
Weak Bisimulation for
Probabilistic Timed Automata ?

Ruggero Lanotte1, Andrea Maggiolo-Schettini2, and Angelo Troina3

1 Dipartimento di Informatica e Comunicazione
Università dell’Insubria

Via Carloni 78, 22100 Como, Italy
ruggero.lanotte@uninsubria.it

2 Dipartimento di Informatica - Università di Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italy

maggiolo@di.unipi.it
3 Dipartimento di Informatica - Università di Torino

Corso Svizzera 185, 10149 Torino, Italy
troina@di.unito.it

Abstract. We are interested in describing timed systems that exhibit probabilistic
behaviour. To this purpose, we consider a model of Probabilistic Timed Automata and
introduce a concept of weak bisimulation for these automata, together with an algorithm
to decide it. The weak bisimulation relation is shown to be preserved when either time,
or probability are abstracted away. As an application, we use weak bisimulation for
Probabilistic Timed Automata to model and analyze a timing attack on the dining
cryptographers protocol.

1 Introduction

The application of formal methods to the development of validated systems mainly concen-
trates on specification languages, with semantics adequate to support implementation and
verification, and methods and tools for verifying specifications with respect to properties
expressed in suitable formalisms.

Models based on the concept of states and transitions, also called automata, have turned
out to be particularly intuitive. States of the automaton represent snapshots of the described
system, while transitions represent state changes.

Basic formalisms allow describing the nondeterministic approximation (sometimes called
possibilistic) behaviour of a system. This is enough to model the functionality of systems,
and hence to capture the qualitative behaviour, but if one wants to capture also quantitative
aspects, such as time or frequency-dependent properties, formalisms must be extended with
real-time and probabilistic features. Hence, in systems that model quantitative processes,
steps are associated with a given quantity, such as the probability that the step will happen
or the resources (e.g. time or cost) needed to perform that step.

Timed Automata have been introduced by Alur and Dill [3] as an extension of ω-
Automata to describe real-time systems. Timed Automata are equipped with variables
measuring time, called clocks. Transitions are guarded by clock constraints, which com-
pare the value of a clock with some constant, and by reset updates, which reset a clock to

? A Preliminary version of this paper has appeared in the Proceedings of the 1st Int. Conference on
Software Engineering and Formal Methods (SEFM’03) (see [38]).
This work has been partially carried out during the third author’s postdoc at Laboratoire
d’Informatique (École Polytechnique) and Laboratoire Spécification et Vérification (École Nor-
male Supérieure de Cachan) supported by the INRIA/ARC project ProNoBiS: Probability and
Nondeterminism, Bisimulations and Security.

the initial value 0. The range of application of analysis through Timed Automata is par-
ticularly wide [4, 6, 12, 14, 40, 41]. Extensions with probability have been proposed (e.g. in
[11], [35] and [36]) and may be used to describe real-time systems exhibiting a probabilistic
behaviour.

In general, behavioural equivalences may be used to verify a property of a system by
assessing the equivalence of the considered system with a system one knows to enjoy the
property. Just as an example, the problem of formalising the notion of confidentiality could
be boiled down to that of verifying equivalence of processes (see [24, 52], where equivalence
relations are used to test whether two systems cannot be distinguished by an intruder). This
is a central and difficult question at the heart of computer science to which there is no unique
answer. Which notion of equivalence is appropriate depends on the context and application.
For example, one should not be surprised that the information security community has
failed to come up with a consensus on what constitutes confidentiality. In [24], however,
bisimulation equivalences have been successfully used for the analysis of information flow
security properties in multilevel systems. They are fine enough to capture any unsecure
behaviour that can give rise to information flow, but not so strict to classify as unsecure
behaviours which are instead correct.

Most of the time one wants to assess bisimilarity considering as silent (non observable)
system internal moves. This kind of equivalence relations, called weak bisimulations, offer
several advantages: they exploit abstraction from internal computation, in the process alge-
braic domain they are usually compositional with respect to parallel composition and other
operators, and they can be exploited to minimize components with respect to their internal
behaviour.

In this paper, we introduce a notion of weak bisimulation which combines some re-
sults from real-time and probabilistic models. We consider a model of Probabilistic Timed
Automata inspired by the models in [11, 35, 2], where schedulers [35] are used in order to
resolve the nondeterministic choices. We define a weak bisimulation equivalence relation for
this model and we prove its decidability. The algorithm we propose is based on the well es-
tablished partitioning technique [48, 33], where large classes of potentially equivalent states
are refined into smaller ones. More precisely, we partition the equivalence classes composed
by the timed regions [2] of a Probabilistic Timed Automaton when they contain configu-
rations from which it is possible to reach a certain class with different probabilities. In a
certain sense, such a methodology extends the technique of [20] for real-time systems, in
order to combine it with the one for probabilistic systems in [7].

On the one hand, a notion of weak bisimulation for Probabilistic Timed Automata allows
to prove behaviour inclusion (hence to define behavioural properties) for systems where both
probability and time play a role. As we will show in the last section, one may, for exam-
ple, define bisimulation based properties in order to capture timing attacks in probabilistic
protocols. As another example, in [39, 42] we developed a framework based on behavioural
equivalence to analyze information flow security properties for Probabilistic Timed Au-
tomata. In particular, we were able to describe systems exhibiting a covert channel due to
the combination of probability and time, that neither a formalism with only probability nor
a formalism with only time can express.

On the other hand, weak bisimulation can be used as a minimization technique for
reducing the state space of a system. Actually, automata based formalisms are amenable
to formal analysis such as model checking, and state space reduction is one of the main
research issues in that field.

From the computational point of view, we prove that strong and weak bisimulations
are decidable, respectively, in exponential and double exponential time on the size of the
Probabilistic Timed Automaton. These results are in agreement with the results for the

2

untimed version. Actually strong and weak bisimulations are decidable in polynomial and
exponential time, respectively, for the class of Probabilistic Automata, but the region graph
has an exponential size with respect to the size of the considered Timed Automaton. More-
over, the algorithm we propose uses a symbolic representation for checking bisimilarity. To
the best of our knowledge this is the first paper that gives an algorithm for deciding weak
bisimulation that makes use of a symbolic representation.

1.1 Summary

The remainder of this paper is organized as follows. In Section 2 we recall some basic defini-
tions of Labeled Transition Systems, Probabilistic Automata and Timed Automata, together
with notions of weak bisimulations in the different models. We show that weak bisimulation
for Probabilistic Automata and Timed Automata is preserved in the purely nondeterministic
model obtained by abstracting away from probabilities and time. In Section 3 we introduce
the framework of Probabilistic Timed Automata, we define their semantics, introduce the
weak bisimulation relation, and again show that weak bisimulation is preserved with respect
to the models of Timed Automata and Probabilistic Automata. In Section 4 we give a deci-
sion procedure based on backward analysis for verifying the weak bisimulation relation for
the model of Probabilistic Timed Automata, and we develop the theory needed for assessing
the correctness of our procedure. As a toy-example, in Section 6 we use the means we have
developed, to model and capture a timing attack on the dining cryptographers protocol.
Finally, in Section 8 we draw some conclusions.

2 Preliminaries

The models used in this paper are all based on Labeled Transition Systems (LTSs), also
called automata. These have turned out to be an intuitive and powerful framework for the
analysis of concurrent systems, and they have been extended with probability and time.

Different types of LTSs give rise to different notions of external behaviour. Informally,
the external behaviour of an LTS, also called visible behaviour, is given by its sequences
of external actions. A special invisible action τ is considered. The external behaviour of a
timed LTS (Timed Automaton) also considers the passage of time as an externally observable
action. In probabilistic LTSs (Probabilistic Automata) the probability of performing each
action is taken into account. Actually, the measure is associated with each measurable set
of sequences of actions.

We may show that the external behaviour of an automaton is contained in or is equal to
the external behaviour of another one by proving behaviour inclusion or equality. However,
this is a rather complex task. In this case, simulation and bisimulation relations can be
extremely useful. These relations compare the stepwise behaviour of systems and when two
systems are shown to be bisimilar, then there is also behaviour inclusion. Intuitively, the
idea behind bisimilar states is that each step one of them may take, can be mimicked by
the other.

2.1 The Possibilistic Model

We recall some basic notions of finite Labeled Transition Systems together with a notion of
weak bisimulation.

Definition 1. A Labeled Transition System (LTS) is a tuple A = (Σ, Q, q0, δ), where Σ is
a set of labels, Q is a finite set of states with q0 ∈ Q the initial one. The set of transitions
is given by δ ⊆ Q× (Σ ∪ {τ})×Q, where τ represents an internal silent move.

3

Notice that we use the special symbol τ (not contained in Σ) to denote internal (unla-
beled) actions.

Given two states qi, qj ∈ Q of A = (Σ, Q, q0, δ), there is a step from qi to qj labeled with
a (denoted qi

a−→ qj) if (qi, a, qj) ∈ δ. With ST we denote the set of terminal states of A,
namely ST = {q ∈ Q | ∀q′ and ∀a ∈ Σ ∪ τ, (q, a, q′) 6∈ δ}.

An execution fragment of A is a finite sequence of steps σ = q0
a1−→ q1

a2−→ . . .
ak−→ qk,

where q0, . . . , qk ∈ Q and ai ∈ Σ ∪ {τ}. With ExecFragA we denote the set of execution
fragments of A, and with ExecFragA(q) we denote the set of execution fragments of A
starting from q. We define last(σ) = qk and |σ| = k. For any j ≤ |σ|, with σj we define the
sequence of steps q0

a1−→ q1
a2−→ . . .

aj−→ qj . The execution fragment σ is called maximal iff
last(σ) ∈ ST .

An execution of A is either a maximal execution fragment or an infinite sequence of steps
q0

a1−→ q1
a2−→ . . ., where q0, q1 . . . ∈ Q and a1, a2, . . . ∈ Σ ∪ {τ}. We denote with ExecA the

set of executions of A and with ExecA(q) the set of executions of A starting from q. Finally,
with σ↑ we denote the set of executions σ′ such that σ ≤prefix σ′, where ≤prefix is the usual
prefix relation over sequences.

Example 1. In Figure 1 we show an example of LTS. From the initial state q0, the LTS
may perform transition e1 labeled with b reaching state q1 or it can nondeterministically
perform transitions e2 and e3, labeled with a and leading to states q2 and q3, respectively.
An example of execution of the LTS in Figure 1 is σ = q0

a−→ q2.

µ´
¶³?

q0¾ b

µ´
¶³

q1 -
a

µ´
¶³

q2©©©©©©©©*a µ´
¶³

q3

e1 = (q0, b, q1)
e2 = (q0, a, q2)
e3 = (q0, a, q3)

Fig. 1. Example of LTS.

Behavioural Equivalence As a relation of observational equivalence for LTS, we now
introduce the notion of weak bisimulation [46].

The bisimilarity of two systems is based on the idea of mutual step-by-step simulation.
Intuitively, two systems A and A′ are bisimilar, if whenever one of the two systems executes
a certain action and reaches a state q, the other system is able to simulate this single step
by executing the same action and reaching a state q′ which is again bisimilar to q. A weak
bisimulation is a bisimulation which abstracts away from τ (internal) moves. In this sense,
whenever a system simulates an action of the other system, it can also execute some internal
τ actions before and after the execution of that action.

In order to abstract away from τ moves, Milner [46] introduced the notion of observable
step, which consists of a single visible action a preceded and followed by an arbitrary number
(including zero) of internal moves. Such moves are described by a weak transition relation
=⇒, defined as a=⇒= (τ−→)∗ a−→ (τ−→)∗, where −→ is the classical strong relation, and

4

τ=⇒= (τ−→)∗. It is worth noting that, with such a definition, a weak internal transition τ=⇒
is possible even without performing any internal action.

Definition 2. Let A = (Σ,Q, q0, δ) be a LTS. A weak bisimulation on A is an equivalence
relation R ⊆ Q×Q such that for all (p, q) ∈ R and ∀a ∈ Σ ∪ {τ} it holds that:

– if p
a−→ p′, then there exists q′ such that q

a=⇒ q′ and (p′, q′) ∈ R;
– conversely, if q

a−→ q′, then there exists p′ such that p
a=⇒ p′ and (p′, q′) ∈ R.

Two states p, q are called weakly bisimilar on A (denoted p ≈A q) iff (p, q) ∈ R for some
weak bisimulation R.

Two LTSs A = (Σ,Q, q0, δ) and A′ = (Σ′, Q′, q′0, δ′), such that Q ∩ Q′ = ∅, are called
weakly bisimilar (denoted by A ≈ A′) if, given the LTS

Â = (Σ ∪Σ′, Q ∪Q′ ∪ {q̂}, q̂, δ ∪ δ′ ∪ {(q̂, τ, q0), (q̂, τ, q′0)}),

it holds q0 ≈Â q′0.

Note that it is always possible to obtain Q ∩Q′ = ∅ by state renaming.

Example 2. Let A be the LTS in Figure 1 and A′ be the LTS in Figure 2. It holds that
A ≈ A′. Intuitively, from the initial states q0 and r0 the two LTSs may either perform a step
labeled with a or b and then reach a state where no other visible steps may be performed.

µ´
¶³?

r0¾ b

µ´
¶³

r1 -
a

µ´
¶³

r2 -
τ

µ´
¶³

r3

Fig. 2. Example of Weak Bisimulation for LTSs.

2.2 The Probabilistic Model

We introduce the formalism for probabilistic systems together with a notion of weak bisimu-
lation. We also show how to remove probabilities in order to get a nondeterministic system,
and that weak bisimulation is preserved when reducing to the possibilistic model. We shall
use the same terminology for operators and bisimulation in the different models when this
does not give rise to ambiguity.

Our probabilistic model is a slight variant of the Markov Decision Processes (MDPs)
of [9, 30] and the Probabilistic Automata of [53, 56].

Actually, we give a definition of Probabilistic Automata which is a bit closer to the one
of MDPs, where probability distributions are defined over the set of transitions. Intuitively,
our definition derives from the effort to find the more natural way to add probabilities to a
given LTS (we take the definition for LTSs and spread probabilities over transitions). This
choice, while requiring some particular attention in the definition of the semantics, allows
for a simple and intuitive backward reconstruction of the original LTS by simply removing
probabilities from a PA.

In [53, 56], instead, probability distributions are defined over the set of target states
and associated with each transition. It is possible, however, to give translations from these
models to ours, and viceversa.

5

Definition 3. A Probabilistic Automaton (PA) is a tuple A = (Σ,Q, q0, δ,Π), where:

– Σ is a finite alphabet of actions;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– δ ⊆ Q× (Σ ∪ {τ})×Q is a finite set of transitions;
– Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1],

for any i = 1, . . . , n, where πi(e) is the probability of performing transition e according
to distribution πi.

For a state q of a PA, we denote with δ(q) the set of transitions with q as source state,
i.e. the set {(q1, a, q2) ∈ δ | q1 = q}. We require that

∑
e∈δ(q) πi(e) = 1 for any i and q.

Moreover, we assume that for all ej there exists some πi such that πi(ej) > 0.

Transition steps, execution fragments and executions of a PA are defined as for LTSs.
The probability of executing a transition step from a state q is chosen, among all the

transitions in δ(q), according to the values returned by some distribution π.
Intuitively, the probability distribution of a transition step is chosen nondeterministically.

Hence, executions and execution fragments of a PA arise by resolving both the nondeter-
ministic and the probabilistic choices [35]. We need a notion of scheduler to resolve the
nondeterminism that arises when choosing a distribution π within the set Π.

A scheduler of a PA A is a partial function F assigning a distribution π ∈ Π to each
finite sequence σ in ExecFragA. Namely, F : ExecFragA → Π. Given a scheduler F and
an execution fragment σ, we assume that F is defined for σ if and only if ∃q ∈ Q and
a ∈ Σ ∪ {τ} such that last(σ) a−→ q.

For a scheduler F we define ExecFragF
A (resp. ExecF

A) as the set of execution fragments
(resp. executions) σ = q0

a1−→ q1
a2−→ q2

a3−→ . . . of A such that, for any i, πi((qi−1, ai, qi)) > 0
where πi = F (σi−1).

Given a scheduler F and an execution fragment σ = q0
a1−→ q1

a2−→ q2
a3−→ . . .

ak−→ qk

in ExecFragF
A , if k = 0 we put PF

A (σ) = 1, else, if k ≥ 1, we define PF
A (σ) = PF

A (σk−1) ·
F (σk−1)(e), where e = (qk−1, ak, qk).

Assuming the basic notions of probability theory (see e.g. [25, 53]), we define the proba-
bility space on the executions starting from a given state q ∈ Q, as follows. Given a scheduler
F , let ExecF

A(q) be the set of executions in ExecF
A starting from q, ExecFragF

A(q) be the set
of execution fragments in ExecFragF

A starting from q, and σFieldF
A(q) be the smallest sigma

field on ExecF
A(q) that contains the basic cylinders σ↑, where σ ∈ ExecFragF

A(q). The prob-
ability measure ProbF

A is the unique measure on σFieldF
A(q) such that ProbF

A(σ↑) = PF
A (σ).

Given a scheduler F , a state q and a set of states Q′ ⊆ Q, with ExecF
A(q, Q′) we denote

the set of executions starting from q that cross a state in the set Q′. Namely, ExecF
A(q, Q′) =

{σ ∈ ExecF
A(q) | last(σi) ∈ Q′, for some i}.

If a PA does not allow nondeterministic choices it is said to be fully probabilistic.

Definition 4. Given a PA A = (Σ, Q, q0, δ,Π), we say that A is fully probabilistic if
|Π| = 1.

Example 3. In Figure 3 we show an example of PA with Π = {π}. Intuitively, from the
initial state q0, the PA performs probabilistically transitions e1, e2 or e3 with probabilities
1
6 , 1

3 and 1
2 , respectively. Note that |Π| = 1, thus the PA is fully probabilistic. As a con-

sequence, nondeterministic choices are not performed since every scheduler can return the
only distribution π.

Examples of executions of the PA in Figure 3 are σ1 = q0
a−→ q3 and σ2 = q0

b−→ q1

with P (σ1) = 1
2 (We may omit indexes A and F from PF

A (σ) when this does not give rise
to ambiguity) and P (σ2) = 1

6 . To make the presentation easier to understand, when there

6

is just one probability distribution, we put probabilities also on the arcs of the automaton.
Note, however, that probabilities are not a part of the transition label.

µ´
¶³?

q0¾ b, 1
6

µ´
¶³

q1 -
a, 1

3

µ´
¶³

q2©©©©©©©©*a, 1
2 µ´

¶³
q3

e1 = (q0, b, q1) π(e1) = 1
6

e2 = (q0, a, q2) π(e2) = 1
3

e3 = (q0, a, q3) π(e3) = 1
2

∑
e∈δ(q0)

π(e) = 1

Fig. 3. Example of PA.

The next proposition derives from results in [15].

