaviour of processes (compounds) and of set of processes (solutions) is given by a set of rewrite
rules which account for, e.g., activation, synthesis and complexation by explicitly modelling the binding
sites of a protein.

The Calculus of Looping Sequences [4] has no explicit way to model protein domains (however
they can be encoded, and a variant with explicit binding has been defined in [3]), but accounts for an
explicit mechanism (thelooping sequences) to deal with compartments and membranes. Thus, while the
κ-calculus seems more suitable to model protein interactions, CLS allows for a more natural description
of membrane interactions. Another feature lacking in otherformalisms is the capacity to express ordered
sequences of elements. To the best of our knowledge, CLS is the first formalism offering such a feature
in an explicit way, thus allowing to naturally operate over proteins or DNA fragments which should be
frequently defined as ordered sequences of elements.

Stochastic Models. Among stochastic process algebras we would like to mention the stochastic ex-
tension of theπ-calculus, given by Priami et al. in [23], and the PEPA framework proposed by Hillston
in [16]. We also would like to compare our work with two closerones, namely [6] and [8].

The stochastic engine behind PEPA and the Stochasticπ-calculus is constructed on the intuition of
cooperating agents under different bandwidth limits. If two agents are interacting, the time spent for a
communication is given by the slowest of the agents involved. Differently, our stochastic semantics is
defined in terms of the collision-based paradigm introducedby Gillespie. A similar approach is taken
in the quantitative variant of theκ-calculus ([12]) and in BioSPi ([23]). Motivated by the law of mass
action, here we need to count the number of the reactants present in a system in order to compute the
exact rate of a reaction. In [17], a stochastic semantics forbigraphs has been developed. An application
in the field of systems biology has been provided by modellinga process of membrane budding.
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A stochastic semantics for CLS (SCLS) has been defined in [6].Such a semantics computes the
transition rates by resorting to a complete counting mechanism to detect all the possible occurrences of
patterns within a term. In our framework, the set of rule schemata that can be defined is limited with
respect to SCLS, however, our counting mechanism, based on types, is quite more simple in practice.
This would simplify, for example, the development of automatic simulators. As another advantage,
our rules, similar to what happens in [8] for a variant of the ambient calculus, are equipped with rate
functions, rather than with rate constants. Such functionsmay allow the definition of kinetics that are
more complex than the standard mass-action ones.

Bioambients, [24], is a calculus in which biological systems are modelled using a variant of the
ambient calculus. In Bioambients both membranes and elements are modelled by ambients, and activities
by capabilities (enter, exit, expel, etc.). In [8], Bioambients are extended by allowing the rates associated
with rules to be context dependent. Dependency is realized by associating to a rule a function which is
evaluated when applying the rule, and depends on the contextof the application. The context contains
(as for our stochastic contexts) the state of the sibling ambients, that is the ambients in parallel in the
innermost enclosing ambient (membrane). The property of the context used to determine the value of
the function is its volume that synthesizes (with a real number) the elements present in the context. In
Section 3 we sketched the representation of osmosis in our framework: the same example is presented
with all details in [8]. However, our modelling is more general allowing to focus more selectively on
context, and specifying functions that may also cause inhibition.

Finally MGS,http://mgs.spatial-computing.org/, is a domain specific language for simula-
tion of biological processes. The state of a dynamical system is represented by a collection. The elements
in the collection represent either entities (a subsystem oran atomic part of the dynamical system) or mes-
sages (signal, command, information, action, etc.) addressed to an entity. The dynamics is defined by
rewrite rules specifying the collection to be substituted through a pattern language based on the neigh-
borhood relationship induced by the topology of the collection. It is possible to specify stochastic rewrite
strategies. In [20], this feature is used to provide the description of various models of the genetic switch
of theλ phage, from a very simple biochemical description of the process to an individual-based model
on a Delaunay graph topology. Note that, in MSG, the topological changes are programmed in some
external language, whereas in CLS they are specified directly by the rewrite rules.
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