It can be a very complicated thing, the ocean. And it can be a very complicated thing, what human health is. And bringing those two together might seem a very daunting task, but what I'm going to try to say is that even in that complexity, there's some simple themes that I think, if we understand, we can really move forward. And those simple themes aren't really themes about the complex science of what's going on, but things that we all pretty well know. And I'm going to start with this one: If momma ain't happy, ain't nobody happy. We know that, right? We've experienced that. And if we just take that and we build from there, then we can go to the next step, which is that if the ocean ain't happy, ain't nobody happy. That's the theme of my talk. And we're making the ocean pretty unhappy in a lot of different ways. This is a shot of Cannery Row in 1932 . Cannery Row, at the time, had the biggest industrial canning operation on the west coast. We piled enormous amounts of pollution into the air and into the water. Rolf Bolin, who was a professor at the Hopkin's Marine Station where I work, wrote in the 1940s that "The fumes from the scum floating on the inlets of the bay were so bad they turned lead-based paints black". People working in these canneries could barely stay there all day because of the smell, but you know what they came out saying? They say, "You know what you smell?" . "You smell money". That pollution was money to that community, and those people dealt with the pollution and absorbed it into their skin and into their bodies because they needed the money. We made the ocean unhappy; we made people very unhappy, and we made them unhealthy. The connection between ocean health and human health is actually based upon another couple simple adages, and I want to call that "pinch a minnow, hurt a whale" . The pyramid of ocean life . Now, when an ecologist looks at the ocean - I have to tell you - we look at the ocean in a very different way, and we see different things than when a regular person looks at the ocean because when an ecologist looks at the ocean, we see all those interconnections. We see the base of the food chain, the plankton, the small things, and we see how those animals are food to animals in the middle of the pyramid, and on so up this diagram. And that flow, that flow of life, from the very base up to the very top, is the flow that ecologists see. And that's what we're trying to preserve when we say, "Save the ocean, heal the ocean" . It's that pyramid. Now why does that matter for human health? Because when we jam things in the bottom of that pyramid that shouldn't be there, some very frightening things happen. Pollutants, some pollutants have been created by us: molecules like PCBs that can't be broken down by our bodies. And they go in the base of that pyramid, and they drift up; they're passed up that way, on to predators and on to the top predators, and in so doing, they accumulate. Now, to bring that home, I thought I'd invent a little game. We don't really have to play it; we can just think about it here. It's the Styrofoam and chocolate game. Imagine that when we got on this boat, we were all given two Styrofoam peanuts. Can't do much with them: Put them in your pocket. Suppose the rules are: every time you offer somebody a drink, you give them the drink, and you give them your Styrofoam peanuts too. What'll happen is that the Styrofoam peanuts will start moving through our society here, and they will accumulate in the drunkest, stingiest people. There's no mechanism in this game for them to go anywhere but into a bigger and bigger pile of indigestible Styrofoam peanuts. And that's exactly what happens with PDBs in this food pyramid: They accumulate into the top of it. Now suppose, instead of Styrofoam peanuts, we take these lovely little chocolates that we get and we had those instead. Well, some of us would be eating those chocolates instead of passing them around, and instead of accumulating, they will just pass into our group here and not accumulate in any one group because they're absorbed by us. And that's the difference between a PCB and, say, something natural like an omega-3, something we want out of the marine food chain. PCBs accumulate. We have great examples of that, unfortunately. PCBs accumulate in dolphins in Sarasota Bay, in Texas, in North Carolina. They get into the food chain. The dolphins eat the fish that have PCBs from the plankton, and those PCBs, being fat-soluble, accumulate in these dolphins. Now, a dolphin, mother dolphin, any dolphin - there's only one way that a PCB can get out of a dolphin. And what's that? In mother's milk. Here's a diagram of the PCB load of dolphins in Sarasota Bay. Adult males: a huge load. Juveniles: a huge load. Females after their first calf is already weaned: a lower load. Those females, they're not trying to. Those females are passing the PCBs in the fat of their own mother's milk into their offspring, and their offspring don't survive. The death rate in these dolphins, for the first calf born of every female dolphin, is 60 to 80 percent. These mothers pump their first offspring full of this pollutant, and most of them die. Now, the mother then can go and reproduce, but what a terrible price to pay for the accumulation of this pollutant in these animals - the death of the first-born calf. There's another top predator in the ocean, it turns out. That top predator, of course, is us. And we also are eating meat that comes from some of these same places. This is whale meat that I photographed in a grocery store in Tokyo - or is it? In fact, what we did a few years ago was learn how to smuggle a molecular biology lab into Tokyo and use it to genetically test the DNA out of whale meat samples and identify what they really were. And some of those whale meat samples were whale meat. Some of them were illegal whale meat, by the way. That's another story. But some of them were not whale meat at all. Even though they were labeled whale meat, they were dolphin meat. Some of them were dolphin liver. Some of them were dolphin blubber. And those dolphin parts had a huge load of PCBs, dioxins and heavy metals. And that huge load was passing into the people that ate this meat. It turns out that a lot of dolphins are being sold as meat in the whale meat market around the world. That's a tragedy for those populations, but it's also a tragedy for the people eating them because they don't know that that's toxic meat. We had these data a few years ago. I remember sitting at my desk being about the only person in the world who knew that whale meat being sold in these markets was really dolphin meat, and it was toxic. It had two-to-three-to-400 times the toxic loads ever allowed by the EPA. And I remember there sitting at my desk thinking, "Well, I know this" . "This is a great scientific discovery", but it was so awful.