Proposition 1. Let A1 and A2 be two PAs and Q1 and Q2 be two subsets of states of A1 and
A2, respectively. It is decidable in exponential time whether for any scheduler F of A1 there
exists a scheduler F ′ of A2 such that ProbF

A1
(ExecF

A1
(q1, Q1)) = ProbF ′

A2
(ExecF ′

A2
(q2, Q2)),

where q1 and q2 are states of A1 and A2, respectively. If for any σ ∈ ExecF
A1

(q1, Q1) ∪
ExecF ′

A2
(q2, Q2) it holds that last(σ1) ∈ Q1∪Q2, then the problem is decidable in polynomial

time.

Behavioural Equivalence For the definition of weak bisimulation in the fully probabilistic
setting, Baier and Hermanns [7] replace Milner’s weak internal transitions q

τ=⇒ q′ by the
probability Prob(q, τ∗, q′) of reaching state q′ from q via internal moves. Similarly, for visible
actions a, Baier and Hermanns define q

a=⇒ q′ by means of the probability Prob(q, τ∗aτ∗, q′).
As already mentioned, the probabilistic model we obtain for PAs, when a scheduler is given
that resolves the nondeterministic choices, is that of fully probabilistic systems.

Hence, the definition of weak bisimulation for PAs is inspired by the ones in [7, 1].
The only difference is given by the introduction of schedulers in order to obtain a fully
probabilistic model.

In the following, q ∈ Q is a state of A, C ⊆ Q a set of states and â stands for a if a ∈ Σ
and for ε (the empty string) if a = τ .

Let ExecF
A(q, τ∗âτ∗, C) be the set of executions that lead to a state in C via a sequence be-

longing to the set of sequences τ∗âτ∗ starting from state q and crossing the states equivalent
to q. We define the probability ProbF

A(q, τ∗âτ∗, C) = ProbF
A(ExecF

A(q, τ∗âτ∗, C)).
Definition 5. Let A = (Σ, Q, q0, δ,Π) be a PA. A weak bisimulation on A is an equivalence
relation R on Q such that, for all schedulers F and (q, q′) ∈ R, there exists a scheduler F ′

such that for all C ∈ Q/R and a ∈ Σ ∪ {τ} it holds:

ProbF
A(q, τ∗âτ∗, C) = ProbF ′

A (q′, τ∗âτ∗, C)
and vice versa.
Two states q, q′ are called weakly bisimilar on A (denoted q ≈A q′) iff (q, q′) ∈ R for some
weak bisimulation R.

7

As for LTSs, in order to define weak bisimulation for PAs we resort to a disjoint sum of
automata.

Definition 6. Let A = (Σ, Q, q0, δ,Π) and A′ = (Σ′, Q′, q′0, δ′,Π ′) be two PAs such that
Q ∩Q′ = ∅. Consider the PA

Â = (Σ ∪Σ′, Q ∪Q′ ∪ {q̂}, q̂, δ ∪ δ′ ∪ {(q̂, τ, q0), (q̂, τ, q′0)}, Π̂),

where, π̂1, π̂2 ∈ Π̂ such that π̂1(e) = 1 if e = (q̂, τ, q0), 0 otherwise, and π̂2(e) = 1 if
e = (q̂, τ, q′0), 0 otherwise; moreover, for each couple (π, π′) ∈ Π ×Π ′, π̂ ∈ Π̂ such that

π̂(e) =

{
π(e) if e ∈ δ
π′(e) if e ∈ δ′.

A and A′are weakly bisimilar (denoted by A ≈ A′) if it holds q0 ≈Â q′0.

Note that each distribution π̂ is well defined since Q ∩Q′ = ∅ implies δ ∩ δ′ = ∅.

Example 4. Let A′ be the PA in Figure 4, and A the PA in Figure 3. We have that A 6≈ A′

since from the initial state q0, PA A may perform a step labeled with b and reach a terminal
state with probability 1

6 , while from r0, PA A′ reaches a terminal state through a transition
labeled with b with probability 1

3 .

µ´
¶³?

r0¾ b, 1
3

µ´
¶³

r1 -
a, 1

3

µ´
¶³

r2©©©©©©©©*a, 1
3 µ´

¶³
r3

e1 = (r0, b, r1) π(e1) = 1
3

e2 = (r0, a, r2) π(e2) = 1
3

e3 = (r0, a, r3) π(e3) = 1
3

∑
e∈δ(r0)

π(e) = 1

Fig. 4. Example of Weak Bisimulation for PAs.

Removing Probabilities Given a PA A, we call possibilistic abstraction of A (written
unprob(A)) the LTS obtained from A by simply removing the set of probability distributions
Π. This can be easily done since we assumed that for each transition of A there is at least
one probability distribution which assigns to such a transition a probability greater than 0
(see Definition 3).

Definition 7. Given a PA A = (Σ, Q, q0, δ,Π), unprob(A) = (Σ, Q, q0, δ).

Example 5. Let A be the PA in Figure 3. If we remove probabilities from A the possibilistic
abstraction unprob(A) can be found in Figure 1. Actually, the PA in Figure 3 could be seen
as a probabilistic specification of the LTS in Figure 1.

The following conservativeness result holds.

8

Lemma 1. Given PAs A and A′, A ≈ A′ ⇒ unprob(A) ≈ unprob(A′).

Proof. Let us assume A = (Σ, Q, q0, δ,Π), A′ = (Σ′, Q′, q′0, δ′,Π ′) and Â constructed as in
Definition 6. Since A ≈ A′ for a weak bisimulation R, we have that for all schedulers F and
(q, r) ∈ R, there exists a scheduler F ′ such that for all C ∈ Q ∪ Q′/R and a ∈ Σ ∪ {τ},
ProbF

Â
(q, τ∗âτ∗, C) = ProbF ′

Â
(r, τ∗âτ∗, C). Now, if ProbF

Â
(q, a, q′) > 0 for some q′ ∈ C, then

there exists a state r′ and a scheduler F ′ such that ProbF ′
Â

(r, τ∗âτ∗, r′) = ProbF
Â
(q, a, q′) > 0.

Therefore, for each step q
a−→ q′ there exists r′ such that r

a=⇒ r′ and, since q′ and r′ are in
the same equivalence class, R is also a weak bisimulation for Q̂np, where Q̂np is the set of
states of the LTS constructed as in Definition 2 starting from unprob(A) and unprob(A′).
The same holds if we exchange the roles of q and r. ut

2.3 The Timed Model

We introduce the formalism for timed systems together with a notion of weak bisimulation.
We also show how to remove time in order to get a nondeterministic system, and that weak
bisimulation is preserved when reducing to the untimed model.

Let us assume a set X of non negative real variables called clocks. A valuation over X is
a mapping v : X → IR≥0 assigning real values to clocks. For a valuation v and a time value
t ∈ IR≥0, let v + t denote the valuation such that (v + t)(x) = v(x)+ t, for each clock x ∈ X.

The set of constraints over X, denoted Φ(X), is defined by the following grammar, where
φ ranges over Φ(X), x ∈ X, c ∈ IN, and ∼∈ {<,≤,≥, >}:

φ ::= true | false |x ∼ c |φ1 ∧ φ2

We write v |= φ when the valuation v satisfies the constraint φ. Formally, it holds that
v |= true, v |= x ∼ c iff v(x) ∼ c, v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2.

Let B ⊆ X; with v[B] we denote the valuation resulting after resetting all clocks in B.
More precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise. Finally, with 0 we denote
the valuation with all clocks reset to 0, namely 0(x) = 0 for all x ∈ X.

Now, we are able to recall the definition of Timed Automata [3].

Definition 8. A Timed Automaton (TA) is a tuple A = (Σ,X, Q, q0, Inv, δ), where:

– Σ is a finite alphabet of actions;
– X is a finite set of nonnegative real variables called clocks;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– Inv : Q → Φ(X) is the invariant function assigning to each state a formula (called state

invariant) that must hold in any instant in which the state is enabled;
– δ ⊆ Q× (Σ ∪ {τ})× Φ(X)× 2X ×Q is a finite set of transitions;

For a state q, we denote with δ(q) the set of transitions with q as source state, i.e. the set
{(q1, a, φ, B, q2) ∈ δ | q1 = q}. We also require that (q0,0) |= Inv(q0).

A configuration of a TA A is a pair (q, v), where q ∈ Q is a state of A, v is a valuation
over X and v |= Inv(q). The initial configuration of A is represented by (q0,0).

There is a discrete transition step from a configuration si = (qi, vi) to a configuration
sj = (qj , vj) through action a ∈ Σ ∪ {τ}, written si

a−→ sj , if there is a transition e =
(qi, a, φ, B, qj) ∈ δ such that vi |= φ, vj = vi[B], vi |= Inv(qi) and vj |= Inv(qj).

There is a time step from a configuration si = (qi, vi) to a configuration sj = (qj , vj)
through time t ∈ IR>0, written si

t−→ sj , if qj = qi, vj = (vi + t) and ∀t′ ∈ [0, t] vi + t′ |=
Inv(qi).

9

An execution fragment of A is a finite sequence of steps σ = s0
α1−→ s1

α2−→ . . .
αk−→ sk,

where s0, . . . , sk are configurations, and αi ∈ Σ ∪ {τ} ∪ IR>0. With ExecFragA we denote
the set of execution fragments of A, and with ExecFragA(s) we denote the set of execution
fragments of A starting from configuration s. We define last(σ) = sk and |σ| = k. For any
j ≤ |σ|, with σj we define the sequence of steps The execution fragment σ is called maximal
iff there is not any configuration s and α ∈ Σ ∪ {τ} such that σ

α−→ s.

With SA we denote the set of configurations reachable by A, more precisely, SA =
{last(σ) | σ ∈ ExecFragA(s0)}.

An execution of A is either a maximal execution fragment or an infinite sequence of
steps s0

α1−→ s1
α2−→ . . ., where s0, s1 . . . ∈ SA and α1, α2, . . . ∈ Σ ∪ {τ} ∪ IR≥0. We denote

with ExecA the set of executions of A and with ExecA(s) the set of executions of A starting
from s.

Example 6. In Figure 5 we show an example of TA. In this example, and in the following
ones, we omit the condition on a transition when the condition is true. We write state
invariants in bold face and, again, we omit them when they are equal to true.

From the initial state q0, the TA may always perform some time step and update the
value of clock x. Transition e1 labeled with b can be performed by the TA if the value of
clock x is less or equal to 5. Transitions e2 and e3, labeled with a and leading to states q2

and q3, respectively, may be performed at any time (their guard condition is true). Note,
however, that if transition e2 is performed, then the value of the clock x is reset to 0.

An example of execution fragment of the TA in Figure 5 is (q0, 0) 9.7−→ (q0, 9.7) a−→
(q2, 0) 3.2−→ (q2, 3.2), where (q, t) represents the configuration composed by the state q and
the valuation v such that v(x) = t.

µ´
¶³?
q0

x≤8

¾ b

0≤x≤5µ´
¶³
q1 -

a

x := 0 µ´
¶³
q2©©©©©©©©*a µ´

¶³
q3

e1 = (q0, b, 0 ≤ x ≤ 5, ∅, q1)
e2 = (q0, a, true, {x}, q2)
e3 = (q0, a, true, ∅, q3)

Fig. 5. Example of TA.

Regions We recall the definitions of clock equivalence [3] and the theory of clock zones [12].
Clock equivalence is an equivalence relation of finite index permitting to group sets of
evaluations and to have decidability results. Unfortunately, the number of equivalence classes
is exponential w.r.t. the size of the TA. A more efficient symbolic representation by means
of clock zones is introduced (see [26] and [12]), and this helps in representing parts of the
state space in practice.

Let A be a TA; with CA we denote the largest constant appearing in A.
Let us consider the equivalence relation ≈ over clock valuations containing precisely the

pairs (v, v′) such that:

10

– for each clock x, either bv(x)c = bv′(x)c, or both v(x) and v′(x) are greater than CA;
– for each pair of clocks x and y with v(x) ≤ CA and v(y) ≤ CA it holds that fract(v(x)) ≤

fract(v(y)) iff fract(v′(x)) ≤ fract(v′(y)) (where fract(·) is the fractional part);
– for each clock x with v(x) ≤ CA, fract(v(x)) = 0 iff fract(v′(x)) = 0.

As proved in [3], v ≈ v′ implies that, for any φ ∈ Φ(X) with constants less or equal than
CA, v |= φ iff v′ |= φ. With [v] we denote the equivalence class {v′ | v ≈ v′}. The set of
equivalence classes is finite. We recall the definition of clock zone and its properties. For
more details see [12] and [26].

The set of clock zones on X (denoted with Ψ(X)) is the set of formulae ψ such that

ψ ::= true | false |x ∼ c |x− y ∼ c′ |ψ1 ∧ ψ2

where ∼∈ {<,≤,≥, >}, c ∈ IN, c′ ∈ ZZ and x, y ∈ X.
With ΨC(X) we denote the set of clock zones in Ψ(X) that use integer constants in

[−C,C]. We will write v[x := c] to denote the valuation such that (v[x := c])(x) = c and
(v[x := c])(y) = v(y), for any y 6= x. Moreover, we will write v |= ψ if ψ is true when
valuating each clock x with v(x). Hence, two clock zones are equivalent if are satisfied by
the same set of valuations.

Given a set B = {x1, . . . , xm} ⊆ X, with ∃B.ψ we denote the formula ∃x1. · · · .∃xm.ψ,
with ∀x.ψ the formula ¬∃t.¬ψ and, moreover, with B = 0 we denote the formula

∧
x∈B x = 0

and with ψ[B := B + t] we denote the formula ψ where each occurrence of x ∈ B is substi-
tuted with x + t.

Known properties of clock zones are expressed by the following propositions. We note
that a clock zone is a convex space and can be represented by a Difference Bound Matrix
(DBM). Forward operators pose problems if diagonal constraints are allowed (as shown in
[12]). Hence we consider backward operators for which the approximation and symbolic
verification is correct (see [12]).

Proposition 2. Let ψ be a clock zone in Ψ(X) and x ∈ X. A clock zone ψ′ in Ψ(X \ x)
is computable in polynomial time such that ψ′ is equivalent to the set of v such that v[x :=
c] |= ψ, for some c ∈ IR≥0.

With abuse of notation, from now on, we will write ∃x.ψ to denote its equivalent clock
zone.

The following proposition gives an upper bound to the number of clock zones.

Proposition 3. There exists Ψ ′ ⊂ ΨC(X) with exponential cardinality w.r.t. C and |X|
such that each clock zone in ΨC(X) is equivalent to a clock zone in Ψ ′.

Hence from now on we can suppose that the set of clock zones in ΨC(X) has finite cardinality.

Definition 9. Let A be a TA with states in Q and clocks in X; a region of A is a pair
(q, ψ) where q ∈ Q and ψ ∈ Ψ(X).

Example 7. As an example the clock zone x > 0 ∧ x ≤ 10 expresses the set of valuations
assigning to x a real value in (0, 10]. Hence the region (q1, x > 0 ∧ x ≤ 10) of the TA of
figure 5 represents the set of configurations (q1, v) such that v(x) ∈ (0, 10].

The following proposition states that the set of configurations reachable by performing
either a discrete or a time step starting from a set of configurations expressed by a region,
is a region.

11

Proposition 4. Given a region (q, ψ) and a transition e = (q′, a, φ, B, q), the set of con-
figurations {(q′, v) | v |= φ ∧ Inv(q′) and v[B] |= ψ ∧ Inv(q)} from which it is possible to
reach a configuration within the region (q, ψ) by a discrete step triggered by e, is equal to the
region (q′, φ ∧ Inv(q′) ∧ ∃B.(ψ ∧B = 0 ∧ Inv(q))).

The set of configurations {(q, v) | v+t |= ψ and v+t′ |= Inv(q) for some t ∈ IR>0 and for all t′ ∈
[0, t]} from which it is possible to reach a configuration expressed by (q, ψ) by means of a time
step, is equal to the region (q,∃t.t > 0∧ψ[X := X+t]∧∀t′ ∈ [0, t].Inv(q)[X := X+t′]). More-
over, if ψ ∈ ΨC(X), then ∃t.t > 0∧ψ[X := X + t]∧∀t′ ∈ [0, t].Inv(q)[X := X + t′] ∈ ΨC(X).

Example 8. As an example the set of configurations that can reach with a transition step a
configuration expressed by the region (q1, x > 0∧ x ≤ 5) of the TA of Figure 5, is expressed
by the region (q0, x > 0 ∧ x ≤ 5). Moreover, the set of configurations that can reach with a
time step a configuration expressed by the region (q0, x > 5 ∧ x ≤ 8) of the TA of Figure 5
is expressed by the region (q0, x ≥ 0 ∧ x < 8)

Now, it is obvious that, due to the discrete step, we can reach regions that contain
constants that are not in [−CA, CA]. Thus, we need an approximation for discrete steps.

If ψ is a clock zone of A, we denote with ApA(ψ) the set {v | ∃v′ ≈ v s.t. v′ |= ψ}.
The following proposition, proved in [12], states that ApA returns a clock zone.

Proposition 5 (Approximation). ApA(ψ) ∈ ΨCA
(X).

The following theorem, proved in [12], states the correctness of the operator Ap.

Theorem 1. The sequence of steps (q0, v0)
α0−→ (q1, v1)

α1−→ . . . is an execution of A iff
there exists a sequence of regions (q0, ψ0), (q1, ψ1) . . . such that, for all i, vi |= ψi and, if
αi ∈ Σ∪{τ}, then ψi = ApA(φ∧ Inv(qi)∧∃B.ψi+1∧B = 0∧ Inv(qi+1)) for some transition
(qi, αi, φ,B, qi+1), and, otherwise, ψi = ∃t.t > 0∧ψi+1[X := X +t]∧∀t′ ∈ [0, t].Inv(qi)[X :=
X + t′] and qi+1 = qi. Moreover, each ψi is computable in polynomial time w.r.t. C and |X|.

Behavioural Equivalence The definition of weak bisimulation introduced for LTSs (see
Definition 2) can be naturally adapted for TAs.

Definition 10. Let A = (Σ, X,Q, q0, Inv, δ) be a TA. A weak bisimulation on A is an
equivalence relation R ⊆ SA × SA such that for all (s, r) ∈ R and ∀α ∈ Σ ∪ {τ} ∪ IR>0 it
holds that:

– if s
α−→ s′, then there exists r′ such that r

α=⇒ r′ and (s′, r′) ∈ R;
– conversely, if r

α−→ r′, then there exists s′ such that s
α=⇒ s′ and (s′, r′) ∈ R.

Two configurations s, r are called weakly bisimilar on A (denoted s ≈A r) iff (s, r) ∈
R for some weak bisimulation R. (Note that a weak time transition is of the form τ−→
. . .

τ−→ t−→ τ−→ . . .
τ−→ with t ∈ IR>0)

Two TAs A = (Σ,X, Q, q0, Inv, δ) and A′ = (Σ′, X ′, Q′, q′0, Inv′, δ′) such that Q ∩ Q′ = ∅
and X ∩X ′ = ∅ are called weakly bisimilar (denoted by A ≈ A′) if, given the TA

Â = (Σ ∪Σ′, X ∪X ′, Q ∪Q′ ∪ {q̂}, q̂, ˆInv, δ ∪ δ′ ∪ {(q̂, τ, true, ∅, q0), (q̂, τ, true, ∅, q′0)}),
with

ˆInv(q) =

true if q = q̂
Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q′

it holds that (q0,0) ≈Â (q′0,0), where the valuation 0 is defined over all clocks of the set
X ∪X ′.

12

Again, note that it is always possible to obtain Q∩Q′ = ∅ and X ∩X ′ = ∅ by state and
clock renaming.

Example 9. Let A′ be the TA in Figure 6, and A the TA in Figure 5. We have that A 6≈ A′

since from the initial configuration (q0, x = 0), TA A may perform a time step of duration
5 and then, from configuration (q0, x = 5) a discrete transition step labeled with b. On
the contrary, from (r0, y = 0), TA A′, by performing a time step of duration 5, reaches
configuration (r0, y = 5) from which a discrete transition step labeled with b is not possible
anymore.

µ´
¶³?
r0¾ b

0≤y≤3µ´
¶³
r1 -

a

y := 0 µ´
¶³
r2©©©©©©©©*a µ´

¶³
r3

e1 = (r0, b, 0 ≤ y ≤ 3, ∅, r1)
e2 = (r0, a, true, {y}, r2)
e3 = (r0, a, true, ∅, r3)

Fig. 6. Example of Weak Bisimulation for TAs.

Removing Time Given a TA A, we call untime(A) the LTS obtained as the region au-
tomaton of A. Intuitively, the region automaton (see [3]) is obtained by considering timed
regions as states. Note that in the region automaton there might be an admissible step
between regions R and R′ with symbol a also if there is an admissible run s

t−→ s′′ a−→ s′ of
the TA such that t ∈ IR>0 and where s ∈ R and s′ ∈ R′. We use the silent label τ to label
all the transitions of the LTS untime(A) arising from time steps of the TA A. Intuitively,
time steps are not visible anymore in the untimed setting.

Definition 11. Given a TA A = (Σ, X,Q, q0, Inv, δ), we define the LTS untime(A) as the
tuple (Σ, Q×V, (q0, [0]), δ′), where V is the set of equivalence classes of the valuations of A:

– ((q, [v]), τ, (q, [v′])) ∈ δ′ iff v′ = v + t for some time t ∈ IR>0 and v′ |= Inv(q) (note that
we do not need to check each time in [0, t] since we are considering convex spaces);

– ((q, [v]), a, (q′, [v′])) ∈ δ′ iff (q, a, φ,B, q′) ∈ δ, v |= φ ∧ Inv(q) and v′ = v[B] |= Inv(q′).

Example 10. In Figure 7 we show the TA A and its untimed version, the LTS untime(A).
States u0, u1, u2 and u3 correspond, respectively, to the pairs (q0, [v0]), (q1, [v0]), (q1, [v1])
and (q0, [v1]), where [v0] = {v | v(x) = 0} and [v1] = {v | v(x) > 0}. In the figure we omitted
self-loop transitions (ui, τ, ui) for i ∈ {2, 3}.

Given an execution σ = (q0, v0)
α1−→ . . .

αn−→ (qn, vn) of a TA A, with [σ] we denote

the corresponding execution (q0, [v0])
α′1−→ . . .

α′n−→ (qn, [vn]) of untime(A) where α′i = αi if
αi ∈ Σ ∪ {τ} and α′i = τ if αi ∈ IR>0. We also say that σ is a timed instance of [σ] (written
σ ∈ [σ]).

As a consequence of Lemma 4.13 in [3] we have the following result.

13

A untime(A)

µ´
¶³

- q0 -a, x=0

µ´
¶³
q1 µ´

¶³
- u0 -a

µ´
¶³
u1

6
τ

µ´
¶³
u3

6
τ

µ´
¶³
u2

Fig. 7. Example of untime(A).

Lemma 2. Given a TA A, if σ is an execution fragment of A, then [σ] is an execution
fragment of untime(A). Viceversa, if [σ] is an execution fragment of untime(A), then there
exists σ′ ∈ [σ] such that σ′ is an execution fragment of A.

The following conservativeness result holds.

Lemma 3. Given TAs A and A′, A ≈ A′ ⇒ untime(A) ≈ untime(A′).

Proof. The implication holds by the construction of the region automaton untime(A) and by
Lemma 2. Actually, for each sequence of steps of a TA, there exists an analogous sequence of
the LTS obtained with untime(A) and viceversa. Weak bisimulation is, therefore, preserved.

ut

3 Probabilistic Timed Automata

The framework of Probabilistic Timed Automata (PTAs) allows the description of timed
systems showing a probabilistic behaviour, in an intuitive and succinct way. Therefore,
within the framework of PTAs, where time and probabilities are taken into consideration,
the modeler can describe, on a single model, different aspects of a system, and analyze
real-time properties, performance and reliability properties.

Our definition of PTAs is inspired by the definitions in [11, 35, 2]. Intuitively, our defini-
tion of PTA derives from the idea of putting a PA (obtained by adding probabilities to an
LTS) into a timed context (which adds temporal constraints to transitions and states, thus
guarding some of the possible steps). Note, again, that translations can be given from our
model of Probabilistic Timed Automata to the others, and viceversa.

As for PAs, we give a definition of Probabilistic Timed Automata where probability
distributions are defined over the set of transitions. This choice, while requiring some par-
ticular attention in the definition of the semantics, allows to easily get rid of probabilities
when reducing to the non probabilistic case. Such a definition requires, in particular, the re-
normalization of probabilities when time guards prevent the execution of some transitions.
In a sense, time becomes a resource the PTA might consume and adds new constraints on
the possible execution of the automaton.

Definition 12. A Probabilistic Timed Automaton (PTA) is a tuple A = (Σ, X,Q, q0, Inv, δ,Π),
where:

– Σ is a finite alphabet of actions;
– X is a finite set of nonnegative real variables called clocks;
– Q is a finite set of states and q0 ∈ Q is the initial state;
– Inv : Q → Φ(X) is a function assigning a constraint φ ∈ Φ(X) (called state invariant)

to each state in Q.
– δ is a finite set of transitions in Q×Σ × Φ(X)× 2X ×Q.

14

– Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1],
for any i = 1, . . . , n, where πi(e) is the probability of performing transition e according
to distribution πi.

For a state q ∈ Q, we denote with δ(q) the set of transitions with q as source state, i.e.
the set δ(q) = {(q′, a, φ,B, q′′) ∈ δ | q′ = q}. We require that

∑
e∈δ(q) πi(e) = 1 for any i and

q. Moreover, we assume that for all ej there exists some πi such that πi(ej) > 0.

3.1 Semantics of Probabilistic Timed Automata

Configurations, steps, execution fragments, and executions of a PTA are defined as for TAs.
Given a configuration s = (q, v), with Adm(s) = {(q, a, φ, B, q′) ∈ δ | v |= φ and v[B] |=

Inv(q′)} we represent the set of admissible transitions that an automaton could execute
from configuration s, and we say that a transition in Adm(s) is enabled in s. Given two con-
figurations s = (q, v), s′ = (q′, v′), and given a ∈ Σ ∪{τ}, we represent with Adm(s, a, s′) =
{(q, a, φ, B, q′) ∈ δ | v |= φ ∧ v′ = v[B] |= Inv(q′)} the set of transitions that lead from
configuration s to configuration s′ through a transition step labeled with a. A configuration
s = (q, v) is called terminal iff Adm(s′) = ∅ for all s′ = (q, v + t) with t ∈ IR≥0; we denote
with ST the set of terminal configurations.

The probability of executing a transition step from a configuration s is chosen, among
all the transitions enabled in s, according to the values returned by some distribution π,
while we set the probability of executing a time step labeled with t ∈ IR>0 to the value 1.
Intuitively, a PTA chooses nondeterministically the distribution of a transition step or to
let time elapse by performing a time step, and, in this case, also the amount of time passed
is chosen nondeterministically.

Executions and execution fragments of a PTA arise by resolving both the nondetermin-
istic and the probabilistic choices [35]. To resolve the non-deterministic choices of a PTA,
we introduce now schedulers of PTAs.

A scheduler of a PTA A is a partial function from ExecFragA to Π ∪ IR>0. Given a
scheduler F and an execution fragment σ, we assume that F is defined for σ if and only if
∃s ∈ SA and α ∈ Σ ∪ {τ} ∪ IR>0 such that last(σ) α−→ s.

For a scheduler F of a PTA A we define ExecFragF
A (resp. ExecF

A) as the set of execution
fragments (resp. the set of executions) σ = s0

α1−→ s1
α2−→ s2

α3−→ . . . of A such that, for any
i, αi ∈ IR>0 iff F (σi−1) = αi, and αi ∈ (Σ ∪ {τ}) iff ∃e ∈ Adm(si−1, αi, si) and πi(e) > 0
where πi = F (σi−1).

Given a scheduler F and an execution fragment σ = s0
α1−→ s1

α2−→ s2
α3−→ . . .

αk−→ sk ∈
ExecFragF

A , if k = 0 we put PF
A (σ) = 1, else, if k ≥ 1, we define PF

A (σ) = PF
A (σk−1) · p

where

p =

∑
e∈Adm(sk−1,αk,sk)

(F (σk−1))(e)∑
e∈Adm(sk−1)

(F (σk−1))(e)
if αk ∈ Σ ∪ {τ}

1 if αk ∈ IR>0.

Notice that such a measure is consistent, since we are assuming that, given the execution
fragment σ, there is a step from sk−1 to sk labeled with αk. Now, if αk ∈ IR>0, then p = 1,
otherwise the probability of going from sk−1 to sk through a discrete transition labeled
with αk is re-normalized according to the transitions enabled in sk−1. In this latter case,
Adm(sk−1) 6= ∅, since there exists at least the step sk−1

αk−→ sk.
Given a scheduler F , let ExecF

A(s) be the set of executions in ExecF
A starting in s,

ExecFragF
A(s) be the set of execution fragments in ExecFragF

A starting in s, and σFieldF
A(s)

be the smallest sigma field on ExecF
A(s) containing the basic cylinders σ ↑, where σ ∈

ExecFragF
A(s). The probability measure ProbF

A is the unique measure on σFieldF
A(s) such

15

that ProbF
A(σ↑) = PF

A (σ).

Remark: Note that, given a PTA A and a scheduler F , the executions of A driven by F
do not contain any nondeterministic choice. Hence, a PTA A driven by a scheduler F gives
rise to a fully probabilistic behaviour.

Example 11. In Figure 8 we show an example of PTA with Π = {π}. Intuitively, from the
initial configuration (q0,0), the PTA may nondeterministically choose whether to perform
some time step and update the value of clock x or to perform, probabilistically, transitions
e1, e2 or e3 with probabilities 1

6 , 1
3 and 1

2 , respectively.
If some time step is performed in state q0, such that the value of clock x becomes greater

than 5, then transition labeled with b cannot be performed anymore, and the probabilities of
performing the other transitions should be redistributed. In this case, even if the transition
was at some point enabled in state q0, we might intuitively say that the automaton has
consumed to much time resources to be able to perform transition e1 anymore. Even if the
case is quite simple in the depicted automaton, similar situations may arise whenever the
automaton returns to the a certain state at different times and some of the transitions may
not be enabled anymore. Note that re-normalizing probability at run-time allows us to relax
the condition of admissible target states used in [35].

For appropriately chosen F and F ′, examples of executions of the PTA in Figure 8 are
σ1 = (q0, 0) 9.7−→ (q0, 9.7) a−→ (q2, 0) 3−→ (q2, 3) and σ2 = (q0, 0) 3−→ (q0, 3) b−→ (q1, 3) 1.2−→
(q1, 4.2) with PF (σ1) = 2

5 and PF ′(σ2) = 1
6 , where (q, t) represents the configuration com-

posed by the state q and the valuation v such that v(x) = t. Please notice the difference
between F , which chooses to wait 9.7 time units before taking a discrete transition, and F ′,
which chooses to wait only 3 time units.

µ´
¶³?

q0

x≤8

¾ b, 1
6

0≤x≤5µ´
¶³

q1 -
a, 1

3

x := 0 µ´
¶³

q2©©©©©©©©*a, 1
2 µ´

¶³
q3

e1 = (q0, b, 0 ≤ x ≤ 5, ∅, q1) π(e1) = 1
6

e2 = (q0, a, true, {x}, q2) π(e2) = 1
3

e3 = (q0, a, true, ∅, q3) π(e3) = 1
2

∑
e∈δ(q0)

π(e) = 1

Fig. 8. Example of PTA.

In the following, A is a PTA, F is a scheduler of A, α̂ stands for α if α ∈ Σ ∪ IR>0 and
for ε (the empty string) if α = τ , s ∈ SA and C ⊆ SA.

Let ExecF
A(s, τ∗α̂τ∗, C) be the set of executions that lead to a configuration in C via

a sequence belonging to the set of sequences τ∗α̂τ∗ starting from the configuration s and
crossing configurations equivalent (according to our bisimulation relation) to s. Finally, we
define the probability ProbF

A(s, τ∗α̂τ∗, C) = ProbF
A(ExecF

A(s, τ∗α̂τ∗, C)).

16

3.2 Regions of PTAs

In [35] it as been showed that for forward symbolic reachability, the computation of prob-
ability could be an overapproximation due to the time successor operator. To solve this
problem, we have split transition steps from time steps in the region graph. Moreover, we
have defined a special function Clean that considers a time predecessor for a set of regions
instead of a single region. Hence, for the timed regions of PTAs, we have exactly the same
concepts and properties given for regions of TAs in Section 2.3.

3.3 Behavioural Equivalence

We introduce a notion of weak bisimulation for PTAs.
As already mentioned, weak internal transitions s

τ=⇒ s′ are replaced by the probability
Prob(s, τ∗, s′) of reaching configuration s′ from s via internal moves. Similarly, for visible
actions α, transitions s

α=⇒ s′ are replaced by the probability Prob(s, τ∗ατ∗, s′). The next
definition is obtained by adapting Definition 5 to the model of PTAs.

Definition 13. Let A = (Σ,X, Q, q0, Inv, δ,Π) be a PTA. A weak bisimulation on A is an
equivalence relation R on SA such that, for all schedulers F and (s, s′) ∈ R, there exists a
scheduler F ′ such that for all C ∈ SA/R and α ∈ Σ ∪ {τ} ∪ IR>0:

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′

A (s′, τ∗α̂τ∗, C)

and vice versa.
Two configurations s, s′ are called weakly bisimilar on A (denoted s ≈A s′) iff (s, s′) ∈ R
for some weak bisimulation R.

Again, in order to define weak bisimulation among PTAs, we resort to the notion of a
disjoint sum of automata.

Definition 14. Let A = (Σ, X, Q, q0, Inv, δ,Π) and A′ = (Σ′, X ′, Q′, q′0, Inv′, δ′,Π ′) such
that Q ∩Q′ = ∅ and X ∩X ′ = ∅. Let

Â = (Σ ∪Σ′, X ∪X ′, Q ∪Q′ ∪ {q̂}, q̂, ˆInv, δ ∪ δ′ ∪ {(q̂, τ, true, ∅, q0), (q̂, τ, true, ∅, q′0)}, Π̂),

where, π̂1, π̂2 ∈ Π̂ such that π̂1(e) = 1 if e = (q̂, τ, true, ∅, q0), 0 otherwise, and π̂2(e) = 1 if
e = (q̂, τ, true, ∅, q′0), 0 otherwise; moreover, for each couple (π, π′) ∈ Π ×Π ′, π̂ ∈ Π̂ such
that:

π̂(e) =

{
π(e) if e ∈ δ
π′(e) if e ∈ δ′.

The invariant conditions of Â are given by:

ˆInv(q) =

true if q = q̂
Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q′

We say that A and A′ are weakly bisimilar (denoted by A ≈ A′) if (q0,0) ≈Â (q′0,0), where
the valuation 0 is defined over all clocks of the set X ∪X ′.

Example 12. Consider the PTAs of Figure 9. Intuitively, they both can perform action a
or action b before 5 time units, with equal probability 1

2 . By applying the notion of weak
bisimulation introduced above, the two PTAs turn out to be equivalent. Please note that
the probabilities in A2 are renormalized according to the transitions enabled in the different

17

configurations. Let Â be the automaton built from the automata A1 and A2 by following
the procedure described in Definition 14.

We call π1 the only probability distribution of A1 and π2 the only probability distribution
of A2.

With R we denote the equivalence relation on SÂ such that ((q, v), (r, v′)) ∈ R if one of
the following requirements hold:

– q = q0, r = r0 and 0 ≤ v(x) = v′(z) ≤ 5.
– q = q0, r = r0 and v(x) = v′(z) > 5.
– q ∈ {q1, q2} and r ∈ {r1, r2} and v(x) = v′(z).

Note that the case x 6= z is not considered since no reachable configuration allows this case.
Moreover, the set of classes has infinite cardinality. Actually, each value in [0, 5] generates

a class. Hence, for any m ∈ [0, 5], we call Cm the class composed by the two configurations
{(q0, x = m), (r0, z = m)}. As we will see, to solve the problem of the infiniteness of classes,
the algorithm we propose groups the set of {Cm}m∈[0,5] in the triple (q0, r0, x ≤ 5 ∧ x = z).

With C we denote the set of classes containing each configuration (q0, v) and (r0, v)
such that v(x) = v(z) > 5. This set of classes can be represented by the triple (q0, r0, x =
z ∧ x > 5). Finally, with C′ we denote the class containing each configuration (q, v) such
that q ∈ {q1, q2} and (r, v) such that r ∈ {r1, r2} and v(x) = v(z).

In the following we assume α ∈ {a, b, τ}∪IR>0, where α is chosen according to a scheduler
F and a distribution πi.

We consider the case in which the configuration is in a state of A2, the other case is
easier since from q0 there is not any τ transition.

Given s = (r0, v) ∈ Cm and s′ = (q0, v
′) ∈ Cm and a scheduler F . We have the following

cases:

– if ProbF (s, τ∗, Cm) = 1, then ProbF ′(s′, τ∗, Cm) = 1, for any scheduler F ′. Namely,
ε ∈ τ∗.

– if ProbF (s, τ∗ατ∗, Cm+α) = 1 where α ∈ IR>0 and α ≤ 5 − m, then it is possible to
choose F ′ such that ProbF ′(s′, τ∗ατ∗, Cm+α) = 1 where F ′(s′) = α.

– if ProbF (s, τ∗ατ∗, C) = 1 where α ∈ IR>0 and α > 5 −m, then it is possible to choose
F ′ such that ProbF ′(s′, τ∗ατ∗, C) = 1 where F ′(s′) = α.

– if ProbF (s, τ∗ατ∗, C′) = 1
2 where α ∈ {a, b}, then it is possible to choose F ′ such that

ProbF ′(s′, τ∗ατ∗, C′) = 1
2 where F ′(s′) = π1.

Moreover, for each s ∈ C we have that if ProbF (s, τ∗ατ∗, C) = 1 where α ∈ IR>0, then
ProbF ′(s′, τ∗ατ∗, C) = 1 where F ′(s′) = α. Similarly for each s ∈ C′.

The probability of any other case we have not considered here, is 0 for any scheduler
F . In this case, in order to show the weak bisimulation, it has been sufficient to consider
F ′ = F .

Now, R is a weak bisimulation on Â and, since (q0,0) and (r0,0) are in the same class,
A1 and A2 are weakly bisimilar.

The next example shows a subtle feature of weak bisimulation for PTAs. Namely, internal
actions, even if not visible, may alter the probability of observing the passage of time.

Example 13. Consider the PTAs of Figure 10. Intuitively, both of them, eventually, perform
action l with probability 1 and then reach a terminal configuration. At a first glance the
two automata appear to be bisimilar, however, the internal move in A2 allows a scheduler
to make different the probability of observing passage of time with respect to A1. Namely,

18

A1 A2

-
µ´
¶³
q0

À

a, 1
2

x ≤ 5

µ´
¶³
q1

J
J

J
JĴ

b, 1
2

x ≤ 5

µ´
¶³
q2

-
µ´
¶³
r0

ª

τ, 1
3 , z > 5

À

a, 1
3

z ≤ 5

µ´
¶³
r1

J
J

J
JĴ

b, 1
3

z ≤ 5

µ´
¶³
r2

Fig. 9. A1 ≈ A2.

A1 and A2 are not bisimilar because there exists no scheduler F of A1 able to simulate the
behaviour induced by the following scheduler F ′:

F ′(σ0) = π σ0 = (r0, 0)
F ′(σ1) = 1 σ1 = (r0, 0) τ−→ (r0, 0)
F ′(σ2) = π σ2 = (r0, 0) τ−→ (r0, 0) 1−→ (r0, 1)
. . .

where π is the only probability distribution of A2 depicted in Figure 10.
If C is the class containing the configuration (r0, 1) we have that ProbF ′

A2
((r0, 0), τ∗1τ∗, C) =

1
2 , and no scheduler exists for A1 with the same property.

If we consider this aspect from a security analysis point of view (in the context of
noninterference), the action τ in A2 could represent an invisible high level action h one
wants to hide from a low level observer. In such a probabilistic timed system, however, as
shown above, a scheduler may exploit the probabilistic execution of the action h (τ) to alter
the observation of the passage of time. In this case, the probabilistic and timed features of the
system could give rise to a probabilistic/timed covert channel (an high level activity affects
the observable behaviour of the system): since action h (τ) competes probabilistically with
action l, the low level observation of the passage of time could be probabilistically different
in the two automata.

If we replace the probabilistic distribution π in A2 with two distributions π1 and π2

assigning, respectively, probability 1 to each of the two transitions, the two PTAs turn out
to be weakly bisimilar. In such a case, in fact, the internal action in A2 is not any more in
competition with the observable action l.

A1 A2

-
µ´
¶³
q0 -

µ´
¶³
q1

l -
µ´
¶³
r0

ª

τ, 1
2

-
µ´
¶³
r1

l, 1
2

Fig. 10. A1 6≈ A2.

3.4 Removing Probability and Time from PTAs

Given a PTA A, we call unprob(A) the TA obtained from A by simply removing probabilities
from A. This can be done since we assumed that for each transition of A there is at least a

19

probability distribution which assigns a probability greater than 0 to such a transition (see
Definition 12).

Definition 15. Given a PTA A = (Σ, X, Q, q0, Inv, δ,Π), unprob(A) = (Σ, X,Q, q0, Inv, δ).

Example 14. Let A be the PTA in Figure 8. If we remove probabilities from A the TA
unprob(A) can be found in Figure 5.

Given a PTA A, we call untime(A) the PA obtained as the region automaton of A, with
probability functions chosen according to Π. Intuitively, the region automaton is obtained by
considering timed regions as states. Note that in the region automaton there might be a step
between regions R and R′ with symbol a also if there is an admissible run s

t−→ s′′ a−→ s′

of the PTA such that t ∈ IR>0 and where s ∈ R and s′ ∈ R′. Since time steps are no more
visible in the untimed setting, we use the silent action τ to label all the transitions of the
PA untime(A) arising from time steps of the PTA A.

Definition 16. Given a PTA A = (Σ, X, Q, q0, Inv, δ,Π), we define the PA untime(A) =
(Σ, Q× V, (q0, [0]), δ′,Π ′) where V is the set of equivalence classes of the valuations of A:

– e = ((q, [v]), τ, (q, [v′])) ∈ δ′ iff v′ = v + t for some time t ∈ IR>0; moreover, there exists
πe ∈ Π ′ such that πe(e) = 1;

– e = ((q, [v]), a, (q′, [v′])) ∈ δ′ iff (q, a, φ,B, q′) ∈ δ, v |= φ and v′ = v[B]; moreover, for all

πl ∈ Π, π′l ∈ Π ′ such that π′l(e) =
∑

ei∈Adm((q,v),a,(q′,v′)) πl(ei)∑
ej∈Adm((q,v))

πl(ej)
if

∑
ej∈Adm((q,v)) πl(ej) 6= ∅

and π′l(e) = 0 otherwise.

Example 15. In Figure 11 we show the PTA A and its untimed version, the PA untime(A) =
(Σ′, Q′, u0, δ

′,Π ′). States u0, u1 and u2 correspond, respectively, to the pairs (q0, [v0]),
(q1, [v0]) and (q2, [v0]), where [v0] = {v | v(x) = 0}. States u′0, u′1 and u′2 correspond, re-
spectively, to the pairs (q0, [v1]), (q1, [v1]) and (q2, [v1]), where [v1] = {v | v(x) > 0}. Again,
we omitted the self-loop transitions labeled with τ that arise from time steps of the PTA
that do not change the region.

Note that, since in state u′0 it holds x > 0, the transition labeled with a from q0 to q2 can-
not be executed (it has constraint x = 0). Such a transition is lost in the PA untime(A) and
probabilities are redistributed (actually transition with label b gets probability 1). Namely,
there is a distribution π′ in Π ′ (obtained by renormalizing the only probability distribution
of the PTA A) such that π′((u0, b, u1)) = 2

3 , π′((u0, a, u2)) = 1
3 and π′((u′0, b, u′1)) = 1, while

for any other transition e (corresponding to a time step in A), there is a distribution πe ∈ Π
such that πe(e) = 1.

A untime(A)

µ´
¶³

- q0

6
b, 2

3

µ´
¶³
q1

-a, 1
3

x=0 µ´
¶³
q2

µ´
¶³?
u0 -a, 1

3

µ´
¶³
u2

?
τ

µ´
¶³
u′2

?
τ

µ´
¶³
u′0

¾b, 2
3

µ´
¶³
u1

?
τ

µ´
¶³
u′1 ¾ b

Fig. 11. Example of untime(A).

Given an execution σ = (q0, v0)
α1−→ . . .

αn−→ (qn, vn) of A, with [σ] we denote the

corresponding execution (q0, [v0])
α′1−→ . . .

α′n−→ (qn, [vn]) of untime(A) where α′i = αi if

20

αi ∈ Σ ∪ {τ} and α′i = τ if αi ∈ IR>0. We also say that σ is a timed instance of [σ] (written
σ ∈ [σ]).

As a consequence of Lemma 4.13 in [3] and Lemma 4.8 in [37], we have the following
result.

Lemma 4. Given a PTA A, we have that, for any scheduler F of A, there exists a sched-
uler F ′ of untime(A) such that, for any σ ∈ ExecFragF

A , ProbF
A(σ) = ProbF ′

untime(A)([σ]).
Viceversa, for any scheduler F of untime(A), there exists a scheduler F ′ of A such that, for
any [σ] ∈ ExecFragF

untime(A), ProbF
untime(A)([σ]) = ProbF ′

A (σ′) for some σ′ ∈ [σ].

The following proposition states that given a PTA, we may obtain a LTS by removing
time and probability in two successive steps, no matter about the order.

Proposition 6. Given a PTA A, unprob(untime(A)) = untime(unprob(A)).

Proof. The proof derives trivially from the construction of the region automaton in the
untime operators for PTAs and TAs. Actually, by definition of the untime operators, the
sets of transitions of untime(A) and unprob(untime(A)) are exactly the same. Now, the
LTS obtained from a PTA does not change if we remove probabilities through the unprob
operator either before or after applying the untime construction. Consistency holds since
we assumed that for each transition of A there is at least a probability distribution which
assigns to such a transition a probability greater than 0 (see Definition 12). ut

The following conservativeness result holds.

Lemma 5. Given PTAs A and A′ such that A ≈ A′, the following statements hold:

1. unprob(A) ≈ unprob(A′);
2. untime(A) ≈ untime(A′).

Proof. For case 1, let us assume A = (Σ,X, Q, q0, Inv, δ,Π), A′ = (Σ′, X ′, Q′, q′0, Inv′, δ′,Π ′)
and Â constructed as in Definition 14. Since A ≈ A′ for a weak bisimulation R, we have
that for all schedulers F and (s, r) ∈ R, there exists a scheduler F ′ such that for all
C ∈ SÂ/R and α ∈ Σ ∪ {τ} ∪ IR>0, ProbF

Â
(s, τ∗ατ∗, C) = ProbF ′

Â
(r, τ∗ατ∗, C). Now, if

ProbF
Â
(s, α, s′) > 0 for some s′ ∈ C there exists a configuration r′ and a scheduler F ′ such

that ProbF ′
Â

(r, τ∗ατ∗, r′) = ProbF
Â
(s, α, s′) > 0. Therefore if s

α−→ s′, then there exists r′

such that r
α=⇒ r′ and, since s′ and r′ are in the same equivalence class, R is also a weak

bisimulation on SÂnp
, where Ânp is the TA constructed as in Definition 10 starting from

unprob(A) and unprob(A′). The same holds if we exchange the roles of s and r.
For case 2, the implication holds by the construction of the region automaton and by

Lemmata 4 and 2. Actually, for each run of a PTA (or TA), there exists an analogous run for
the PA (or LTS) obtained with untime(A), and viceversa. Weak bisimulations are, therefore,
preserved. ut

4 Decidability of Weak Bisimulation for PTAs

In this section we develop an algorithm which computes the classes of the weak bisimulation
equivalence and decides whether two configurations are weakly bisimilar by checking that
they are in the same class. To do this, we have to check the condition of Definition 14.

In particular, we resort to disjoint sets of clocks in order to describe pairs of configurations
((q, v), (q′, v′)) within a certain equivalence relation. We use X to represent the evaluations of
the clocks in X for configuration (q, v), and X to represent the evaluations for configuration
(q′, v′) where X = {x | x ∈ X}.

21

Example 16. Consider the PTAs in Figure 12. In the untimed version, the probability of
reaching q4 from the state q2 is 1

2 . Now, in the timed version, we observe that in state q2,
when clock x has value smaller than 3, the automaton may execute both transitions with
probability 1

2 . Otherwise, if clock x has value greater than 3, the transition labeled with a
cannot be executed, and hence the probability has to be redistributed; in such a case the
probability of executing the transition with action a is 0, whereas the transition labeled with
b gets probability 1. Therefore, we need to consider the different cases in which a subset of
transitions are enabled or not.

Moreover, we might consider to use the algorithm for the untimed version on the region
graphs of the two automata, i.e. the graph of regions resulting by applying the untime
operator. However, this is not a good solution; in fact, if we consider the clock zone reached
in state q1 we have x ≥ 0 and in state q6 we have x ≥ 0. Let us suppose that one wants to
compare the probability of reaching q2 from q1 with the probability of reaching q7 from q6.
Now, we must check the two probabilities for each time α ∈ IR≥0, and these are equal for
every time if and only if the value of x in q1 is equal to the value of x in q6. This means
that we cannot consider the clocks separately, but we must have formulae on all the pairs
of states.

Hence, we have to consider formulae that express conditions on the value of clocks at
state q1 together with the value of clocks at state q6. As an example the triple (q1, q6, x = x)
means that the value of clock x at state q1 is equal to the value of clock x at state q6. Thus,
a set of bisimilar configurations (called class) can be expressed by a set of triples.

-x = 0
µ´
¶³
q0 -τ

?
τ

µ´
¶³
q1 -τ

x ≤ 5 µ´
¶³
q2 ³³³³1

PPPPq

µ´
¶³
q3

µ´
¶³
q4

1
2

a
x < 3

1
2 b

µ´
¶³
q5 -τ

µ´
¶³
q6 -τ

x ≤ 5 µ´
¶³
q7 µ´

¶³
q8-

1
2 a

]
1
2 τ

Fig. 12. An Example on our Methodology.

For deciding our notion of weak bisimulation, we follow the classical approach of refining
relations between configurations ([48, 33, 7, 15]). In particular, starting from the initial rela-
tion where all the configurations of a PTA are equivalent, we stepwise specialize relations
until we obtain a weak bisimulation.

At each step we refine the set of classes by deleting the relations between configurations
s1 and s2 that do not satisfy the condition that, for all schedulers F , there exists a scheduler
F ′ such that ProbF

A(s1, τ∗α̂τ∗, C) = ProbF ′
A (s2, τ∗α̂τ∗, C) and vice versa.

To compute the probabilities ProbF
A(s1, τ∗α̂τ∗, C) and ProbF ′

A (s2, τ∗α̂τ∗, C), with C be-
longing to the current partition, we construct two PAs A1 and A2. PA Ai has triples (q, q′, ψ)
as states (where ψ is a formula on Ψ(X)), while transitions (computed by means of prede-
cessor operators) reflect the possibility and the probability of performing certain steps from
configurations reached starting from si, for i = 1, 2.

When α ∈ IR>0 labels a time step, we require that the unsatisfiability of bisimulation
requirements is not caused by the fact that a time step α cannot be performed. Actually,
even if a time step α can be performed from s1 but not from s2, both A1 and A2 do not
have a transition representing that step. This is because, since states of A1 and A2 are
triples, steps from s1 are affected by configuration s2, and hence there is no time successor
from the triple representing s1 and s2. This does not hold for transition steps since the

22

guard of a transition triggered from s1 is not affected by the valuation in s2. We solve
this problem by defining an algorithm Clean that refines the classes in such a manner that
the unsatisfiability of bisimulation requirements is not caused by the fact that we cannot
perform a step labeled with α ∈ IR>0. Intuitively, algorithm Clean removes the relations
between configurations from which it is not possible to perform the same time step to reach
a certain class of bisimilar configurations.

The correctness of the methodology we propose is set up on the following inductive
definition of equivalence relations ∼n on SA.

Definition 17. Let A = (Σ, X,Q, q0, Inv, δ,Π) be a PTA. We set ∼0= SA × SA and,
for n = 0, 1, . . ., s ∼n+1 s′ iff for all schedulers F there exists a scheduler F ′ such that
∀C ∈ SA/ ∼n and α ∈ Σ∪{τ}∪ IR>0 it holds that ProbF

A(s, τ∗α̂τ∗, C) = ProbF ′
A (s′, τ∗α̂τ∗, C)

and vice versa.

The next lemma allows us to define an algorithm for computing weak bisimulation equiv-
alence classes by following the technique discussed above.

Lemma 6. Let A = (Σ, X,Q, q0, Inv, δ,Π) be a PTA and s, s′ ∈ SA. Then, s ≈ s′ ⇔ ∀n ≥
0 s ∼n s′.

Proof. The proof can be adapted from the one in Baier’s habilitation thesis [8] for proba-
bilistic systems. This can be done since configurations of a PTA can be grouped in a finite
set of classes (see Section 2.3).

Let ∼′= ⋂
n≥0 ∼n. We have to show that ≈=∼′. Since the approximations ∼n are

equivalence relations, it is easy to see that ∼′ is an equivalence relation too. By induction
on n we can show that ∼0⊇∼1⊇ . . . ⊇≈. Hence, ∼′⊇≈. In order to show that ∼′⊆≈ we
prove that ∼′ is a weak bisimulation.

Since, ∼0⊇∼1⊇ . . . ⊇≈, then, for any n ≥ 0, s ∼n+1 s′ implies s ∼n s′. Therefore, for
any n ≥ 0 and for any B ∈ SA/ ∼n, there exists B′ ∈ SA/ ∼n+1, such that B′ ⊆ B....

Now, for each B ∈ SA/ ∼′ and for each n ≥ 0, it holds that there exists a unique element
Bn ∈ SA/ ∼n with B ⊆ Bn. Actually ∼′= ⋂

n≥0 ∼n.
Now, B ⊆ Bn and B ⊆ Bn+1 implies that Bn ∩Bn+1 6= ∅.
But we have proved that for any n ≥ 0 and for any B ∈ SA/ ∼n, there exists B′ ∈

SA/ ∼n+1, such that B′ ⊆ B, hence the class Bn contains the class Bn+1, for any n.
Then, B0 = SA ⊇ B1 ⊇ B2 ⊇ . . . and B =

⋂
n≥0 Bn.

Claim 1: We want to prove that, for all schedulers F of A, if ProbF
A(s, τ∗α̂τ∗, B) > 0

and B ∈ SA/ ∼′, then ProbF
A(s, τ∗α̂τ∗, B) = infn≥0 ProbF

A(s, τ∗α̂τ∗, Bn). For short, let us
call P [Bn] the probability ProbF

A(s, τ∗α̂τ∗, Bn). Since B =
⋂

n≥0 Bn and Bn ⊇ Bn+1, we
have 1 = P [B0] ≥ P [B1] ≥ . . . ≥ P [Bn]. We put r = infn≥0P [Bn]. Clearly r ≥ P [B]. We
suppose, by contradiction, that r > P [B]. Let ∆ = r − P [B], then ∆ > 0. Since

∑
t 6∈B P [t]

is convergent, then there exists a finite subset M of SA \ B such that P [N] < ∆ where
N = SA \ (B ∪M). For all n ≥ 0, Bn = B ∪ (N ∩ Bn) ∪ (M ∩ Bn). The sets B, N ∩ Bn

and M ∩ Bn are pairwise disjoint. Hence, P [Bn] = P [B] + P [N ∩ Bn] + P [M ∩ Bn] <
P [B] + ∆ + P [M ∩ Bn] = r + P [M ∩ Bn]. Since r ≤ P [Bn] we get M ∩ Bn 6= ∅. Since,
Bn ⊇ Bn+1 and M ∩ Bn 6= ∅, for any n, then there exists t such that t ∈ Bn, for any n.
Hence, t ∈ (

⋂
n≥0 Bn) = B. But t ∈ B and t ∈ M , implies M ∩B 6= ∅, giving a contradiction

(by definition M is a subset of S \B).
Claim 2: Now, we want to prove that ∼′ is a weak bisimulation. Let s ∼′ s′ and

ProbF
A(s, τ∗α̂τ∗, C) > 0 for some scheduler F and C ⊆ SA. By Claim 1 it suffices to show

that there exists a scheduler F ′ such that ProbF
A(s′, τ∗α̂τ∗, C) = ProbF ′

A (s, τ∗α̂τ∗, C), for
all n ≥ 1 and C ∈ SA/ ∼n. But this directly derives from the definition of ∼n. In fact,
since for all F and n ≥ 1 s ∼n+1 s′, we have that there exists a scheduler F ′ such that
ProbF

A(s, τ∗α̂τ∗, C) = ProbF ′
A (s′, τ∗α̂τ∗, C) ∀C ∈ SA/ ∼n. ut

23

In the following of this section we assume A to be the PTA (Σ, X,Q, q0, Inv, δ,Π).

4.1 Classes

In this section we define the notion of classes of a PTA. A class represents a set of pairs
of configurations that belong to the relation we are considering. Hence, a set of classes G
defines a relation ≈G .

Definition 18. A class g of the PTA A is a finite set in Q × Q × ΨCA
(X ∪ X). A class

g defines the relation ≈g⊆ SA × SA containing pairs ((q, v), (q′, v′)) such that there exists
(q, q′, ψ) ∈ g with v′′ |= ψ, where v′′(x) = v(x) and v′′(x) = v′(x), for any x ∈ X.

Given a triple (q, q′, ψ), we will refer to the first component of (q, q′, ψ) when we refer to
the configurations expressed by the region (q,∃X.ψ), and we will refer to the second com-
ponent of (q, q′, ψ) when we refer to the configurations expressed by the region (q′, ∃X.ψ).

From now on, without loss of generality, we assume that for all (q, q′, ψ) ∈ g, it holds
that ψ 6≡ false.

Given two classes g1 and g2, we define the class resulting from the intersection g1 ∩ g2.
Namely, g1 ∩ g2 = {(q, q′, ψ ∧ ψ′) | (q, q′, ψ) ∈ g1 and (q, q′, ψ′) ∈ g2 and ψ ∧ ψ′ 6≡ false}

We call atomic constraints, the constraints of the form x ∼ c and x− y ∼ c. Obviously,
the negation of an atomic constraint is expressible as an atomic constraint. As example
¬(x ≤ 5) is equal to x > 5. With ¬g we denote the class {(q, q′,¬φ) | (q, q′, ψ) ∈ g) s.t. ψ 6≡
true and φ is an atomic constraint appearing in ψ}.

Moreover, with ApA(g) we denote the set {(q, q′, ApA(ψ)) | (q, q′, ψ) ∈ g)}.

With Set(A) we denote the set of sets of classes G of A such that, for any g1, g2 ∈ G with
g1 6= g2, it holds that, for any (q, q′, ψ) ∈ g1 and (q, q′, ψ′) ∈ g2 it holds that ψ ∧ψ′ ≡ false.
A set of classes G defines the relation ≈G that is the relation

⋃
g∈G ≈g.

Now, the number of classes is finite since the number of clock zones is finite (see Propo-
sition 3). Moreover, the number of clocks is in the order of |X| . Hence, the number of triples
(q, q′, ψ) is in the order of the number of clock zones of A.

Example 17. The set G = {(q0, q2, 0 ≤ x ≤ x)} is in Set(A), where A is the PTA of
Example 16. The set G defines the relation ≈G such that (q, v) ≈G (q′, v′) iff q = q0, q′ = q2

and v(x) ≤ v′(x).

4.2 The algorithm Clean

We introduce the algorithm CleanA(G) that eliminates the relations between configurations
such that the unsatisfiability of bisimulation requirements is not caused by the fact that we
cannot perform the time step α. Intuitively, we use the algorithm Clean in order to remove
the relations between configurations from which it is not possible to perform the same time
step to reach a certain class of bisimilar configurations.

We denote with ψg the formula

∀t′ ∈ [0, t].
∧

i∈[1,2]

Inv(qi)[X := X + t′] ∧
∧

(q1,q2,ψ)∈g

ψ[X := Xq1 + t][X := X
q2 + t]

where t is a new variable representing the time elapsed, and xq1 and xq2 are new clocks,
for any state q and clock x ∈ X (namely, x and x are substituted in ψ with xq1 + t and
xq2 + t, respectively).

24

Definition 19. Given a class g, with precT (g) we denote the class
⋃

(q1,q2,ψ)∈g

{(q1, q2,∃XQ ∪X
Q ∪ {t}.t > 0 ∧ x = xq1 ∧ x = xq2 ∧ ψg)}

where XQ = {xq | x ∈ X, q ∈ Q} and X
Q = {xq | x ∈ X, q ∈ Q}.

The class precT (g) contains the configurations from which g can be reached with the
same time step. We consider t > 0 since the scheduler returns time steps in IR>0. Actually
a time step with t = 0 changes neither the location nor the valuation. Hence, it can be
trivially excluded.

The following lemma states that deleting the relations between configurations such that
the unsatisfiability of the bisimulation requirements is not caused by the fact that one cannot
perform the time step α, is equivalent to deleting the relations between configurations from
which it is not possible to perform the same time step to reach a certain class of bisimilar
configurations.

Lemma 7. Given an equivalence relation ≈, the two following statements are equivalent:

– For any s1 ≈ s2 and α ∈ IR>0, if s1
α−→ s′1, then s2

α−→ s′2 with s′1 ≈ s′2;
– For any s1 ≈ s2, then, for all schedulers F and F ′, α ∈ IR>0 and C ∈ SA/ ≈,

ProbF
A(s1, τ

∗ατ∗, C) > 0 iff ProbF ′
A (s2, τ

∗ατ∗, C) > 0.

Proof. We prove the two implications:

1. For any s1 ≈ s2 and α ∈ IR>0, if s1
α−→ s′1, then s2

α−→ s′2 with s′1 ≈ s′2 implies the
property that for any s1 ≈ s2, then, for all schedulers F and F ′, α ∈ IR>0 and C ∈ SA/ ≈,
ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0.

Let us suppose by contradiction that there exist two schedulers F and F ′, a time α ∈ IR>0

and a C ∈ SA/ ≈, ProbF
A(s1, τ

∗ατ∗, C) > 0 and ProbF ′
A (s2, τ

∗ατ∗, C) = 0 or viceversa.
Let us consider the case ProbF

A(s1, τ
∗ατ∗, C) > 0 and ProbF ′

A (s2, τ
∗ατ∗, C) = 0.

Therefore there exists α ∈ IR>0 such that s1
α−→ s′1 and, for any s′2 such that s′1 ≈ s′2,

s2 6 α−→ s′2. This is a contradiction since, for any α ∈ IR>0, s1
α−→ s′1 iff s2

α−→ s′2.
The other case is analogous, since ≈ is an equivalence relation, and hence s1 ≈ s2 implies
s2 ≈ s1

2. for any s1 ≈ s2, then, for all schedulers F and F ′, α ∈ IR>0 and C ∈ SA/ ≈, ProbF
A(s1, τ

∗ατ∗, C) >
0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0 implies the property that, for any s1 ≈ s2 and α ∈ IR>0,

if s1
α−→ s′1, then s2

α−→ s′2 with s′1 ≈ s′2
By contradiction there exists α ∈ IR>0 such that, for any, s′1 ≈ s′2 it holds that s1

α−→ s′1
and s2 6 α−→ s′2.
This means that there exists a scheduler F such that ProbF

A(s1, τ
∗ατ∗, [s′1]) > 0, while

for all schedulers F ′ it holds that ProbF ′
A (s2, τ

∗ατ∗, [s′2]) = 0. But this is a contradiction
since ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0 for C = [s′1] = [s′2].

ut
We give now the algorithm CleanA(G) which refines G by using precT . By Lemma 7,

CleanA(G) deletes the relations between configurations from which it is not possible to per-
form the same time step to reach a certain class of bisimilar configurations.

CleanA(G : Set(A)) : Set(A)
g′ :=

⋂
g∈G ¬g

G :=
⋃

g∈G g ∩ ¬
(⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

return G

25

Class g′ represents the set of pairs (s, s′) such that s 6≈G s′,
(⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

represents the set of configurations from which we can reach non bisimilar configurations
through a time step. Therefore, ¬

(⋃
(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})

)
represents the set of con-

figurations from which, through any time step, bisimilar configurations are reached. As a
consequence, we refine the relation ≈G by deleting the pairs (s, s′) such that it is not possible
to perform the same time step from s and s′ to reach a certain class.

The following lemma states the correctness of the algorithm CleanA.

Lemma 8. Relation ≈CleanA(G) is the biggest relation enclosed in ≈G such that if s1 ≈CleanA(G)

s2 and there exists a scheduler F such that for any scheduler F ′, α ∈ IR>0 and C ∈ SA/ ≈G,
it holds that ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0 and viceversa. Moreover,

CleanA(G) is computable in exponential time w.r.t. the size of A and, if ≈G is an equivalence
relation, then ≈CleanA(G) is an equivalence relation.

Proof. Since we refine a triple (q, q′, ψ) with a triple (q, q′, ψ′) such that ψ′ ⇒ ψ, it is obvious
that if s ≈CleanA(G) s′, then s1 ≈G s2. Therefore the relation ≈CleanA(G) is enclosed in the
relation ≈G .

We prove now that if s1 ≈CleanA(G) s2 and there exists a scheduler F such that for any
scheduler F ′, α ∈ IR>0 and C ∈ SA/ ≈CleanA(G), ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) >

0 and viceversa.
By Lemma 7, it is sufficient to prove that for any s1 ≈CleanA(G) s2 and α ∈ IR>0, if

s1
α−→ s′1, then s2

α−→ s′2, for some s′1 ≈CleanA(G) s′2.
Given s1 ≈CleanA(G) s2, let us suppose, by contradiction, that s′1 6≈G s′2, for some s′1 and

s′2 such that si
α−→ s′i, for i = 1, 2.

Since s′1 6≈G s′2, then s′1 ≈g′ s′2 (recall that g′ =
⋂

g∈G ¬g). Moreover, by Proposition 4

and since α ∈ IR>0, we have that s1 ≈g′′ s2 where g′′ =
(⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)
.

The equivalence s1 ≈g′′ s2 implies that s1 6≈¬g′′ s2, and, since CleanA(G) =
⋃

g∈CleanA(G) g∩
¬g′′, we have that s1 6≈CleanA(G) s2, that is a contradiction.

Finally, ≈CleanA(G) is the biggest relation, namely, we just have to prove that for each
relation ≈′ satisfying the same requirements of ≈CleanA(G) we have that ≈′ is contained in
≈CleanA(G).

Let us suppose, by contradiction, that there exists such a relation≈′ with ≈′⊃≈CleanA(G).
As a consequence, there exist s1 and s′1 such that s1 ≈′ s′1 and s1 6≈CleanA(G) s′1.

Now, s1 ≈′ s′1 implies s1 ≈G s′1, thus s1 ≈G s′1 and s1 6≈CleanA(G) s′1. This implies that
s1 6≈CleanA(G) s′1 is introduced by the refinement done by CleanA. Therefore, there is some g′′

such that s1 6≈¬g′′ s1 where g′′ =
(⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

(recall that g′ =
⋂

g∈G ¬g).
Since s1 6≈¬g′′ s1 we have that s1 ≈g′′ s1. Hence, by Proposition 4, there exists α, s2 and s′2
such that s1

α−→ s2 and s′1
α−→ s′2 and s2 ≈g′ s′2. As a consequence, since g′ =

⋂
g∈G ¬g, we

have that s2 6≈G s′2.
This implies that s1

α−→ s2 and s′1
α−→ s′2 and s2 6≈G s′2. Since≈′ satisfies the conditions of

Lemma 7, it must hold that s1 6≈′ s′1, but this is a contradiction since by hypothesis s1 ≈′ s′1.

The cost of the operator CleanA(G) is the cost of assignments and ∪ and ∪ operators
that are polynomial on the size of G. The size of G is bounded on the size of the regions
that are exponential on the size of A. Hence, CleanA(G) is computable in exponential time
on the size on the size of A.

26

We prove that ≈CleanA(G) is an equivalence relation. Obliviously, since CleanA(G) is a
refinement of G, for any g ∈ G there exists g′ ∈ CleanA(G) such that ≈g′⊆≈g. We call g′ as
clean(g).

Hence the thesis holds since s1 ≈clean(g) s2 implies s1 ≈g s2 and, by Lemma 7, we
have that, for any s1 ≈CleanA(G) s2, F and F ′, α ∈ IR>0 and C ∈ SA/ ≈CleanA(G),
ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0.

Actually:

– Reflexivity: we must prove that s ≈CleanA(G) s. Since ≈G is an equivalence relation,
we have that s ≈G s, hence there exists g ∈ G such that s ≈g s. Hence it is suffi-
cient to prove that s ≈clean(g) s. Obviously, by Lemma 7, ProbF

A(s, τ∗ατ∗, C) > 0 iff
ProbF ′

A (s, τ∗ατ∗, C) > 0.
– Symmetry: it is sufficient to prove that, for any g, if s1 ≈clean(g) s2, then s2 ≈clean(g) s1.

But obviously s1 ≈g s2 and s2 ≈g s1 and, by Lemma 7, ProbF
A(s1, τ

∗ατ∗, C) > 0 iff
ProbF ′

A (s2, τ
∗ατ∗, C) > 0 implies that ProbF

A(s2, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s1, τ
∗ατ∗, C) >

0.
– Transitivity: we must prove that, for any g, if s1 ≈clean(g) s2 and s2 ≈clean(g) s3, then

s1 ≈clean(g) s3. But obviously s1 ≈g s2 and s2 ≈g s3, then s1 ≈g s3. Moreover, by Lemma
7, ProbF

A(s1, τ
∗ατ∗, C) > 0 iff ProbF ′

A (s2, τ
∗ατ∗, C) > 0 and ProbF ′

A (s2, τ
∗ατ∗, C) > 0 iff

ProbF ′′
A (s3, τ

∗ατ∗, C) > 0 implying that ProbF
A(s1, τ

∗ατ∗, C) > 0 iff ProbF ′′
A (s3, τ

∗ατ∗, C) >
0

ut

Example 18. Consider the set of classes G = {g1, g2} of Example 16 where

g1 = {(q2, q7, 0 ≤ x < 3 ∧ 0 ≤ x < 3)}

and
g2 = {(q2, q7, x ≥ 3 ∧ x ≥ 3)}.

Since from q2 and q7 only time steps can be performed, we have that, by following Proposi-
tion 2, variable t can be deleted, and hence ¬

(⋃
(q,q′,ψ)∈g′ precT ((q, q′, ψ))

)
= {(q2, q7, (x =

x)), (q2, q7, (x ≥ 3 ∧ x ≥ 3))}.
Therefore, we refine G getting the classes {(q2, q7, 0 ≤ x < 3 ∧ x = x)} and {(q2, q7, x ≥

3∧x ≥ 3)} instead of g1 and g2, respectively. Actually, any time step does not give problems
for the class g2, but for the class g1 one must have that x = x in order to reach bisimilar
configurations. As an example, (q2, x = 2.5) ≈G (q7, x = 2.9), but (q2, x = 2.5) 0.2−→ (q2, x =
2.7), (q7, x = 2.9) 0.2−→ (q7, x = 3.1) and (q2, x = 2.7) 6≈G (q7, x = 3.1).

4.3 The Cut operator

Now, following the partition/splitter technique (see [48, 33]), we need a splitter operator
(see also [7, 15]). Hence, we define a cut operator that, given a class, splits it into a set
of classes satisfying the requirements of the definition of weak bisimulation. For this pur-
pose, we construct two PAs by using predecessor operators for computing the probabilities
ProbF

A(s, τ∗α̂τ∗, C).
For PTAs, the probabilities of each step strongly depend on the enabled transitions. The

following proposition ensures that for any configuration s′ reachable from a given configu-
ration s by a discrete transition step, the values of the clocks in s′ remain the same as in s
or are equal to zero (through clock resets).

27

Proposition 7. For each σ = (q0, v0)
α1−→ (q1, v1) . . .

αk−→ (qk, vk), with αi ∈ Σ ∪ {τ}, it
holds that either vi(x) = v0(x) or vi(x) = 0, for any i ≥ 0 and x ∈ X.

Proof. Since there are no time steps, vi(x) 6= v0(x) if and only if x is reset and v0(x) > 0. ut

Definition 20. Given a class g and a set of transitions E, with prec(g, E) and prec(g,E)
we denote, respectively, the classes

⋃

(q,a,φ,B,q′)∈E

{(q, q′′, Inv(q) ∧ φ ∧ ∃B.ψ ∧B = 0 ∧ Inv(q′)) | (q′, q′′, ψ) ∈ g}

and
⋃

(q,a,φ,B,q′)∈E

{(q′′, q, (Inv(q)∧φ)[X := X]∧(∃B.ψ∧B = 0∧(Inv(q′)[X := X]))) | (q′′, q′, ψ) ∈ g}.

Moreover, [g] is the set of triples (q, q′, ψ) such that ψ ∈ ΨCA
(X ∪X), ψ 6≡ false and there

exists (q, q′, ψ′) ∈ g with, for any x ∈ X ∪X, either ψ ⇒ (ψ′ ∧ x = 0) or ψ ⇒ (ψ′ ∧ x > 0).

The formulae prec(g,E) and prec(g, E) give the sets of configurations from which it is
possible to reach, respectively, the first and the second component by performing a transition
in E. The set [g] is the set of triples enclosed in g such that each variable is either equal to
0 or greater than 0.

Since g expresses a set of configurations, for any configuration (q, v) and (q, v′) such
that there exists a finite path from (q, v) to (q, v′) using symbols in Σ ∪ {τ}, we have that
Adm((q, v)) can be different from Adm((q, v′)).

However, by Proposition 7, the set of transitions that can be taken from a configuration
can be deterministically associated with a state, if it is known that x > 0 or x = 0, for each
clock x. Actually, Adm(q, v) 6= Adm(q, v′) if and only if v(x) 6= v′(x), for some x appearing
in a condition of a transition in Adm(q, v) ∪ Adm(q, v′). By Proposition 7, if v(x) 6= v′(x),
for some x appearing in a condition of a transition in Adm(q, v) ∪ Adm(q, v′), then there
exists B ⊆ X such that v(x) 6= v′(x) iff x ∈ B and v′(x) = 0.

Hence, Adm(q, v) 6= Adm(q, v′) if and only if {x | v(x) = 0} 6= {x | v′(x) = 0}. Therefore,
given (q, q′, ψ) ∈ [g] such that Y = {x ∈ X | ψ ⇒ x = 0}, we define the set F(ψ) as the set
of functions f such that, for any state q and set of clocks B ⊇ Y , it holds that f(q,B) ⊆ δ(q)
and the formula

ψ ∧
∧

(q,a,φ,B′,q′)∈δ

∧

B⊆X

(
(∃B.φ ∧B = 0 ∧ (X \B) > 0) ⇔ (q, a, φ,B′, q′) ∈ f(q, B)

)
(1)

is satisfiable. The set f(q, B) contains the transitions that are enabled in the first component
when a configuration, with q as state and with a valuation where exactly the clocks in
B are equal to 0, is reached from ψ. Formula 1 ensures that, for any state q and set of
clocks B, f(q, B) is the set of transitions enabled when ψ is true. Actually, the formula
φ ∧ B = 0 ∧ (X \ B) > 0 means that φ holds and x is 0 iff x ∈ B. This formula must hold
iff the transition is in f(q, B). Symmetrically, we can define F(ψ) for the second component
where we consider Y = {x ∈ X | ψ ⇒ x = 0} instead of Y = {x ∈ X | ψ ⇒ x = 0}.

In the following we may write f(q,B, a) with a ∈ Σ∪{τ} to denote the set f(q, B)∩δ(a),
where δ(a) is the set of transitions of A with label a. The number of functions in F(ψ) is
exponential in |X| and δ.

Note that F(ψ) does not contain necessarily only one function. As an example, if
ψ = 0 < x < 10 and we have two transitions, one guarded with φ1 = 1 ≤ x ≤ 3 and
one guarded with φ2 = 2 ≤ x ≤ 6, then we have four cases, both φ1 and φ2 do not hold,

28

only φ1 holds, only φ2 holds, and both φ1 and φ2 hold. The four cases depend on the value
of x, which is a real number in (0, 10).

We can calculate the probability of performing a sequence of steps labeled with τ∗α̂τ∗

by analyzing reachability of states in the model of PAs. In particular, we can perform this
computation without using labels. Hence we consider PAs with an empty set of labels and
with transitions as pairs (z, z′), where z and z′ are the starting state and the target state,
respectively.

More precisely, with ProbF
A(s, τ∗α̂τ∗, ḡ) and ExecFragF

A(s, τ∗α̂τ∗, ḡ) we denote ProbF
A(s, τ∗α̂τ∗, C)

and ExecFragF
A(s, τ∗α̂τ∗, C), respectively, where C = {s | ∃s′ ∈ SA.s ≈ḡ s′}.

In order to check whether for any scheduler F there exists a scheduler F ′ such that
ProbF

A(s1, τ
∗α̂τ∗, ḡ) = ProbF ′

A (s2, τ
∗α̂τ∗, ḡ) and vice versa, we calculate the probability pi

to reach ḡ from si by performing τ∗α̂τ∗, for i = 1, 2. To this purpose, we construct two PAs
A1 and A2 such that the probability to reach a special state good in the PA Ai is equal to
pi, for i = 1, 2.

In the following, when A performs a time step with α ∈ IR>0 we consider α = λ, where
λ denotes a generic time step.

States of A1 are either quadruples (q, q′, ψ, i) or a state in {wrong, good}. The quadruple
(q, q′, ψ, i) represents the configurations (q, v) and (q′, v′), with (q, v) ≈{(q,q′,ψ)} (q′, v′), that
can be crossed to reach two equivalent configurations with respect to ḡ starting from s1 and
s2, respectively. Index i is 1 if α is not performed, i is 2 when α is performed by the first
component and i = 3 when α is performed by both components.

The wrong state is reached in A1 if a discrete transition step labeled with α′, with
α′ 6∈ {α, τ}, is performed by A.

If α ∈ IR>0, then state good is reached in A1 when ḡ is reached in A through a time step
α. Otherwise, if α ∈ Σ ∪ {τ}, then state good is reached only if the class ḡ can be reached
in A through a discrete transition step α performed by any configuration reachable from s1

and s2 via τ steps.
The probability associated with two states of the PA z = (q1, q2, ψ, i) and z′ = (q′1, q2, ψ

′, i′)
is equal to the probability p if from a configuration (q1, v) with v |= ψ′ there exists a step
with probability equal to p leading to the configuration (q′1, v′) with v′ |= ψ′ .

The probability associated with two states of the PA z = (q1, q2, ψ, i) and z′ = (q1, q
′
2, ψ

′, i′)
is equal to 1 if from a configuration (q2, v) with v |= ψ′ there exists a step with label in
{α, τ} to the configuration (q′2, v′) with v′ |= ψ′ . Actually, the probability computed for the
first configuration is not affected by the probabilities of the second one.

PA A2 is constructed similarly.

Definition 21. Let α ∈ Σ ∪ {τ, λ}. Let g, g be two classes and f ∈ F(ψ) and f ′ ∈ F(ψ),
for some ψ. We define A1(g, g, f, f ′, α), the PA (∅, Q′, q0, δ

′,Π ′) such that:

– Q′ = Q×Q×ΨCA
(X ∪X)×{1, 2, 3} ∪ {start, good, wrong}. Note that Q′ is a finite set

since the set of clock zones has finite cardinality by Proposition 3.
– q0 = start;
– δ′ is the set of pairs ((q1, q2, ψ, i), z), for some q1, q2 ∈ Q, i ∈ [1, 3] and ψ ∈ ΨCA

(X ∪X),
one of the following requirements holds:
1. z = (q′1, q2, ψ

′, i) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some e ∈ f(q1, {x | ψ ⇒
x = 0}, τ), namely a τ step is performed from q1.

2. z = (q1, q
′
2, ψ

′, i) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some e ∈ f ′(q2, {x | ψ ⇒
x = 0}, τ), namely a τ step is performed from q2.

3. i = 1, α = λ, z = (q1, q2, ψ
′, 3) and (q1, q2, ψ) ∈ ApA(precT ((q1, q2, ψ

′)))∩g. Namely,
z has been reached correctly by the same time step of both components. Since both the
components perform the time step the new index is 3.

29

4. i = 1, α ∈ Σ ∪ {τ}, z = (q′1, q2, ψ
′, 2) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some

e ∈ f(q1, {x | ψ ⇒ x = 0}, α). Namely a step labeled with α is performed from q1.
5. i = 2, α ∈ Σ ∪ {τ}, z = (q1, q

′
2, ψ

′, 3) and (q1, q2, ψ) ∈ ApA(prec(z, e)) ∩ g for some
e ∈ f ′(q2, {x | ψ ⇒ x = 0}, α). Namely a step labeled with α is performed from q2.

6. i = 3, z = good and (q1, q2, ψ) ∈ g. Namely, g is correctly reached.
7. z = wrong. This transition simulates the possibility of reaching a configuration

through a time step with label different from α (obviously this is always possible)
or by a discrete transition step with label in Σ \ {α}.

– Π ′ is the set of distributions π such that, for any (q1, q2, ψ, i) ∈ Q′, either there exists
a transition e = ((q1, q2, ψ, i), z) derived from points 2 or 3 or 5 or 6 or 7, such that
π(e) = 1, or there exists π′ ∈ Π such that, for any transition ((q1, q2, ψ, i), z) derived
from points 1 or 4 or 7, it holds that

π((q1, q2, ψ, i), z) =
∑

e∈E π′(e)∑
e∈f(q1,{x | ψ⇒x=0}) π′(e)

where E is one of the following sets:
• E = {e ∈ f(q1, {x | ψ ⇒ x = 0}, τ) | (q1, q2, ψ) ∈ ApA(prec(z, e))}, if ((q1, q2, ψ, i), z)

is a transition derived from 1;
• E = {e ∈ f(q1, {x | ψ ⇒ x = 0}, α) | (q1, q2, ψ) ∈ ApA(prec(z, e))}, if ((q1, q2, ψ, i), z)

is a transition derived from 4;
• E =

⋃
a∈Σ\{α} f(q1, {x | ψ ⇒ x = 0}, a), if ((q1, q2, ψ, i), z) is a transition derived

from 7.

The PA A2(g, g, f, f ′, α) can be defined symmetrically.

The PAs Ai(g, g, f, f ′, α) may have an exponential number of states, but they can be
constructed by using a more efficient technique based on backward symbolic analysis thanks
to the prec operator and the theory of regions and DBMs [12, 26, 36].

The following lemma states that it is possible to compute the probability of reaching with
τ∗α̂τ∗ the class ḡ from the configurations s and s′ with s ≈z s′ by computing the probabilities
of reaching the state good of A1 and A2 from z ∈ g, where Ai = Ai(g, ḡ, f, f ′, α) for i = 1, 2.

Lemma 9. Let G be such that CleanA(G) = G and ≈g is an equivalence relation for any g ∈
G. Let g, ḡ ∈ G, and (q1, v1) and (q2, v2) be two configurations such that (q1, v1) ≈{(q1,q2,ψ)}
(q2, v2) with (q1, q2, ψ) ∈ [g]. Let α ∈ Σ ∪ {τ} ∪ IR>0 and α′ = α if α ∈ Σ ∪ {τ}, and α′ = λ
if α ∈ IR>0. For any i = 1, 2 and scheduler F of A there exists a scheduler F ′ of Ai =
Ai(g, ḡ, f, f ′, α′), for some f ∈ F(ψ) and f ′ ∈ F(ψ), such that ProbF

A((qi, vi), τ∗α̂τ∗, ḡ) =
ProbF ′

Ai((q1, q2, ψ, 1), good), and vice versa.

Proof. By Proposition 4 and 7 we have that, for any α ∈ Σ ∪ {τ} ∪ IR>0 and scheduler
F , if s = (q, v) α−→ s′ = (q′, v′) is a step of A, then for any state z = (q, q′′, ψ, i) such
that v |= ψ, there exists a step σ = (q, q′′, ψ, i) −→ (q′, q′′, ψ′, i′) generated by the set of
transitions f(q, {x | v(x) = 0}, a) with v′ |= ψ, and a scheduler F ′ of A1 such that

PF
A1(σ) = PF ′

A (s a−→ s). (2)

Similarly for the vice versa and A2.
Moreover, we note that:

– the steps triggered by transition e of the second component do not influence the prob-
ability of paths of A1 since, for any distribution π of A1, we have that π(e) > 0 implies
π(e) = 1.

30

– the steps triggered by transition e of the first component do not influence the probability
of paths of A2 since, for any distribution π of A2, we have that π(e) > 0 implies π(e) = 1.

– the good state is reached only from states of A1 and A2 with index equal to 3 and hence
the good state is reached only after a sequence of symbols in τ∗ατ∗ of both components.

Hence, if α ∈ Σ ∪ {τ}, then there exists a surjective function ζ from the executions in
ExecFragA performing words in τ∗ατ∗ to ExecFragAi such that, for any scheduler F of
A, there exists a scheduler Fi for Ai such that ProbF

A({σ′ ∈ ExecFragF
A | ζ(σ′) = σ}) =

ProbFi

Ai(σ), for any i = 1, 2 and σ ∈ ExecFragFi

Ai where σ reads a string in τ∗ατ∗. There-
fore, for any i = 1, 2 and scheduler F of A there exists a scheduler Fi of Ai such that
ProbF

A((qi, vi), τ∗ατ∗, ḡ) = ProbFi

Ai((q1, q2, ψ, 1), good). Similarly we can prove the other di-
rection.

On the other hand, if α ∈ IR>0, then α′ = λ. Hence, the proof is more complex with
respect to the case α ∈ Σ ∪ {τ} since λ may represent, in A1 and A2, two different times.

Hence we consider the case in which ExecFragF ′
A ((q2, v2), τ∗ατ∗, ḡ), for α ∈ IR>0, is

empty and the case in which it is not.

1. If ExecFragF
A((q1, v1), τ∗ατ∗, ḡ) is empty, then we have that there exists a scheduler F ′

such that ExecFragF ′
A ((q2, v2), τ∗ατ∗, ḡ) is empty and viceversa. Actually, as proved for

the case α ∈ Σ ∪{τ}, since precT ensures that the two components take the same times
step, and, since ≈g is an equivalence relation for any g ∈ G, there exists a surjective func-
tion ζ from the executions in ExecFragA performing words in τ∗ατ∗ to ExecFragAi such
that, for any scheduler F of A, there exists a scheduler Fi for Ai such that ProbF

A({σ′ ∈
ExecFragF

A | ζ(σ′) = σ}) = ProbFi

Ai(σ), for any σ ∈ ExecFragFi

Ai and i = 1, 2, if and only
if it holds that ExecFragF

A((q1, v1), τ∗ατ∗, ḡ) 6= ∅ or ExecFragF
A((q2, v2), τ∗ατ∗, ḡ) 6= ∅.

In fact, if either ExecFragF
A((q1, v1), τ∗ατ∗, ḡ) = ∅ or ExecFragF

A((q2, v2), τ∗ατ∗, ḡ) = ∅,
then A1 and A2 cannot reach the state good, and hence ProbF

A((qi, vi), τ∗ατ∗, ḡ) could
be different from the probability of reaching the state good of Ai w.r.t. scheduler Fi, for
i = 1, 2.
But, since CleanA(G) = G, by Lemma 8, it holds that, if there exists a scheduler F of A
such that for any scheduler F ′ of A′, ProbF

A((q1, v1), τ∗ατ∗, ḡ) > 0 iff ProbF ′
A ((q2, v2), τ∗ατ∗, ḡ) >

0. Hence, ExecFragF
A((q1, v1), τ∗ατ∗, ḡ) is not empty iff ExecFragF ′

A ((q2, v2), τ∗ατ∗, ḡ)
is not empty.
Hence, as proved for α ∈ Σ∪{τ}, it holds that for any i = 1, 2 and scheduler F of A there
exists a scheduler Fi of Ai such that ProbF

A((qi, vi), τ∗ατ∗, ḡ) = ProbFi

Ai((q1, q2, ψ, 1), good) =
0, and vice versa.

2. If ExecFragF
A((q1, v1), τ∗ατ∗, ḡ) is not empty, then, as proved for 1, we have that there

exists a scheduler F ′ such that ExecFragF ′
A ((q2, v2), τ∗ατ∗, ḡ) is not empty. Hence, as

proved for α ∈ Σ ∪{τ}, it holds that for any i = 1, 2 and scheduler F of A there exists a
scheduler Fi of Ai such that ProbF

A((qi, vi), τ∗ατ∗, ḡ) = ProbFi

Ai((q1, q2, ψ, 1), good) > 0,
and vice versa.

ut
Example 19. Let us assume the state (q2, q7, 0 ≤ x < 3 ∧ x = x) ∈ g and the class g of
the PTA in Figure 12 such that g = {(q3, q8, 0 ≤ x < 3 ∧ x = x), (q8, q3, 0 ≤ x < 3 ∧ x =
x), (q3, q3, x = x), (q8, q8, x = x)} . We note that ≈g is an equivalence relations. Let f be the
function such that f(q, B) = δ(q).

We construct A1(g, g, f, f, a) by considering ((q2, q7, 0 ≤ x < 3 ∧ x = x), 1) as the initial
state.

We describe probabilities assigned to the transitions starting from state z = ((q2, q7, 0 ≤
x < 3∧x = x), 1). The probability distribution π satisfies one of the following requirements:

31

– π(z, (q2, q7, 0 ≤ x < 3 ∧ x = x, 2)) = π(z, wrong) = 0.5 (representing the steps of the
first component labeled with a or b).

– π(z, wrong) = 1.
– π(z, z) = 1 (representing the τ step of the second component).

We describe now the probabilities assigned to the transitions starting from the state
z = (q3, q7, 0 ≤ x < 3∧x = x, 2). The probability distribution π satisfies one of the following
requirements:

– π(z, (q3, q8, 0 ≤ x < 3 ∧ x = x, 3)) = 1 (representing the step of the second component
labeled with a).

– π(z, wrong) = 1.
– π(z, z) = 1 (representing the τ step of the second component).

Finally, for the state (q3, q8, 0 ≤ x < 3 ∧ x = x, 3) we have only one transition to the
state good with probability equal to 1.

With CutA(g, ḡ) we denote the set {g1, . . . , gn} ∈ Set(A) such that, [g] ⊃ ⋃
i∈[1,n][gi],

and for any α ∈ Σ ∪ {τ, λ} it holds that (q1, q2, ψ), (q′1, q′2, ψ′) ∈ [gi], for some i = 1, . . . , n,
iff for any f ∈ F(ψ), f ′ ∈ F(ψ′) and scheduler F there exists a scheduler F ′ such that
ProbF

A1((q1, q2, ψ), good) = ProbF ′
A2((q′1, q′2, ψ′), good), where Aj = Aj(ḡ, f, f ′, α) with j =

1, 2.

Example 20. Let us assume the classes g1 and g2 of Example 19. We have that CutA(g1, g2) =
{{(q2, q2, 0 ≤ x < 3 ∧ x = x)}, {(q7, q7, 0 ≤ x < 3 ∧ x = x)}}.

Note that to compute the probabilities ProbF
Ai(z, good) it is sufficient to compute only

once the automata Ai = Ai(g, ḡ, f, f ′, α), for i = 1, 2. Since the number of clock zones is
exponential w.r.t. the size of A, we have that automata Ai = Ai(g, ḡ, f, f ′, α), for i = 1, 2,
have an exponential number of states with respect to the size of A. By Proposition 1, we
have that ProbF

Ai(z, good) is computable in exponential time on the size of Ai (in polynomial
time if Ai has no τ transitions). The next corollary follows.

Corollary 1. For any g, ḡ, CutA(g, ḡ) is computable in double exponential time w.r.t. the
size of A. If A has no τ transitions, CutA(g, ḡ) is computable in exponential time w.r.t. the
size of A.

Proof. To compute CutA(g, ḡ) we must construct once Ai = Ai(g, ḡ, f, f ′, α), for i = 1, 2,
and we must check when ProbF

A1((q1, q2, ψ), good) = ProbF ′
A2((q′1, q′2, ψ′), good).

Now, the number of (q1, q2, ψ) and (q′1, q′2, ψ′) are at most exponential on the size of A
since are bounded on the number of clock zone. Hence, we must compute ProbF

A1(z, good),
for at most an exponential number on the size of A of s. Therefore, the complexity is equal
to 2|A| × I where I is the cost to compute the value ProbF

A1(z, good).
We recall that to compute the value of ProbF

Ai(z, good) it is sufficient to construct only
once the automata Ai = Ai(g, ḡ, f, f ′, α), for i = 1, 2. Since the number of clock zones is
exponential w.r.t. the size of A, we have that automata Ai = Ai(ḡ, f, f ′, α), for i = 1, 2, have
an exponential number of states with respect to the size of A. By Proposition 1, we have
that ProbF

Ai(z, good) is computable in exponential time on the size of Ai (in polynomial
time if Ai has no τ transitions).

Therefore, we have that the complexity is 2|A| × 22|A| and 2|A| × 2|A| if A has no τ
transitions. ut

32

4.4 The Algorithm

We can now define the algorithm Classes(A) that returns a set in Set(A) giving the config-
urations that are bisimilar. The algorithm refines the classes by using the triples returned
by the algorithm Clean and the Cut operator until the fixpoint is reached. The algorithm
starts with the class

⋃
q,q′∈Q{(q, q′, X ≥ 0 ∧X ≥ 0)} (namely, the class containing all con-

figurations). The refinement is done by splitting according to CutA(g, g′). The “for each”
command enumerates the pairs g, g′ in G at the moment in which the first cycle is processed.
Hence, the command G := (G \ {g})∪ G′′ does not influence the execution of the “for each”
command.

Classes(A : PTA) : Set(A)
G :=

⋃
q,q′∈Q{(q, q′, X ≥ 0 ∧X ≥ 0)}

repeat
G′ := G
G := CleanA(G)
for each g, g′ ∈ G
G′′ := CutA(g, g′)
if G′′ 6= {g} then G := (G \ {g}) ∪ G′′

until (G == G′)
return G

We have the following theorem stating the correctness of the algorithm. This implies the
decidability of weak bisimulation for PTAs.

Theorem 2. For any configuration s, s′ ∈ SA, s ≈A s′ if and only if s ≈Classes(A) s′.
Moreover, Classes(A) is computable in double exponential time w.r.t. the size of A. If A
has no τ transitions, then Classes(A) is computable in exponential time w.r.t. the size of
A.

Proof. By Lemma 6, it is sufficient to prove that s ≈Class(A) s′ ⇔ ∀n ≥ 0 s ∼n s′.
Let G1, . . . ,Gn, . . . be the values of variable G at each step of the algorithm. We prove by
induction that s ≈Gi s′ ⇔ ∀n ∈ {0, . . . , i}.s ∼n s′.

The base case is obvious since G0 :=
⋃

q,q′∈Q{(q, q′, X ≥ 0 ∧X ≥ 0)}.
By induction we have that s ≈Gi s′ ⇔ ∀n ∈ {0, . . . , i}.s ∼n s′. Therefore ≈g is an

equivalence relation, for any g ∈ Gi. Hence, by Lemma 8 and Lemma 9, we have that
s ≈Gi+1 s′ ⇔ ∀n ∈ {0, . . . , i + 1}.s ∼n s′.

The fixpoint is computable after a finite number of steps since the number of formulae is
finite and, at each step of the algorithm, the set G is updated with a set of classes included
in the previous set of classes. The number of iterations is bounded by the number of clock
zones. Actually, at each step, our algorithm refines the classes and partitions some of them
as the classical algorithm for weak bisimulation on finite state machines. In such a case the
algorithm is polynomial on the number of states, whereas in our case, the states are the
possible set of regions that are exponential on the size of A.

Hence, the cost of the algorithm is given by the formula 2|A| × I, where I is the cost of
each iteration.

The cost I of each iteration is given by I1 + I2 × I3 where:

– I1 is the cost of CleanA(G) plus the costs of assignments and boolean check outside the
command for each, that is exponential time on the size of A by Lemma 8 and since the
size of a class is bounded by the number of regions.

– I2 is equal to the number of iterations of the command for each. Since the size of G is
bounded by the number of clock zones, I2 is exponential w.r.t. the size of A.

33

– I3 is the cost of each iteration of I2. This cost depends on the cost of CutA plus the costs
of assignments and boolean check inside the command for each. Hence I3 is double
exponential time w.r.t. the size of A cause the CutA operator (see Corollary 1). Note
that if A has no τ transitions, then the CutA operator is exponential time (see Corollary
1), and hence I3 is exponential time w.r.t. the size of A.

Therefore the complexity is of the order 2|A| × (2|A| + 2|A| × 22|A|). Hence, ClassA(G) is
computable in double exponential time w.r.t. the size of A. if A has no τ transitions, then
Class(A) is computable in exponential time w.r.t. the size of A since the CutA operator
costs exponential time w.r.t. A. ut

5 Discussion

In this section we discuss two important topics, namely non-zeno runs and classical definition
of PTA without normalization (see [35]).

5.1 Non-zeno Schedulers

A scheduler F is non-zeno if for each execution σ in ExecFragF
A , the sum of the times

occurring in σ diverges. The general notion of scheduler we gave defines both zeno and
non-zeno schedulers.

Weak bisimulation implies weak bisimulation restricted to non-zeno schedulers. Let us
formalise our conjecture as follows.

Consider two configurations s and s′ such that s ≈A s′ (recall that ≈A denotes the weak
bisimilarity w.r.t. general scheduler).

For any F such that F is a non-zeno scheduler, we construct a non-zeno scheduler F ′

such that, for all C and α, it holds that

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′

A (s′, τ∗α̂τ∗, C).

This obviously implies the weak bisimilarity restricted to non-zeno schedulers.
Now since s ≈A s′, there exists a scheduler F ′′ such that, for all C and α, it holds that

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′′

A (s′, τ∗α̂τ∗, C).

We define F ′ in the same manner of F ′′ for the execution fragments performing a string
that is a proper prefix of τ∗α̂τ∗.

Therefore F ′ is now defined for the executions fragment starting from s′ that perform a
string of the form τ∗α̂τ∗ and such that the last configuration is in C, for some C and α. We
call this set of execution fragments E1(C, α).

Note that this part ensures that

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′′

A (s′, τ∗α̂τ∗, C),

for all C and α.
Now, we can iterate this step. Actually, for any C and α, let s be a configuration in

C reached from s by performing a string in τ∗α̂τ∗. For any σ ∈ E1(C, α) we have that
s, last(σ) ∈ C, and this means that s ≈ last(σ).

Hence, there exists F ′′′ such that

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′′′

A (last(σ), τ∗α̂τ∗, C).

34

By repeating the first part of the construction, we can define F ′′ for the executions σ1σ2

such that σ1 ∈ E1(C, α) and σ2 performs a string of the form τ∗α̂τ∗ and such that the last
configuration is in C, for some C and α.

Hence, by iterating, we have defined F ′ such that

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′

A (s′, τ∗α̂τ∗, C).

Moreover, F ′ assigns the same sequence of times assigned by F , hence is non-zeno.
Viceversa, weak bisimulation restricted to non-zeno schedulers does not imply weak

bisimulation. Actually, if we consider a state from which the only exiting transition is a loop
with condition x ≤ c, where x is a clock not reset by the loop. A run with a suffix composed
by that loop is obviously a zeno run. If two configurations are not weakly bisimilar because
of that loop, the two configurations will be weakly bisimilar in a non-zeno scheduler setting.
Actually, if we consider a non-zeno scheduler, that state will never be reached.

We believe that the algorithm we propose could be modified for considering non-zeno
schedulers; it is sufficient to consider only clock zones from which at least a non-zeno run
can be performed.

5.2 Normalization

As already mentioned, our definition of PTAs requires a run-time re-normalization of prob-
abilities when time constraints prevent the execution of some transitions. Situations of this
kind may arise whenever an automaton returns to a certain state at different times and
some of the transitions available from that state are prevented.

As we will show in the next example, run-time re-normalization of probabilities allows
us to depict a dynamical reallocation of probabilities when several resources are available
to a system while others are prevented due to timing constraints.

We also show that re-normalization, on the one hand, allows us to relax the condition of
admissible target states used in [35] and, on the other hand, gives a more succinct description
of systems.

Example 21. Let us consider a system that can allocate n mutual exclusive resources. Ex-
ecution of action ai models the system acquiring the ith resource (ri), while execution of
action bi represents the system releasing resource ri

Before the system can acquire a resource, the resource must be initialized, and we suppose
that a resource initializes itself after a time amount of length c has elapsed. Hence, a resource
cannot be acquired if either a time c has not elapsed from its last release or if a time c has
not elapsed from the beginning of the initialization procedure.

Thus, at a certain instant of time only a subset of the n resources are available. Assuming
the system chooses one of the n resources with uniform probability distribution, if k resources
are available at a certain instant of time, re-normalization assures that the system chooses
one of them with a probability equal to 1

k .
This system can be modeled by a PTA with n + 1 states {q, q1, . . . , qn} and n clocks

{x1, . . . , xn}. At state q the system may acquire a resource, in state qi the system is using
resource ri. Clocks xi are used to check the initialization times for resources ri.

We have just two kinds of transitions:

– transitions acquiring a resource have the form (q, ai, xi ≥ ci, {}, qi), for all i ∈ [1, n];
– transitions releasing a resource have the form (qi, bi, true, {xi}, q), for all i ∈ [1, n].

We consider invariants equal to true, and, finally, we have only one probability distribu-
tion π such that π(q, ai, xi ≥ ci, {}, qi) = 1

n and π(qi, bi, true, {xi}, q) = 1, for all i ∈ [1, n].

35

In [35] a different definition of PTAs is given. There is no normalization of probabilities
and a finite non empty discrete probability distribution on Q× 2X is associated with each
state. Moreover, each discrete probability has an enabling condition. The definition does not
consider symbols, but it could be easily extended to consider actions labeling transitions.
Moreover, in [35] there are some requirements on invariants. More precisely, it is required
that:

– if in a configuration a certain amount of time violates the invariant, before the violation
at least an enabling condition is satisfied, and

– it is never possible to perform a discrete step to a state for which the invariant is not
satisfied.

This requirements could be artificial, hence we have chosen to consider infinite and finite
paths.

Now, if we extend the definition of [35] by introducing actions, we do some succinctness
considerations.

We can simulate (in the sense of strong bisimulation) the definition of [35]. Given a
PTA defined as in [35], we can construct a PTA with our definition in polynomial size.
Actually, it is sufficient to add, for each discrete probability π associated with state q
and with enabling condition φ, a set of transitions of the form (q, a, φ, B, q′), for any q′

and B such that π(q′, B) > 0. Moreover we add a distribution function π′ such that
π′(q, a, φ, B, q′) = π(q′, B), for any q′ and B such that π(q′, B) > 0. Note that the re-
quirements on the invariants of [35] mean that the model translated in our definition have
only infinite paths.

It is worth noticing that, if we consider Example 21, the minimal PTA following the defi-
nition of [35] is of exponential size w.r.t. our modelization. Actually, the PTA must consider
all possible subset in {1, . . . , n} of possible ready resources by using at least 2n distribution
functions (showing that the minimal PTA has an exponential size). Note that invariants
equal to true do not give any problems of simulation. This proves that our definition is ex-
ponentially more succinct than the definition of [35]. Moreover, Example 21 shows that an
interesting practical problem could cause this growth up. Notice that this discussion depends
neither on the uniform distribution nor on the amount of time c (that can be differentiable
for each resource).

6 An Application of Weak Bisimulation for PTAs

Security is one of the features of a system that one frequently needs to guarantee. Consider,
for example, a two level system scheme in which one does not want interference between
confidential data of the high level and the low level behaviour observed by an attacker who
could infer confidential information (exploiting, for example, a covert channel).

Analyzing the behaviour of a system, aspects of time and/or probability could be ex-
ploited to undermine security. Intuitively, a system which in a nondeterministic setting is
considered to be secure, in a richer framework, where the duration of certain actions, or the
probability distribution of the possible events, is known, may reveal information leakages.

Aldini et al. [1], for example, observe that an attack could be done in the following way.
Assume that a secret 1-bit value can be communicated to the unauthorized user among
randomly created low-level noise, and that both secret value and random low-level noise
belong to the same domain. The high behaviour does not alter the set of possible low
outcomes which are always the same with or without the high-level interaction. However,
for a fixed value of the high input, an attacker observing the frequency of the low results
deriving from repeated executions of the system could infer (with a certain probability)
which one is directly communicated by the high user.

36

Besides, a timing attack is a side channel attack in which the attacker attempts to com-
promise a cryptosystem by analyzing the time taken to execute cryptographic algorithms
such as encryption, decryption, hashing, etc. (see, for example, [34, 14]). The attack ex-
ploits the fact that every operation in a computer takes time to execute, hence information
may leak from a system through measurement of the time it takes to respond to certain
queries. How much such information can help an intruder depends on many variables: the
cryptosystem design, the CPU running the system, the used algorithms, the timing attack
countermeasures, the accuracy of the timing measurements, etc.

In this section we introduce Chaum’s dining cryptographers protocol, we model the
principals with PTAs, and we capture a timing attack with our notion of weak bisimulation.

6.1 The Dining Cryptographers Protocol

The dining cryptographers protocol, introduced by Chaum in [19], is a method for anony-
mous communication which offers untraceability of both the sender and the recipient. We
recall Chaum’s introduction to the dining cryptographers problem.

Three cryptographers are sitting down to dinner at their favorite three-star restaurant.
Their waiter informs them that arrangements have been made with the maitre d’hotel for the
bill to be paid anonymously. One of the cryptographers might be paying for the dinner, or
it might have been NSA (U.S. National Security Agency). The three cryptographers respect
each other’s right to make an anonymous payment, but they wonder if NSA is paying. They
resolve their uncertainty fairly by carrying out the following protocol.

Each cryptographer flips an unbiased coin behind his menu, between him and the cryp-
tographer on his right, so that only the two of them can see the outcome. Each cryptographer
then states aloud whether the two coins he can see –the one he flipped and the one his left-
hand neighbor flipped– fell on the same side or on different sides. If one of the cryptographers
is the payer, he states the opposite of what he sees. An odd number of differences uttered
at the table indicates that a cryptographer is paying; an even number indicates that NSA is
paying (assuming that the dinner was paid for only once). Yet if a cryptographer is paying,
neither of the other two learns anything from the utterances about which cryptographer it is.

Fig. 13. The Dining Cryptographers.

Example 22. Consider the situation depicted in Figure 13, and suppose NSA is paying the
bill. In this case cryptographer A (who can see his own coin and C’s coin, both giving head)

37

states that the two coins fell on the same side. Cryptographers B and C, however, see a
head and a tail, hence they state the coins they can see fell on different sides. Since the
number of cryptographers who state the coins are different is even, the protocol correctly
reveals NSA is paying.

In case cryptographer A payed the bill he would state that the two coins he can see are
different. Hence, the number of cryptographers stating the coins are different becomes odd,
revealing that the bill was payed by one of the cryptographers.

It is easy to see that the protocol works correctly also if either B or C are paying.

The method can be improved in order to anonymously communicate general messages
as follows. Instead of just throwing a coin, every cryptographer picks a random number in
private and shows it to the cryptographer to the right. Then, each cryptographer computes
the difference between his own number and the number he was shown by his left neighbor,
adding a message if he wants to transmit one. Each cryptographer publicly announces the
result. The published numbers are summed, and, if the sum is 0, no message was sent. If
the sum is a valid message, one cryptographer transmitted a message. If the sum is invalid,
more than one cryptographer tried to transmit a message; they just wait a random time
and try again.

Recipient anonymity is quite simple: Everybody receives the message at the same time
(when the announced values are summed up), so the message could be meant for anybody.
Sender anonymity holds because no cryptographer knows the number of the person to his
right. Therefore, each cryptographer (other than himself) appears to be equally likely that
he is the one who added the message.

Example 23. Consider again the situation depicted in figure 13, but, instead of flipping a
coin, assume each cryptographer picks a random number. Let nA, nB and nC be the random
numbers extracted by cryptographer A, B and C respectively. Cryptographer C, moreover,
wants to anonymously transmit the message m. We have the following situation:

– cryptographer A computes and announces: nA − nC ;
– cryptographer B computes and announces: nB − nA;
– cryptographer C computes and announces: nC − nB + m;

– the announced values are summed up resulting in message m.

In a purely untimed setting this protocol correctly preserves anonymity of both the
sender and the receiver, however it is subject to a very simple timing attack. Actually, even
if cryptographers are known to be excellent in Mathematics, it takes them some time to per-
form the computations needed by the protocol. Now, while cryptographers non transmitting
messages just perform a single subtraction, the cryptographer who wants to transmit a mes-
sage needs to perform a subtraction and a summation. Hence, by observing the time that
elapses before announcing the result of the computation, the cryptographers may be able
to detect the sender of the message.

6.2 The PTA Model of the Protocol

As a toy example, we represent the dining cryptographers protocol within the PTA model
and we analyze it by using our notion of weak bisimulation. Namely, we define an anonymity
property in terms of behavioural equivalence by resorting to our notion of weak bisimulation.

Actually, we are able to model the timing attack presented in Example 23. Now, since the
timing attack can be detected only by observing action durations, and since the protocol
we are modeling is intrinsically probabilistic, a framework is needed were both time and
probability are taken into account.

38

We consider the simpler case introduced in Example 22, but, keeping in mind the timing
attack shown in Example 23, we assume that each cryptographer takes some time to check
whether the two coins are the same or not, and, in case he is paying, he also takes some
time to compute the negation of what he sees. We give and compare the PTAs modeling
the behaviour of a cryptographer when he is the one paying the bill or not.

-
µ´
¶³
q0

-x≥tT , x:=0

τ, 1
4

µ´
¶³
qht

-x≥tT , x:=0

τ, 1
4

µ´
¶³
qth

-
x≥tT , x:=0

τ, 1
4

µ´
¶³
qhh

-
x≥tT , x:=0

τ, 1
4

µ´
¶³
qtt

?
τ

x≥tX , x:=0

6
τ

x≥tX , x:=0
µ´
¶³
qD

?
τ

x≥tX , x:=0

6
τ

x≥tX , x:=0
µ´
¶³
qE

-
µ´
¶³

τ

x≥tN

qD̄

-
µ´
¶³

τ

x≥tN qĒ

?
equal

6different
µ´
¶³
qF

Fig. 14. APC : Paying Cryptographer.

In Figure 14 we depict the PTA model of a paying cryptographer (APC). The coin
tossing phase of the protocol is represented by the four initial transitions leading, each with
probability 1

4 and label τ , to states qbb′ , with b, b′ ∈ {h, t}. Intuitively, b′ represents the result
of the coin tossed by the modeled cryptographer, while b represents the result of the coin
tossed by the person to his left. Since coins are unbiased, the probability distribution over
states qbb′ can be assumed to be uniform. Notice that we are also assuming the coin tossing
phase to last, at least, a fixed amount of time tT . In order to check whether the two coins are
equal or different, in state qbb′ the cryptographer computes the XOR between the two coins,
and after a time tX can reach either state qD, if the coins are different, or state qE if the
two coins are equal. Since the cryptographer we are modeling is the one who is paying the
bill, he should announce the contrary of what he sees. Hence, he performs a NOT operation
with time duration at least tN . The only visible actions are the announcements equal or
different performed from states qD̄ and qĒ , respectively, and leading to the final state qF .

In Figure 15 we show the simpler PTA model of a non paying cryptographer (ANPC),
where the transitions modeling the negations in the paying cryptographer behaviour are
omitted.

Probable innocence is a notion of anonymity introduced by Reiter and Rubin in [51].
While different formal definitions can be found in the literature (see [17] for details), probable
innocence intuitively states that an agent appears no more likely to be the culprit than not
to be.

Thus, if the protocol preserves probable innocence, the behaviour of a cryptographer
when he is paying the bill should not be distinguishable from the behaviour of the cryp-
tographer when he is not paying the bill. In terms of our notion of weak bisimulation, we
should require that:

APC ≈ ANPC .

Now, it is easy to see that the two automata we are considering are not weakly bisimilar.
Intuitively, while automaton APC performs an observable announcement equal or different

39

-
µ´
¶³
r0

-y≥tT , y:=0

τ, 1
4

µ´
¶³
rht

-y≥tT , y:=0

τ, 1
4

µ´
¶³
rth

-
y≥tT , y:=0

τ, 1
4

µ´
¶³
rhh

-
y≥tT , y:=0

τ, 1
4

µ´
¶³
rtt

?
τ

y≥tX , y:=0

6
τ

y≥tX , y:=0
µ´
¶³
rD

?
τ

y≥tX , y:=0

6
τ

y≥tX , y:=0
µ´
¶³
rE

different
?

equal
6

µ´
¶³
rF

Fig. 15. ANPC : Non Paying Cryptographer.

only after a time tT +tX+tN has elapsed, automaton ANPC can perform such announcements
after a time tT + tX .

Namely, while there exists a scheduler F such that (r0, y = 0) tT−→ (r0, y = tT) τ−→
(rhh, y = 0) tX−→ (rhh, y = tX) τ−→ (rE , y = 0)

equal−→ (rF , y = 0) is a valid run for ANPC , there
is no analogous run in APC for any scheduler.

Such a timing attack can be avoided by synchronizing the announcements of all cryptog-
raphers. This, in turn, can be achieved by introducing a timeout in the last announcement.
Actually, we might require the non paying cryptographer to wait in state rD or rE for the
paying cryptographer (if any) to perform all its computation. This can be modeled in ANPC

by adding the condition y ≥ tN in the final transitions reaching state rF . In such a way,
each cryptographer announces its results at a time greater than tT + tX + tN either if he is
paying or not.

We A′NPC the automaton modeling the cryptographer modified as just explained above,
and we can prove that in this case APC ≈ A′NPC , thus satisfying the anonymity property.

Namely, there exists a weak bisimulation relation R with classes defined as follows.

– C1 = (q0, r0, x = y < tT),
– C2 = (q0, r0, x = y ≥ tT),
– C3 = (qht, qth, x = y < tX) ∪ (qht, rhh, x = y < tX) ∪ (rhh, rtt, x = y < tX),
– C4 = (qhh, qtt, x = y < tX) ∪ (qhh, rht, x = y < tX) ∪ (rht, rth, x = y < tX),
– C5 = (qht, qth, x = y ≥ tX) ∪ (qht, rhh, x = y ≥ tX) ∪ (rhh, rtt, x = y ≥ tX),
– C6 = (qhh, qtt, x = y ≥ tX) ∪ (qhh, rht, x = y ≥ tX) ∪ (rht, rth, x = y ≥ tX),
– C7 = (qD, rE , x = y < tN)
– C8 = (qE , rD, x = y < tN)
– C9 = (qD, qD̄, x = y ≥ tN) ∪ (qD, rE , x = y ≥ tN),
– C10 = (qE , qĒ , x = y ≥ tN) ∪ (qE , rD, x = y ≥ tN),
– C11 = (qF , rF , x = y ≥ tN).

For simplicity we omitted triples generated from commutativity and transitivity within
each class Ci. Namely, if (q, r, ψ), (q′, r′, ψ) ∈ Ci, then also (r, q, ψ), (q, r′, ψ), . . . ∈ Ci Note
that (qF , rF , x = y ≥ tN) ∈ C11. Hence, C11 contains the final states of A′PC and A′NPC .
Actually, any configuration in C11 is terminal.

Now, since R is a weak bisimulation on SÂ, and since the initial configurations of A′PC

and A′NPC are in the same class we have that the two automata are weakly bisimilar.

40

Finally, we would like to show the use of weak bisimulation as a state space reduction
technique. Looking at the classes of R one can notice that for any configuration in C2 we
can reach, through a τ transition, class C3 or C4 with probability 1

2 . Such a consideration
immediately suggests how to reduce the state space of APC and A′NPC . In fact, we have that
the two automata are both bisimilar to the reduced automaton AC in Figure 16.

-
µ´
¶³
u0

6
τ, 1

2

z≥tT , z:=0

µ´
¶³
uD

?

τ, 1
2

z≥tT , z:=0

µ´
¶³
uE

-
τ

z≥tX , z:=0

µ´
¶³
u′D

-
τ

z≥tX , z:=0

µ´
¶³
u′E

?

different

z≥tN

6
equal

z≥tN

µ´
¶³
uF

Fig. 16. AC : The Reduced Cryptographer.

7 Related Works

The notion of bisimulation has already been introduced and studied for real–time models
(e.g. in [57, 20, 47, 5, 4]) and probabilistic models (see [7, 8, 15, 22, 1]).

On the one hand, simulation and bisimulation were shown to be decidable for finite timed
transitions systems by Asarin et al. [6] and Cerans [20], respectively. In the latter paper,
bisimulations are defined in terms of the uncountable unfolded version of the given timed
transition systems, and the decision mechanisms produce relations over nontrivial regional
constructions.

On the other hand, Baier and Hermanns [7] introduced a notion of weak bisimulation
for fully probabilistic systems, and gave an algorithm to decide it with a time complexity
cubic in the number of states of the fully probabilistic system.

In [49] algorithms for deciding weak bisimulation for Labeled Concurrent Markov chains
are proposed. In [15] the problem of deciding weak bisimulation in the context of probabilistic
nondeterministic automata is studied. Our work is close to this last one for the context and
the algorithm used, but time features introduced more complex problems to be solved (see
Section 4)

There is also some work on Stochastic Process Algebras where probability and timing are
combined. In [28], minimization algorithms based on behavioural equivalences for stochas-
tic process algebras are discussed. Some examples of such equivalence relations are strong
equivalence [29], strong (and weak) Markovian bisimilarity [27], and extended Markovian
bisimilarity [10].

Among the papers on bisimulation (or simulation) relations based on automata models,
we still could cite some works.

In [45], Lynch and Vaandrager present a variety of simulation proof techniques for a
general automaton based model for timed systems. They also show how some results for
untimed automata can be carried over to the setting of Timed Automata.

41

As regards Probabilistic Automata we should cite Segala’s thesis [53], in which the com-
mon semantics for labeled transition systems is extended to the probabilistic framework. A
compositional trace semantics is defined where a trace is replaced by a probability distribu-
tion over traces. The classical bisimulation and simulation relations are extended according
to such a trace semantics both in their strong and weak version. Furthermore, probabilistic
forward simulations are defined, where a state is related to a probability distribution over
states.

In Stoelinga’s thesis [56], a new notion of bisimulation relation, called delay bisimulation,
is introduced for Probabilistic Automata. While this relation abstracts away from internal
moves only in a limited way, there is a gain in the efficiency of the algorithms that automat-
ically compute the bisimilar states. Namely, delay bisimulation is shown to be decidable in
polynomial time and space.

Jensen and Gregersen [31, 32] present a model which is similar to probabilistic timed
automata but obtained as a generalization of reactive systems [43]. They also present a
specification formalism in terms of a real timed probabilistic logic and a model checking
method for verification with respect to the logic. However, differently from Segala’s prob-
abilistic automata, their model cannot have nondeterministic choice between transitions
labeled with the same action.

Finally, in [55] probabilistic timed simulation and bisimulation relations for probabilistic
timed automata are studied. An EXPTIME algorithm for deciding whether two probabilistic
timed automata are probabilistically timed similar or bisimilar is presented together with a
a logical characterization of probabilistic timed bisimulation.

On the Interpretation of Timed Steps In [57, 44], Wang and Larsen introduce strong
and weak bisimulation equivalences for a real time process calculus obtained by extending
Milner’s CCS [46] with delays. Our notion of weak bisimulation for PTAs differs from the
mentioned one. In our framework, a weak transition t=⇒ is given by a sequence of internal
moves followed by a single time transition of duration t followed by a sequence of internal
moves. In [57] both time delays and internal moves are interchangeable, the observable
resulting after a series of time delays and internal moves is just the time delay obtained
summing up the different timed steps: a weak timed transition consists of a sequence of
steps (either internal or timed steps) such that the sum of the different time steps is t.
Thus, the main difference is that our notion of weak bisimulation is weak only with respect
to internal moves, while the notion of weak bisimulation in [57] is weak with respect to both
internal and timed steps.

In [57] also a notion of strong bisimulation is given (which is similar to our notion when
abstracting from internal moves). In a sense, we relax this equivalence by introducing internal
invisible moves, which then lead to the definition of our intermediate weak bisimulation.

As a consequence, we are treating as visible consequent timed steps. This becomes ac-
tually relevant when consequent timed steps are interleaved with invisible τ actions which
might change a time invariant by leading to a new state with different time constraints,
or the probability of observing the passage of time (see Example 13). Such an assumption
makes finer the classes of our weak bisimulation relation but allows us to take into account
the fact that the scheduler is invoked again after a timed step. While no assumption about
the scheduler is needed in [57] (since their model is purely possibilistic, nondeterminism
could be treated in the classical way), in this paper we used schedulers to combine prob-
abilities and nondeterminism. Such an invocation would actually make distinguishable, to
the eyes of a malicious scheduler, a system which can perform a single timed step of length
t from a system which can perform two timed steps (maybe interleaved by some internal
move) with length t1 and t2 such that t1 = t2, and so alter its observable behaviour (see [16,

42

18] for examples on how malicious schedulers may collaborate with an attacker allowing him
to distinguish two bisimilar processes). Moreover, notice that in our framework the sched-
uler also decides the amount of time to pass. We believe that, for example in the context of
security analysis, our stricter notion of bisimulation is more suitable than the one presented
in [57].

8 Conclusions

We have considered a model of Probabilistic Timed Automata and we have presented a
notion of weak bisimulation in order to compare automata behaviour together with an
algorithm based on symbolic representation that permits to decide it with a complexity
congruent with the algorithm given for the untimed version. We have applied such a notion
in the context of security analysis by modeling a timing attack on a protocol where both
time and probability play a role. Therefore, our framework can be used, for example, to
prevent possible attacks based on statistical or timing analysis.

While the notion of weak bisimulation we introduced in this paper is quite strict, a notion
of approximate weak bisimulation could be extremely useful when analyzing performance
or security aspects of probabilistic systems.

In order to introduce a quantitative measure for insecure behavior (hence, to estimate the
probability that a certain insecure behavior arises), one may resort to an approximate notion
of weak bisimulation for deciding if two systems behave almost in the same way, namely, to
assess bisimilarity of automata for which the difference between their probabilistic behaviour
is within a small distance.

In [13, 22, 23], for example, metrics are introduced in order to quantify the similarity of
the behaviour of probabilistic transitions systems that are not strictly bisimilar. In [1] the
authors introduce an enriched notion of weak probabilistic bisimulation, which is able to
tolerate fluctuations making the security conditions less restrictive and relating systems that
may have largely different possible behaviour under the condition that such behaviour are
observable with a negligible probability. It would be interesting to extend also our notion of
weak bisimulation with an approximate one.

As another possible improvement of this work, one may consider to reason about com-
positionality of PTAs, thus allowing for the analysis of more complex systems. A lot of work
has been done on probabilistic parallel composition operators (see [53, 21, 54]). Hence, it
would be interesting to study the application of parallel composition operators within the
model of PTAs, and verify, for example, whether weak bisimulation is a congruence with
respect to these constructs.

A more practical direction may consists in the development of tools for the automatic
verification of weak bisimulation for PTAs or for the state space reduction of PTAs. This
latter point could improve the verification of PTAs through model checkers for PTAs (see,
for example, PRISM [50, 36]).

References

1. A. Aldini, M. Bravetti, R. Gorrieri: A Process-algebraic Approach for the Analysis of Proba-
bilistic Non-interference. Journal of Computer Security 12, 191–245, 2004.

2. R. Alur, C. Courcoubetis, D. L. Dill: Verifying Automata Specifications of Probabilistic Real-
Time Systems. Real-Time: Theory in Practice, Springer LNCS 600, 28–44, 1992.

3. R. Alur, D. L. Dill: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235,
1994.

43

4. J. H. Andersen, K. J. Kristoffersen, K. G. Larsen, J. Niedermann: Automatic synthesis of real
time systems. Proc. of ICALP’95, Springer LNCS 944, 535–546, 1995.

5. H. H. Andersen, M. Mendler: An asynchronous process algebra with multiple clocks. Proc. of
ESOP’94, Springer LNCS 788, 1994.

6. E. Asarin, O. Maler, A. Pnueli: On Discretization of Delays in Timed Automata and Digital
Circuits. Proc. of CONCUR’98, Springer LNCS 1466, 470–484, 1998.

7. C. Baier, H. Hermanns: Weak Bisimulation for Fully Probabilistic Processes. Proc. of CAV’97,
Springer LNCS 1254, 119–130, 1997.

8. C. Baier: On Algorithmic Verification methods for Probabilistic Systems. Habilitation thesis,
Univ. Mannheim, 1998.

9. R. E. Bellman: Dynamic Programming. Princeton University Press, 1957.

10. M. Bernardo, R. Gorrieri: A Tutorial on EMPA: A Theory of Concurrent Processes with Non-
determinism, Priorities, Probabilities and Time. Theoretical Computer Science, 202, 1–54,
1998.

11. D. Beauquier: On Probabilistic Timed Automata. Theoretical Computer Science 292, 65–84,
2003.

12. P. Bouyer: Forward Analysis of Updatable Timed Automata. Formal Methods in System Design
24, 281–320, 2004.

13. F. van Breugel, J. Worrel: Towards Quantitative Verification of Probabilistic Systems (extended
abstract). Proc. of 28th Int. Colloquim on Automata, Languages and Programming, Springer
LNCS 2076, 421–432, 2001.

14. D. Brumley, D. Boneh: Remote timing attacks are practical. The International Journal of
Computer and Telecommunications Networking 48, 701–716, 2005.

15. S. Cattani, R. Segala: Decision Algorithm for Probabilistic Bisimulation. Proc. of CONCUR’02,
Springer LNCS 2421, 371–385, 2002.

16. K. Chatzikokolakis, G. Norman, D. Parker: Bisimulation for Demonic Schedulers. Proc. of
FOSSACS’09, Springer LNCS 5504, 318–332, 2009.

17. K. Chatzikokolakis, C. Palamidessi: Probable Innocence Revisited. Theoretical Computer Sci-
ence 367, 123–138, 2006.

18. K. Chatzikokolakis, C. Palamidessi: Making Random Choices Invisible to the Scheduler. Proc.
of CONCUR’07, Springer LNCS 4703, 42–58, 2007.

19. D. Chaum: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untrace-
ability. Journal of Cryptology 1,65–75, 1988.

20. K. Cerans: Decidability of Bisimulation Equivalences for Parallel Timer Processes. Proc. of
CAV’92, Springer LNCS 663, 302–315, 1992.

21. P. R. D’Argenio, H. Hermanns, J.-P. Katoen: On Generative Parallel Composition. Proc. of
PROBMIV’98, Elsevier ENTCS 22, 30–54, 1998.

22. J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden: The Metric Analogue of Weak Bisim-
ulation for Probabilistic Processes. Proc. of 17th Symposium on Logic in Computer Science,
IEEE CS Press, 2002.

23. J. Desharnis, V. Gupta, R. Jagadeesan, P. Panangaden: Metrics for Labelled Markov Processes.
Theoretical Computer Science 318, 323–354, 2004.

24. R. Focardi, R. Gorrieri: A Classification of Security Properties. Journal of Computer Security
3, 5–33, 1995.

25. P. R. Halmos: Measure Theory. Springer-Verlag, 1950.

26. T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine: Symbolic Model Checking for Real-time
Systems. Information and Computation 111, 193–244, 1994.

44

27. H. Hermanns, U. Herzog, V. Mertsiotakis: Stochastic Process Algebras - Between LOTOS and
Markov Chains. Computer Networks and ISDN Systems, 30, 901-924, 1998.

28. H. Hermanns, M. Stegle: Bisimulation Algorithms for Stochastic Process Algebras and Their
BDD-Based Implementation. Proc. of ARTS’99, Springer LNCS 1601, 244–264, 1999.

29. J. Hillston: A Compositional Approach to Performance Modelling. Cambridge University Press,
1996.

30. H. Howard: Dynamic Programming and Markov Processes. MIT Press, 1960.

31. H. E. Jensen, H. Gregersen: Formal Design of Reliable Real Time Systems. Master’s thesis,
Aalborg University, 1995.

32. H. E. Jensen: Model Checking Probabilistic Real Time Systems. Proc. of the 7th Nordic Work.
on Progr. Theory, 247–261, Institute of Technology, 1996.

33. P. C. Kanellakis, S. A. Smolka: CCS Expressions, Finite State Processes, and Three Problems
of Equivalence. Information and Computation 86, 43–68, 1990.

34. P. C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. Proc. of CRYPTO 1996, Springer LNCS 1109, 104–113, 1996.

35. M. Kwiatkowska, G. Norman, R. Segala, J. Sproston: Automatic Verification of Real-time
Systems with Discrete Probability Distribution. Theoretical Computer Science 282, 101–150,
2002.

36. M. Kwiatkowska, G. Norman, J. Sproston: Symbolic Model Checking for Probabilistic Timed
Automata. Proc. of FORMATS/FTRTFT2004, Springer LNCS 3253, 293–308, 2004.

37. R. Lanotte, D. Beauquier: A Decidable Probability Logic for Timed Probabilistic Systems.
CoRR, cs.LO/0411100, 2004.

38. R. Lanotte, A. Maggiolo-Schettini, A. Troina: Weak Bisimulation for Probabilistic Timed Au-
tomata and Applications to Security. Proc. of SEFM’03, IEEE CS Press, 34–43, 2003.

39. R. Lanotte, A. Maggiolo-Schettini, A. Troina: A Classification of Time and/or Probability
Dependent Security Properties. Proc. of QAPL’05, Elsevier ENTCS 153(2), 177–193, 2005.

40. R. Lanotte, A. Maggiolo-Schettini, A. Troina: Reachability results for timed automata with
unbounded data structures. Acta Informatica, 47, 279–311, 2010.

41. R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, A. Troina: Design and Verification of Long-
Running Transactions in a Timed Framework. Science of Computer Programming, 73, 76–94,
2008.

42. R. Lanotte, A. Maggiolo-Schettini, A. Troina: Time and Probability-Based Information Flow
Analysis. IEEE Transactions on Software Engineering, 36, 2010.

43. K. G. Larsen, A. Skou: Bisimulation through probabilistic testing. Information and Computa-
tion, 94, 1–28, 1991.

44. K. G. Larsen, Y. Wang: Time abstracted bisimulation: Implicit specifications and decidability.
Information and Computation 134, 75–101, 1997.

45. N. A. Lynch, F. W. Vaandrager: Forward and Backward Simulations, II: Timing-Based Sys-
tems. Information and Computation, 128, 1–25, 1996.

46. R. Milner: Communication and Concurrency. Prentice Hall, 1989.

47. X. Nicollin, J. Sifakis, S. Yovine: From ATP to timed graphs and hybrid systems. Acta Infor-
matica 30, 181–202, 1993.

48. R. Paige, R. E. Tarjan: Three Partition Refinement Algorithms. SIAM J. Comput. 16, 973–989,
1987.

49. A. Philippou, I. Lee, O. Sokolsky: Weak bisimulation for probabilistic systems. Proc. CON-
CUR’00, Springer LNCS 1877, 334–349, 2000.

45

50. PRISM Model Checker. Web site: http://www.cs.bham.ac.uk/dxp/prism.

51. M. K. Reiter, A. D. Rubin: Crowds: Anonimity for Web Transactions. ACM Transactions on
Information and System Security 1, 66–92, 1998.

52. P. Ryan, S. Schneider: Process Algebra and Non-Interference. Proc. of CSFW’99, IEEE CS
Press, 214–227, 1999.

53. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD the-
sis, MIT, Laboratory for Computer Science, 1995.

54. A. Sokolova, E. P. de Vink: Probabilistic Automata: System Types, Parallel Composition and
Comparison. Validation of Stochastic Systems, Springer LNCS 2925, 1–43, 2004.

55. J. Sproston, A. Troina: Simulation and Bisimulation for Probabilistic Timed Automata. Proc.
of FORMATS’10, Springer LNCS 6246, 213–227, 2010.

56. M. Stoelinga: Alea jacta est: verification of probabilistic, real-time and parametric systems.
PhD thesis, University of Nijmegen, the Netherlands, 2002.

57. Y. Wang: Real-time behaviour of asynchronous agents. Proc. of CONCUR’90, Springer LNCS
458, 1990.

46

